Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice
Abstract
1. Introduction
2. Methodology and Methods
2.1. Part 1: Review of the Academic Literature
2.2. Part 2: Review of Publicly Available Council Information
3. Results
3.1. Part 1: Academic Literature Review Findings
3.1.1. Environment
Biodiversity
Biosecurity
Climate Change
Sustainable Solutions
Forest Classification and Management
Disaster Management
3.1.2. Health and Safety
3.1.3. Infrastructure
Roads and Transport
3.1.4. Planning
Building and Construction
Heritage
3.1.5. Social and Community
Arts and Culture
Children and Youth
3.1.6. Waste and Recycling
Waste Management
3.2. Part 2: Drone Use in Regional Local Government Areas
4. Discussion of Academic Literature and Council Uses
4.1. Economic
4.2. Environment
4.3. Health and Safety
4.4. Infrastructure
4.5. Planning
4.6. Social and Community
4.7. Waste and Recycling
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Patel, T.; Suthar, V.; Bhatt, N. Application of Remotely Piloted Unmanned Aerial Vehicle in Construction Management. In Recent Trends in Civil Engineering; Lecture Notes in Civil Engineering; Pathak, K.K., Bandara, J.M.S.J., Agrawal, R., Eds.; Springer: Singapore, 2021; pp. 319–329. [Google Scholar]
- Alvarado-Robles, G.; Garduño-Ramón, M.A.; Osornio-Ríos, R.A.; Morales-Hernandez, L.A. Methodology for Urban Vegetation Segmentation Based on Cartesian Hue and Saturation Characteristics Using UAV Images. Urban For. Urban Green. 2022, 78, 127785. [Google Scholar] [CrossRef]
- Escobar-Silva, E.V.; Bourscheidt, V.; Daughtry, C.S.T.; Kiniry, J.R.; Backes, A.R.; Chaves, M.E.D. A General Grass Growth Model for Urban Green Spaces Management in Tropical Regions: A Case Study with Bahiagrass in Southeastern Brazil. Urban For. Urban Green. 2022, 73, 127583. [Google Scholar] [CrossRef]
- Steinmetz-Weiss, C.; Marshall, N.; Bishop, K.; Dutia, E.; Wei, Y.; Maalsen, S.; Dowling, R.; Baker, A. Smart Regional Spaces: Ready Set Go! Aust. Plan. 2022, 58, 110–114. [Google Scholar] [CrossRef]
- Ezat, M.A.; Fritsch, C.J.; Downs, C.T. Use of an Unmanned Aerial Vehicle (Drone) to Survey Nile Crocodile Populations: A Case Study at Lake Nyamithi, Ndumo Game Reserve, South Africa. Biol. Conserv. 2018, 223, 76–81. [Google Scholar] [CrossRef]
- Kalamkar, R.B.; Ahire, M.C.; Ghadge, P.A.; Dhenge, S.A.; Anarase, M.S. Drone and Its Applications in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3022–3026. [Google Scholar] [CrossRef]
- Shah, S.A.; Lakho, G.M.; Keerio, H.A.; Sattar, M.N.; Hussain, G.; Mehdi, M.; Vistro, R.B.; Mahmoud, E.A.; Elansary, H.O. Application of Drone Surveillance for Advance Agriculture Monitoring by Android Application Using Convolution Neural Network. Agronomy 2023, 13, 1764. [Google Scholar] [CrossRef]
- Sahni, R.K.; Kumar, S.P.; Thorat, D.; Rajwade, Y.; Jyoti, B.; Ranjan, J.; Anand, R. Drone Spraying System for Efficient Agrochemical Application in Precision Agriculture. In Applications of Computer Vision and Drone Technology in Agriculture 4.0; Chouhan, S.S., Singh, U.P., Jain, S., Eds.; Springer Nature: Singapore, 2024; pp. 225–244. ISBN 978-981-9986-84-2. [Google Scholar]
- Hosseini, S.; Frank, L.; Fridgen, G.; Heger, S. Do Not Forget About Smart Towns. Bus. Inf. Syst. Eng. 2018, 60, 243–257. [Google Scholar] [CrossRef]
- Cowie, P.; Townsend, L.; Salemink, K. Smart Rural Futures: Will Rural Areas Be Left behind in the 4th Industrial Revolution? J. Rural. Stud. 2020, 79, 169–176. [Google Scholar] [CrossRef]
- Buckle, C.; Drozdzewski, D. Urban Perceptions of Tree-Change Migration. Rural. Soc. 2018, 27, 192–207. [Google Scholar] [CrossRef]
- Bourke, L.; Lockie, S. Rural Australia: An Introduction. In Rurality Bites: The Social and Environmental Transformation of Rural Australia; Pluto Press: Sydney, Australia, 2001; pp. 1–13. [Google Scholar]
- Beer, A.; Maude, A.; Pritchard, B. Developing Australia’s Regions: Theory and Practice; University of New South Wales: Sydney, Australia, 2003; ISBN 0-86840-548-5. [Google Scholar]
- Australian Bureau of Statistics Remoteness Areas. Available online: https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/remoteness-structure/remoteness-areas (accessed on 4 July 2025).
