Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,083)

Search Parameters:
Keywords = technological relevance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2860 KiB  
Review
Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges
by Liangyue Yu, Yao Ge, Shuja Ansari, Muhammad Imran and Wasim Ahmad
Sensors 2025, 25(15), 4763; https://doi.org/10.3390/s25154763 (registering DOI) - 1 Aug 2025
Abstract
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal [...] Read more.
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal sensing technologies and large language models (LLMs) for the development of Automated Emotional Regulation (AER) systems. The review draws upon a comprehensive analysis of the existing literature, encompassing research papers, technical reports, and relevant theoretical frameworks. Key findings indicate that multimodal sensing offers the potential for rich, contextualized data pertaining to emotional states, while LLMs provide improved capabilities for interpreting these inputs and generating nuanced, empathetic, and actionable regulatory responses. The integration of these technologies, including physiological sensors, behavioral tracking, and advanced LLM architectures, presents the improvement of application, moving AER beyond simpler, rule-based systems towards more adaptive, context-aware, and human-like interventions. Opportunities for personalized interventions, real-time support, and novel applications in mental healthcare and other domains are considerable. However, these prospects are counterbalanced by significant challenges and limitations. In summary, this review synthesizes current technological advancements, identifies substantial opportunities for innovation and application, and critically analyzes the multifaceted technical, ethical, and practical challenges inherent in this domain. It also concludes that while the integration of multimodal sensing and LLMs holds significant potential for AER, the field is nascent and requires concerted research efforts to realize its full capacity to enhance human well-being. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 15257 KiB  
Article
A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot
by Carlos Relaño, Zhiqiang Tang, Cecilia Laschi and Concepción A. Monje
Biomimetics 2025, 10(8), 502; https://doi.org/10.3390/biomimetics10080502 (registering DOI) - 1 Aug 2025
Abstract
This study presents a novel method for controlling the position and orientation of the bioinspired I-SUPPORT soft robot, which represents a relevant advancement in the field of soft robotics. The approach is based on module actuation decoupling and fractional-order control, offering a more [...] Read more.
This study presents a novel method for controlling the position and orientation of the bioinspired I-SUPPORT soft robot, which represents a relevant advancement in the field of soft robotics. The approach is based on module actuation decoupling and fractional-order control, offering a more advanced and robust control solution. This innovation enhances the versatility of the robot and illustrates the efficacy of fractional-order controllers, which are comparable to current meta-learning-based controllers. The research involves experiments in both vertical and horizontal configurations, addressing tasks ranging from simple orientation to complex interactions, such as gentle rubbing during bathing activities with the robot. These experimental results exemplify the efficacy of the proposed control strategy and provide a foundation for future research in soft robotics control, underscoring its potential for broader applications and further technological advancement. Full article
(This article belongs to the Special Issue Design, Actuation, and Fabrication of Bio-Inspired Soft Robotics)
Show Figures

Figure 1

17 pages, 2439 KiB  
Article
Monte Carlo-Based VaR Estimation and Backtesting Under Basel III
by Yueming Cheng
Risks 2025, 13(8), 146; https://doi.org/10.3390/risks13080146 (registering DOI) - 1 Aug 2025
Abstract
Value-at-Risk (VaR) is a key metric widely applied in market risk assessment and regulatory compliance under the Basel III framework. This study compares two Monte Carlo-based VaR models using publicly available equity data: a return-based model calibrated to historical portfolio volatility, and a [...] Read more.
Value-at-Risk (VaR) is a key metric widely applied in market risk assessment and regulatory compliance under the Basel III framework. This study compares two Monte Carlo-based VaR models using publicly available equity data: a return-based model calibrated to historical portfolio volatility, and a CAPM-style factor-based model that simulates risk via systematic factor exposures. The two models are applied to a technology-sector portfolio and evaluated under historical and rolling backtesting frameworks. Under the Basel III backtesting framework, both initially fall into the red zone, with 13 VaR violations. With rolling-window estimation, the return-based model shows modest improvement but remains in the red zone (11 exceptions), while the factor-based model reduces exceptions to eight, placing it into the yellow zone. These results demonstrate the advantages of incorporating factor structures for more stable exception behavior and improved regulatory performance. The proposed framework, fully transparent and reproducible, offers practical relevance for internal validation, educational use, and model benchmarking. Full article
Show Figures

Figure 1

32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 (registering DOI) - 1 Aug 2025
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