- Kullmann, K. The Drone’s Eye: Applications and Implications for Landscape Architecture. Landsc. Res. 2018, 43, 906–921. [Google Scholar] [CrossRef]
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- David, A.; Yigitcanlar, T.; Li, R.Y.; Corchado, J.M.; Cheong, P.H.; Mossberger, K.; Mehmood, R. Understanding Local Government Digital Technology Adoption Strategies: A PRISMA Review. Sustainability 2023, 15, 9645. [Google Scholar] [CrossRef]
- EASA Unmanned Aircraft Systems (UAS)|EASA. Available online: https://www.easa.europa.eu/en/regulations/unmanned-aircraft-systems-uas (accessed on 14 April 2025).
- CASA CASA’s Regulatory Framework. Available online: https://www.casa.gov.au/rules/regulatory-framework/casas-regulatory-framework (accessed on 14 April 2025).
- CASA Get Your Remotely Piloted Aircraft Operator’s Certificate (ReOC). Available online: https://www.casa.gov.au/drones/remotely-piloted-aircraft-operators-certificate/get-your-reoc (accessed on 14 April 2025).
- Australian Army Unmanned Aerial Vehicles. Available online: https://www.army.gov.au/equipment/vehicles-and-surveillance/unmanned-aerial-vehicles (accessed on 14 April 2025).
- Local Government NSW About LGNSW. Available online: https://lgnsw.org.au/Public/Public/About-LGNSW/About-LGNSW.aspx (accessed on 22 November 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.M.; Mojtahedi, M.; Steinmetz-Weiss, C.; Sanderson, D. A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches. Buildings 2024, 14, 176. [Google Scholar] [CrossRef]
- Foroughi, M.; de Andrade, B.; Roders, A.P.; Wang, T. Public Participation and Consensus-Building in Urban Planning from the Lens of Heritage Planning: A Systematic Literature Review. Cities 2023, 135, 104235. [Google Scholar] [CrossRef]
- Li, D.; Xu, H.; Kang, Y.; Steemers, K. Systematic Review: Landscape Characteristics Correlated with Physical Activity of the Elderly People. Land 2023, 12, 605. [Google Scholar] [CrossRef]
- Rice, L.; Drane, M. Indicators of Healthy Architecture—A Systematic Literature Review. J. Urban Health 2020, 97, 899–911. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Kellenberger, B.; Marcos, D.; Tuia, D. Detecting Mammals in UAV Images: Best Practices to Address a Substantially Imbalanced Dataset with Deep Learning. Remote Sens. Environ. 2018, 216, 139–153. [Google Scholar] [CrossRef]
- Pirotta, V.; Reynolds, W.; Ross, G.; Jonsen, I.; Grech, A.; Slip, D.; Harcourt, R. A Citizen Science Approach to Long-Term Monitoring of Humpback Whales (Megaptera Novaeangliae) off Sydney, Australia. Mari. Mamm. Sci. 2020, 36, 472–485. [Google Scholar] [CrossRef]
- Escobar-Flores, J.; Sandoval, S.; Gámiz-Romero, E. Unmanned Aerial Vehicle Images in the Machine Learning for Agave Detection. Environ. Sci. Pollut. Res. 2022, 29, 61662–61673. [Google Scholar] [CrossRef]
- Mirka, B.; Stow, D.; Paulus, G.; Loerch, A.; Coulter, L.; An, L.; Lewison, R.; Pflüger, L. Evaluation of Thermal Infrared Imaging from Uninhabited Aerial Vehicles for Arboreal Wildlife Surveillance. Environ. Monit. Assess. 2022, 194, 512. [Google Scholar] [CrossRef]
- Mohamad, M.N.; Reba, M.N.M.; Hossain, M.S. A Screening Approach for the Correction of Distortion in UAV Data for Coral Community Mapping. Geocarto Int. 2022, 37, 7089–7121. [Google Scholar] [CrossRef]
- Zaki, N.H.M.; Chong, W.S.; Muslim, A.M.; Reba, M.N.M.; Hossain, M.S. Assessing Optimal UAV-Data Pre-Processing Workflows for Quality Ortho-Image Generation to Support Coral Reef Mapping. Geocarto Int. 2022, 37, 10556–10580. [Google Scholar] [CrossRef]
- Tobółka, M.; Aguirre, J.I.; Dylewski, Ł.; López-García, A.; Martínez, R.G.; Zbyryt, A. The Usefulness of Unmanned Aerial Vehicles (UAV) in White Stork Censusing. Eur. J. Wildl. Res. 2023, 69, 67. [Google Scholar] [CrossRef]
- de Villiers, C.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Chirima, G.; Tesfamichael, S. Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery. Sustainability 2023, 15, 13416. [Google Scholar] [CrossRef]
- Caldwell, S.; Kelleher, C.; Baker, E.; Lautz, L. Relative Information from Thermal Infrared Imagery via Unoccupied Aerial Vehicle Informs Simulations and Spatially-Distributed Assessments of Stream Temperature. Sci. Total Environ. 2019, 661, 364–374. [Google Scholar] [CrossRef]
- Dugdale, S.; Malcolm, L.; Hannah, D. Drone-Based Structure-from-Motion Provides Accurate Forest Canopy Data to Assess Shading Effects in River Temperature Models. Sci. Total Environ. 2019, 678, 326–340. [Google Scholar] [CrossRef]
- Tucci, G.; Parisi, E.I.; Castelli, G.; Errico, A.; Corongiu, M.; Sona, G.; Viviani, E.; Bresci, E.; Preti, F. Multi-Sensor UAV Application for Thermal Analysis on a Dry-Stone Terraced Vineyard in Rural Tuscany Landscape. ISPRS Int. J. Geo-Inf. 2019, 8, 87. [Google Scholar] [CrossRef]
- Figliozzi, M. Carbon Emissions Reductions in Last Mile and Grocery Deliveries Utilizing Air and Ground Autonomous Vehicles. Transp. Res. Part D Transp. Environ. 2020, 85, 102443. [Google Scholar] [CrossRef]
- Svane, N.; Flindt, M.; Petersen, R.; Egemose, S. Physical Stream Quality Measured by Drones and Image Analysis versus the Traditional Manual Method. Environ. Technol. 2022, 43, 1237–1247. [Google Scholar] [CrossRef]
- Enciso, J.; Jung, J.; Chang, A.; Chavez, J.; Yeom, J.; Landivar, J.; Cavazos, G. Assessing Land Leveling Needs and Performance with Unmanned Aerial System. J. Appl. Remote Sens. 2018, 12, 016001. [Google Scholar] [CrossRef]
- Fathipoor, H.; Arefi, H.; Shah-Hosseini, R.; Moghadam, H. Corn Forage Yield Prediction Using Unmanned Aerial Vehicle Images at Mid-Season Growth Stage. J. Appl. Remote Sens. 2019, 13, 034503. [Google Scholar] [CrossRef]
- Wu, K.; Rodriguez, G.; Zajc, M.; Jacquemin, E.; Clément, M.; De Coster, A.; Lambot, S. A New Drone-Borne GPR for Soil Moisture Mapping. Remote Sens. Environ. 2019, 235, 111456. [Google Scholar] [CrossRef]
- Al-Ali, Z.M.; Abdullah, M.M.; Asadalla, N.B.; Gholoum, M. A Comparative Study of Remote Sensing Classification Methods for Monitoring and Assessing Desert Vegetation Using a UAV-Based Multispectral Sensor. Environ. Monit. Assess. 2020, 192, 389. [Google Scholar] [CrossRef]
- Carabassa, V.; Montero, P.; Crespo, M.; Padró, J.; Pons, X.; Balagué, J.; Brotons, L.; Alcañiz, J. Unmanned Aerial System Protocol for Quarry Restoration and Mineral Extraction Monitoring. J. Environ. Manag. 2020, 270, 110717. [Google Scholar] [CrossRef]
- Gillan, J.; Karl, J.; van Leeuwen, W. Integrating Drone Imagery with Existing Rangeland Monitoring Programs. Environ. Monit. Assess. 2020, 192, 269. [Google Scholar] [CrossRef]
- Lin, S.-W.; Yen, C.-F.; Chang, C.-H.; Wang, L.-J.; Shih, H.-J. Comprehensive Natural Environment and Landscape Signs in Coastal Settlement Hazard Assessment: Case of East Taiwan between the Coastal Mountain and the Pacific Ocean. J. Mar. Sci. Eng. 2020, 8, 478. [Google Scholar] [CrossRef]
- Tamayo, L.; Thron, C.; Fendji, J.; Thomas, S.; Förster, A. Cost-Minimizing System Design for Surveillance of Large, Inaccessible Agricultural Areas Using Drones of Limited Range. Sustainability 2020, 12, 8878. [Google Scholar] [CrossRef]