29 pages, 2413 KiB  
Article
From Opportunity to Resistance: A Structural Model of Platform-Based Startup Adoption
by Ruixia Ji, Hong Chen and Sang-Do Park
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 187; https://doi.org/10.3390/jtaer20030187 - 1 Aug 2025
Abstract
This study explores the determinants of startup intention within the context of e-commerce platform-based startups in South Korea. We employ an extended technology acceptance model (TAM) that integrates individual, social, and entrepreneurial characteristics. A two-step analytical approach is applied, combining variable extraction through [...] Read more.
This study explores the determinants of startup intention within the context of e-commerce platform-based startups in South Korea. We employ an extended technology acceptance model (TAM) that integrates individual, social, and entrepreneurial characteristics. A two-step analytical approach is applied, combining variable extraction through data mining and hypothesis testing using structural equation modeling. The results indicate that personal and social factors—such as entrepreneurial mindset and social influence—positively affect perceived usefulness, while job relevance and exposure to successful startup models enhance perceived ease of use. In contrast, security concerns and technological barriers negatively impact these relationships, posing critical obstacles to platform-based startups. This study extends the TAM framework to the platform-based startup context, offering theoretical contributions and proposing policy implications, including promoting digital literacy, developing entrepreneurial networks, and addressing security and regulatory issues. These insights offer a deeper understanding of how platform environments shape entrepreneurial behavior, providing practical guidance for startup founders, developers, and policymakers. Full article
Show Figures

Figure 1

25 pages, 4545 KiB  
Article
A Multi-Purpose Simulation Layer for Digital Twin Applications in Mechatronic Systems
by Chiara Nezzi, Matteo De Marchi, Renato Vidoni and Erwin Rauch
Machines 2025, 13(8), 671; https://doi.org/10.3390/machines13080671 (registering DOI) - 1 Aug 2025
Abstract
The rising complexity of industrial systems following the Industry 4.0 era involves new challenges and the need for innovative solutions. In the context of arising digital technologies, Digital Twins represent a holistic solution to overcome heterogeneity and to achieve remote and dynamic control [...] Read more.
The rising complexity of industrial systems following the Industry 4.0 era involves new challenges and the need for innovative solutions. In the context of arising digital technologies, Digital Twins represent a holistic solution to overcome heterogeneity and to achieve remote and dynamic control of cyber–physical systems. In common reference architectures, decision-making modules are usually integrated for system and process optimization. This work aims at introducing the adoption of a multi-purpose simulation module in a Digital Twin environment, with the objective of proving its versatility for different scopes. This is implemented in a relevant laboratory environment, strongly employed for the test and validation of mechatronic solutions. The paper starts from revising the common techniques adopted for decision-making modules in Digital Twin frameworks, proposing then a multi-purpose approach based on physics simulation. Performance profiling of the simulation environment demonstrates the potential of real-time-capable simulation while also revealing challenges related to computational load and communication latency. The outcome of this work is to provide the reader with an exemplary modular arrangement for the integration of such module in Digital Twin applications, highlighting challenges and limitations related to computational effort and communication. Full article
(This article belongs to the Special Issue Digital Twins in Smart Manufacturing)
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 (registering DOI) - 1 Aug 2025
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

38 pages, 17913 KiB  
Article
Manufacturing, Microstructure, and Mechanics of 316L SS Biomaterials by Laser Powder Bed Fusion
by Zhizhou Zhang, Paul Mativenga and Shi-Qing Huang
J. Funct. Biomater. 2025, 16(8), 280; https://doi.org/10.3390/jfb16080280 (registering DOI) - 31 Jul 2025
Abstract
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely [...] Read more.
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely used in orthopedic and dental implants, and examined the effects of laser power and scanning speed on the microstructure and mechanical properties relevant to biomedical applications. The study achieved 99.97% density and refined columnar and cellular austenitic grains, with optimized molten pool morphology. The optimal LPBF parameters, 190 W laser power and 700 mm/s, produced a tensile strength of 762.83 MPa and hardness of 253.07 HV0.2, which exceeded the values of conventional cast 316L stainless steel. These results demonstrated the potential of optimized LPBF 316L stainless steel for functional biomedical applications that require high mechanical integrity and biocompatibility. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

21 pages, 5466 KiB  
Article
Evaluation of Bending Stress and Shape Recovery Behavior Under Cyclic Loading in PLA 4D-Printed Lattice Structures
by Maria Pia Desole, Annamaria Gisario and Massimiliano Barletta
Appl. Sci. 2025, 15(15), 8540; https://doi.org/10.3390/app15158540 (registering DOI) - 31 Jul 2025
Abstract
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in [...] Read more.
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in addition to a honeycomb structure. All geometries have a relative density of 50%. After being subjected to three-point bending tests, the capacity to spring back with respect to the bending angle and the shape recovery of the structures were measured. The roller and lozenge structures demonstrated the best performance, with shape recovery assessed through three consecutive hot water immersion cycles. The lozenge structure exhibits 25% higher energy absorption than the roller, but the latter ensures better replicability and shape stability. Additionally, the roller absorbs 15% less energy than the lozenge, which experiences a 27% decrease in absorption between the first and second cycle. This work provides new insights into the bending-based energy absorption and recovery behavior of PLA metamaterials, relevant for applications in adaptive and energy-dissipating systems. Full article
Show Figures