- Almalki, F.; Soufiene, B.; Alsamhi, S.; Sakli, H. A Low-Cost Platform for Environmental Smart Farming Monitoring System Based on IoT and UAVs. Sustainability 2021, 13, 5908. [Google Scholar] [CrossRef]
- Dixon, D.; Callow, J.; Duncan, J.; Setterfield, S.; Pauli, N. Satellite Prediction of Forest Flowering Phenology. Remote Sens. Environ. 2021, 255, 112197. [Google Scholar] [CrossRef]
- Klauser, F.; Pauschinger, D. Entrepreneurs of the Air: Sprayer Drones as Mediators of Volumetric Agriculture. J. Rural. Stud. 2021, 84, 55–62. [Google Scholar] [CrossRef]
- Lin, Y.; Habib, A. Quality Control and Crop Characterization Framework for Multi-Temporal UAV LiDAR Data over Mechanized Agricultural Fields. Remote Sens. Environ. 2021, 256, 112299. [Google Scholar] [CrossRef]
- Petrova, T.; Petkova-Georgieva, S.; Petrov, Z. Improving the Environmental Monitoring Process Through the Application of Unmanned Aerial Vehicles. J. Environ. Prot. Ecol. 2021, 22, 1144–1150. [Google Scholar]
- Windle, A.; Silsbe, G. Evaluation of Unoccupied Aircraft System (UAS) Remote Sensing Reflectance Retrievals for Water Quality Monitoring in Coastal Waters. Front. Environ. Sci. 2021, 9, 674247. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Back, K. Analysis of Mine Change Using 3D Spatial Information Based on Drone Image. Sustainability 2022, 14, 3433. [Google Scholar] [CrossRef]
- Moisa, M.B.; Dejene, I.N.; Hirko, O.; Gemeda, D.O. Impact of Deforestation on Soil Erosion in the Highland Areas of Western Ethiopia Using Geospatial Techniques: A Case Study of the Upper Anger Watershed. Asia-Pac. J. Reg. Sci. 2022, 6, 489–514. [Google Scholar] [CrossRef]
- Umeda, S.; Yoshikawa, N.; Seo, Y. Cost and Workload Assessment of Agricultural Drone Sprayer: A Case Study of Rice Production in Japan. Sustainability 2022, 14, 10850. [Google Scholar] [CrossRef]
- de Mello, D.C.; Barros Souza, A.; Mello, F.A.O.; Marques, K.P.P.; Poppiel, R.R.; Belinasso, H.; Di Raimo, L.D.L.; Francelino, M.R.; Fernandes-Filho, E.I.; Veloso, G.V.; et al. Sensor-Based Field Methods for Pedology and Soil Surveys: Protocol Suggestions for Brazilian Tropical Soils. Geoderma Reg. 2023, 33, e00651. [Google Scholar] [CrossRef]
- Ma, B.; Cao, G.; Hu, C.; Chen, C. Monitoring the Rice Panicle Blast Control Period Based on UAV Multispectral Remote Sensing and Machine Learning. Land 2023, 12, 469. [Google Scholar] [CrossRef]
- Nur, N.B.; Bachmann, C.M. Comparison of Soil Moisture Content Retrieval Models Utilizing Hyperspectral Goniometer Data and Hyperspectral Imagery From an Unmanned Aerial System. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007381. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Näsi, R.; Korhonen, P.; Mustonen, A.; Niemeläinen, O.; Koivumäki, N.; Hakala, T.; Suomalainen, J.; Kaivosoja, J.; Honkavaara, E. High-Precision Estimation of Grass Quality and Quantity Using UAS-Based VNIR and SWIR Hyperspectral Cameras and Machine Learning. Precis. Agric. 2023, 25, 186–220. [Google Scholar] [CrossRef]
- Sestras, P.; Mircea, S.; Roșca, S.; Bilașco, Ș.; Sălăgean, T.; Dragomir, L.O.; Herbei, M.V.; Bruma, S.; Sabou, C.; Marković, R.; et al. GIS Based Soil Erosion Assessment Using the USLE Model for Efficient Land Management: A Case Study in an Area with Diverse Pedogeomorphological and Bioclimatic Characteristics. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13263. [Google Scholar] [CrossRef]
- Shu, M.; Bai, K.; Meng, L.; Yang, X.; Li, B.; Ma, Y. Assessing Maize Lodging Severity Using Multitemporal UAV-Based Digital Images. Eur. J. Agron. 2023, 144, 126754. [Google Scholar] [CrossRef]
- Puliti, S.; Saarela, S.; Gobakken, T.; Ståhl, G.; Næsset, E. Combining UAV and Sentinel-2 Auxiliary Data for Forest Growing Stock Volume Estimation through Hierarchical Model-Based Inference. Remote Sens. Environ. 2018, 204, 485–497. [Google Scholar] [CrossRef]
- Webster, C.; Jonas, T. Influence of Canopy Shading and Snow Coverage on Effective Albedo in a Snow-Dominated Evergreen Needleleaf Forest. Remote Sens. Environ. 2018, 214, 48–58. [Google Scholar] [CrossRef]
- Riihimäki, H.; Luoto, M.; Heiskanen, J. Estimating Fractional Cover of Tundra Vegetation at Multiple Scales Using Unmanned Aerial Systems and Optical Satellite Data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Räsänen, A.; Virtanen, T. Data and Resolution Requirements in Mapping Vegetation in Spatially Heterogeneous Landscapes. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- Berra, E. Individual Tree Crown Detection and Delineation across a Woodland Using Leaf-on and Leaf-off Imagery from a UAV Consumer-Grade Camera. J. Appl. Remote Sens. 2020, 14, 034501. [Google Scholar] [CrossRef]
- Campbell, M.; Dennison, P.; Tune, J.; Kannenberg, S.; Kerr, K.; Codding, B.; Anderegg, W. A Multi-Sensor, Multi-Scale Approach to Mapping Tree Mortality in Woodland Ecosystems. Remote Sens. Environ. 2020, 245, 111853. [Google Scholar] [CrossRef]
- Kotivuori, E.; Kukkonen, M.; Mehtätalo, L.; Maltamo, M.; Korhonen, L.; Packalen, P. Forest Inventories for Small Areas Using Drone Imagery without In-Situ Field Measurements. Remote Sens. Environ. 2020, 237, 111404. [Google Scholar] [CrossRef]
- Navarro, A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The Application of Unmanned Aerial Vehicles (UAVs) to Estimate above-Ground Biomass of Mangrove Ecosystems. Remote Sens. Environ. 2020, 242, 111747. [Google Scholar] [CrossRef]
- Zhu, Y.; Jeon, S.; Sung, H.; Kim, Y.; Park, C.; Cha, S.; Jo, H.; Lee, W. Developing UAV-Based Forest Spatial Information and Evaluation Technology for Efficient Forest Management. Sustainability 2020, 12, 10150. [Google Scholar] [CrossRef]
- Haq, M.; Rahaman, G.; Baral, P.; Ghosh, A. Deep Learning Based Supervised Image Classification Using UAV Images for Forest Areas Classification. J. Indian Soc. Remote Sens. 2021, 49, 601–606. [Google Scholar] [CrossRef]
- Meivel, S.; Maheswari, S. Quality Management of Healthcare Food Production in Agricultural Forest Fields Using Vegetation Indices with Multispectral Drone Mapping Images. J. Environ. Prot. Ecol. 2022, 23, 266–279. [Google Scholar]
- Oide, A.; Nagasaka, Y.; Tanaka, K. Performance of Machine Learning Algorithms for Detecting Pine Wilt Disease Infection Using Visible Color Imagery by UAV Remote Sensing. Remote Sens. Appl. Soc. Environ. 2022, 28, 100869. [Google Scholar] [CrossRef]
- Zhang, Y.; Onda, Y.; Kato, H.; Feng, B.; Gomi, T. Understory Biomass Measurement in a Dense Plantation Forest Based on Drone-SfM Data by a Manual Low-Flying Drone under the Canopy. J. Environ. Manag. 2022, 312, 114862. [Google Scholar] [CrossRef]
- Gupta, S.; Shukla, D. Application of Drone for Landslide Mapping, Dimension Estimation and Its 3D Reconstruction. J. Indian Soc. Remote Sens. 2018, 46, 903–914. [Google Scholar] [CrossRef]
- Zweglinski, T. The Use of Drones in Disaster Aerial Needs Reconnaissance and Damage Assessment—Three-Dimensional Modeling and Orthophoto Map Study. Sustainability 2020, 12, 6080. [Google Scholar] [CrossRef]