Figure 1

20 pages, 994 KiB  
Article
Analyzing Influencing Factors of Low-Carbon Technology Adoption in Hospital Construction Projects Based on TAM-TOE Framework
by Lei Jin, Dezhi Li, Yubin Zhang and Yi Zhao
Buildings 2025, 15(15), 2703; https://doi.org/10.3390/buildings15152703 (registering DOI) - 31 Jul 2025
Abstract
Hospitals rank among the most energy-intensive public building typologies and offer substantial potential for carbon mitigation. However, their construction phase has received limited scholarly attention within China’s ‘dual carbon’ agenda. To address this research gap, this study develops and empirically validates an integrated [...] Read more.
Hospitals rank among the most energy-intensive public building typologies and offer substantial potential for carbon mitigation. However, their construction phase has received limited scholarly attention within China’s ‘dual carbon’ agenda. To address this research gap, this study develops and empirically validates an integrated Technology Acceptance Model and Technology-Organization-Environment framework tailored for hospital construction projects. The study not only identifies 12 critical adoption factors but also offers recommendations and discusses the relevance to multiple Sustainable Development Goals. This research provides both theoretical and practical insights for promoting sustainable hospital construction practices. Full article
(This article belongs to the Special Issue Urban Infrastructure and Resilient, Sustainable Buildings)
Show Figures

Figure 1

27 pages, 1488 KiB  
Article
DKWM-XLSTM: A Carbon Trading Price Prediction Model Considering Multiple Influencing Factors
by Yunlong Yu, Xuan Song, Guoxiong Zhou, Lingxi Liu, Meixi Pan and Tianrui Zhao
Entropy 2025, 27(8), 817; https://doi.org/10.3390/e27080817 (registering DOI) - 31 Jul 2025
Abstract
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage [...] Read more.
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging. To address these complexities, this study proposes a method for predicting carbon trading prices influenced by multiple factors. We introduce a Decomposition (DECOMP) module that separates carbon price data and its influencing factors into trend and cyclical components. To manage non-stationarity, we propose the KAN with Multi-Domain Diffusion (KAN-MD) module, which efficiently extracts relevant features. Furthermore, a Wave-MH attention module, based on wavelet transformation, is introduced to minimize interference from uncertainties, thereby enhancing the robustness of the model. Empirical research using data from the Hubei carbon trading market demonstrates that our model achieves superior predictive accuracy and resilience to fluctuations compared to other benchmark methods, with an MSE of 0.204% and an MAE of 0.0277. These results provide reliable support for pricing carbon financial derivatives and managing associated risks. Full article
Show Figures

Figure 1

26 pages, 5192 KiB  
Review
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review
by Boyang Li, Yizhang Zhang, Jinzhe Du, Chen Liu, Guorui Zhou, Mingrui Li and Zhenguang Yan
Toxics 2025, 13(8), 653; https://doi.org/10.3390/toxics13080653 (registering DOI) - 31 Jul 2025
Abstract
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling [...] Read more.
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling the comprehensive and accurate analysis of biomolecular-level changes. The integration of multi-omics technologies can holistically reveal the molecular toxicity mechanisms of pollutants, representing a primary emphasis in current toxicological research. This paper introduces the fundamental concepts of genomics, transcriptomics, proteomics, and metabolomics, while reviewing recent advancements in integrated omics approaches within aquatic toxicology. Furthermore, it provides a reference framework for the implementation of multi-omics strategies in ecotoxicological investigations. While multi-omics integration enables the unprecedented reconstruction of pollutant-induced molecular cascades and earlier biomarker discovery (notably through microbiome–metabolome linkages), its full potential requires experimental designs, machine learning-enhanced data integration, and validation against traditional toxicological endpoints within environmentally relevant models. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

22 pages, 1007 KiB  
Systematic Review
Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice
by Christine Steinmetz-Weiss, Nancy Marshall, Kate Bishop and Yuan Wei
Appl. Sci. 2025, 15(15), 8519; https://doi.org/10.3390/app15158519 (registering DOI) - 31 Jul 2025
Abstract
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise [...] Read more.
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise required to operate it has enabled users from novice to industry professionals to adapt a malleable technology to various disciplines. This review examines the academic literature and maps how drones are currently being used in 93 rural and regional city councils in New South Wales, Australia. Through a systematic review of the academic literature and scrutiny of current drone use in these councils using publicly available information found on council websites, findings reveal potential uses of drone technology for local governments who want to engage with smart technology devices. We looked at how drones were being used in the management of the council’s environment; health and safety initiatives; infrastructure; planning; social and community programmes; and waste and recycling. These findings suggest that drone technology is increasingly being utilised in rural and regional areas. While the focus is on rural and regional New South Wales, a review of the academic literature and local council websites provides a snapshot of drone use examples that holds global relevance for local councils in urban and remote areas seeking to incorporate drone technology into their daily practice of city, town, or region governance. Full article
Show Figures

Figure 1

20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

Back to TopTop