- Akumu, C.; Amadi, E.; Dennis, S. Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding. Land 2021, 10, 321. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Prazioutis, G.; Gkiatas, G.; Zaimes, G. Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions. Sustainability 2021, 13, 4697. [Google Scholar] [CrossRef]
- Munawar, H.; Ullah, F.; Qayyum, S.; Khan, S.; Mojtahedi, M. UAVs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection. Sustainability 2021, 13, 7547. [Google Scholar] [CrossRef]
- Prakash, N.; Guru, R.; Mathankumar, M. Computer Vision Based Autonomous Unmanned Aerial Vehicle for Human and Object Detection in Post-Disaster Zones. J. Environ. Prot. Ecol. 2021, 22, 2583–2592. [Google Scholar]
- Rai, A.; Kannan, R. Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark. J. Indian Soc. Remote Sens. 2021, 49, 507–514. [Google Scholar] [CrossRef]
- Rodriguez-Caballero, E.; Rodriguez-Lozano, B.; Segura-Tejada, R.; Blanco-Sacristán, J.; Cantón, Y. Landslides on Dry Badlands: UAV Images to Identify the Drivers Controlling Their Unexpected Occurrence on Vegetated Hillslopes. J. Arid Environ. 2021, 187, 104434. [Google Scholar] [CrossRef]
- Ullah, F.; Khan, S.; Munawar, H.; Qadir, Z.; Qayyum, S. UAV Based Spatiotemporal Analysis of the 2019-2020 New South Wales Bushfires. Sustainability 2021, 13, 10207. [Google Scholar] [CrossRef]
- Qi, Y.; Coops, N.; Daniels, L.; Butson, C. Assessing the Effects of Burn Severity on Post-Fire Tree Structures Using the Fused Drone and Mobile Laser Scanning Point Clouds. Front. Environ. Sci. 2022, 10, 949442. [Google Scholar] [CrossRef]
- Maha Agung, P.A.; Rouf Hasan, M.F.; Susilo, A.; Ahmad, M.A.; Bin Ahmad, M.J.; Abdurrahman, U.A.; Sudjianto, A.T.; Suryo, E.A. Compilation of Parameter Control for Mapping the Potential Landslide Areas. Civ. Eng. J. 2023, 9, 974–989. [Google Scholar] [CrossRef]
- Irimia, A.; Gaman, G.; Pupazan, D.; Ilie, C.; Nicolescu, C. Using Drones in Support of Rescue Interventions Teams in Toxic/Flammable/Explosive Environments. Environ. Eng. Manag. J. 2019, 18, 831–837. [Google Scholar] [CrossRef]
- Renard, A.; Novacko, L.; Babojelic, K.; Kozul, N. Analysis of Child Traffic Safety near Primary School Areas Using UAV Technology. Sustainability 2022, 14, 1144. [Google Scholar] [CrossRef]
- Munawar, H.; Inam, H.; Ullah, F.; Qayyum, S.; Kouzani, A.; Mahmud, M. Towards Smart Healthcare: UAV-Based Optimized Path Planning for Delivering COVID-19 Self-Testing Kits Using Cutting Edge Technologies. Sustainability 2021, 13, 10426. [Google Scholar] [CrossRef]
- Du, L.; Li, X.; Gan, Y.; Leng, K. Optimal Model and Algorithm of Medical Materials Delivery Drone Routing Problem under Major Public Health Emergencies. Sustainability 2022, 14, 4651. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhu, M.; Zheng, F. Stochastic Drone Fleet Deployment and Planning Problem Considering Multiple-Type Delivery Service. Sustainability 2019, 11, 3871. [Google Scholar] [CrossRef]
- Kim, D. Pedestrian and Bicycle Volume Data Collection Using Drone Technology. J. Urban Technol. 2020, 27, 45–60. [Google Scholar] [CrossRef]
- Nguyen, T.; Han, D. Detection of Road Surface Changes from Multi-Temporal Unmanned Aerial Vehicle Images Using a Convolutional Siamese Network. Sustainability 2020, 12, 2482. [Google Scholar] [CrossRef]
- Borghetti, F.; Caballini, C.; Carboni, A.; Grossato, G.; Maja, R.; Barabino, B. The Use of Drones for Last-Mile Delivery: A Numerical Case Study in Milan, Italy. Sustainability 2022, 14, 1766. [Google Scholar] [CrossRef]
- Park, K.; Ewing, R. The Usability of Unmanned Aerial Vehicles (UAVs) for Pedestrian Observation. J. Plan. Educ. Res. 2022, 42, 206–217. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Yang, N.; Xie, J. Vehicle Recognition from Unmanned Aerial Vehicle Videos Based on Fusion of Target Pre-Detection and Deep Learning. Sustainability 2022, 14, 7912. [Google Scholar] [CrossRef]
- Zong, S.; Chen, S.; Alinizzi, M.; Labi, S. Leveraging UAV Capabilities for Vehicle Tracking and Collision Risk Assessment at Road Intersections. Sustainability 2022, 14, 4034. [Google Scholar] [CrossRef]
- Gou, M.; Yu, H. Online Delivery Problem for Hybrid Truck-Drone System with Independent and Truck-Carried Drones. Sustainability 2023, 15, 1584. [Google Scholar] [CrossRef]
- Hwang, J.; Joo, K.; Moon, J. A Study on Behavioral Intentions in the Field of Eco-Friendly Drone Food Delivery Services: Focusing on Demographic Characteristics and Past Experiences. Sustainability 2023, 15, 6253. [Google Scholar] [CrossRef]
- Min, H. Leveraging Drone Technology for Last-Mile Deliveries in the e-Tailing Ecosystem. Sustainability 2023, 15, 11588. [Google Scholar] [CrossRef]
- Onitsuka, K.; Ninomiya, K.; Hoshino, S. Potential of 3D Visualization for Collaborative Rural Landscape Planning with Remote Participants. Sustainability 2018, 10, 3059. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Lee, D. Sustainable Application of Hybrid Point Cloud and BIM Method for Tracking Construction Progress. Sustainability 2020, 12, 4106. [Google Scholar] [CrossRef]
- Mehranfar, M.; Arefi, H.; Alidoost, F. Knowledge-Based 3D Reconstruction of Bridge Structures Using UAV-Based Photogrammetric Point Cloud. J. Appl. Remote Sens. 2021, 15, 044503. [Google Scholar] [CrossRef]
- Ren, S.; Malof, J.; Fetter, R.; Beach, R.; Rineer, J.; Bradbury, K. Utilizing Geospatial Data for Assessing Energy Security: Mapping Small Solar Home Systems Using Unmanned Aerial Vehicles and Deep Learning. ISPRS Int. J. Geo-Inf. 2022, 11, 222. [Google Scholar] [CrossRef]
- Khan, O.; Parvez, M.; Alansari, M.; Farid, M.; Devarajan, Y.; Thanappan, S. Application of Artificial Intelligence in Green Building Concept for Energy Auditing Using Drone Technology under Different Environmental Conditions. Sci. Rep. 2023, 13, 8200. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Chan, A.P.C.; Chi, H.-L.; Yung, E.H.K. A Regulatory Framework for the Use of Small Unmanned Aircrafts (SUAs) in the Construction Industry. Eng. Constr. Archit. Manag. 2023, 31, 3024–3049. [Google Scholar] [CrossRef]
- Leon, I.; Pérez, J.J.; Senderos, M. Advanced Techniques for Fast and Accurate Heritage Digitisation in Multiple Case Studies. Sustainability 2020, 12, 6068. [Google Scholar] [CrossRef]
- Gutiérrez-Pérez, N. Cultural Heritage Recovery in Rural Spain Through Digital Means of Surveying and Graphic Reconstruction. Case Study of El Paular Wool Complex. SCIRES-IT-Sci. Res. Inf. Technol. 2023, 13, 67–82. [Google Scholar] [CrossRef]
- Almalki, F.; Aljohani, M.; Algethami, M.; Soufiene, B. Incorporating Drone and AI to Empower Smart Journalism via Optimizing a Propagation Model. Sustainability 2022, 14, 3758. [Google Scholar] [CrossRef]
- Chou, P. Smart Technology for Sustainable Curriculum: Using Drone to Support Young Students’ Learning. Sustainability 2018, 10, 3819. [Google Scholar] [CrossRef]
- Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C. Enabling a Large-Scale Assessment of Litter along Saudi Arabian Red Sea Shores by Combining Drones and Machine Learning. Environ. Pollut. 2021, 277, 116730. [Google Scholar] [CrossRef] [PubMed]
- Burgués, J.; Doñate, S.; Esclapez, M.; Saúco, L.; Marco, S. Characterization of Odour Emissions in a Wastewater Treatment Plant Using a Drone-Based Chemical Sensor System. Sci. Total Environ. 2022, 846, 157290. [Google Scholar] [CrossRef] [PubMed]
- Suchanek, G.; Woloszyn, J.; Golas, A. Evaluation of Selected Algorithms for Air Pollution Source Localisation Using Drones. Sustainability 2022, 14, 3049. [Google Scholar] [CrossRef]
- Reckling, W.; Levine, J.; Nelson, S.; Mitasova, H. Predicting Residential Septic System Malfunctions for Targeted Drone Inspections. Remote Sens. Appl. Soc. Environ. 2023, 30, 100936. [Google Scholar] [CrossRef]
- Muhamat, A.; Zulkifli, A.; Ibrahim, M.; Sulaiman, S.; Subramaniam, G.; Mohamad, S.; Suzuki, Y. Realising the Corporate Social Performance (CSP) of Takaful (Islamic Insurance) Operators through Drone-Assisted Disaster Victim Identification (DVI). Sustainability 2022, 14, 5440. [Google Scholar] [CrossRef]
Criteria | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Document types | Article | Other document types (conference papers or book chapters *) |
Year range | Recent 5 years (2018–2023) | Prior to 2018 |
Languages | English | A language other than English |
Geography | Rural or regional areas | Urban areas |
Scopus—subject areas | Environment science; social sciences; multidisciplinary; business, management and accounting; arts and humanities; agricultural and biological sciences | Other subject areas (mathematics; medicine; neuroscience; etc.) |
Web of Science—categories | Environmental sciences; environmental studies; regional urban planning; urban studies | Other categories (toxicology; limnology; polymer science; etc.) |
Major Responsibilities | Detailed Aspects | Sources |
---|---|---|
Environment | Biodiversity | [29,30,31,32,33,34,35] |
Biosecurity | [36] | |
Climate Change | [37,38,39,40,41] | |
Sustainable Solutions | [33,39,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64] | |
Forest Classification and Management | [38,45,51,65,66,67,68,69,70,71,72,73,74,75,76,77] | |
Disaster Management | [78,79,80,81,82,83,84,85,86,87,88] | |
Health and Safety | Emergency Management | [89] |
Crime Prevention and Safety | [90] | |
Public health | [91,92] | |
Infrastructure | Roads and Transport | [40,93,94,95,96,97,98,99,100,101,102] |
Planning | Building and Construction | [103,104,105,106,107,108] |
Heritage | [109,110] | |
Social and Community | Arts and Culture | [111] |
Children and Youth | [90,112] | |
Waste and Recycling | Waste Management | [113,114,115,116] |
Major Responsibilities | Detailed Aspects | NSW Regional Council Uses |
---|---|---|
Economic | Tourism |
|
Environment | Biosecurity |
|
Climate Change |
| |
Sustainable Solutions |
| |
Forest Classification and Management |
| |
Disaster Management |
| |
Health and Safety | Crime Prevention and Safety |
|
Infrastructure | Roads and Transport |
|
Planning | Building and Construction |
|
Community Engagement |
| |
Social and Community | Indigenous Affairs |
|
Arts and Culture |
| |
Waste Management |
|
Major Responsibilities | Detailed Aspects | Part 1: Literature Review Results | Part 2: NSW Regional Council Uses |
---|---|---|---|
Economic | Tourism | ✓ | |
Environment | Biodiversity | ✓ | |
Biosecurity | ✓ | ✓ | |
Climate Change | ✓ | ✓ | |
Sustainable Solutions | ✓ | ✓ | |
Forest Classification and Management | ✓ | ✓ | |
Disaster Management | ✓ | ✓ | |
Health and Safety | Emergency Management | ✓ | |
Crime Prevention and Safety | ✓ | ✓ | |
Public health | ✓ | ||
Infrastructure | Roads and Transport | ✓ | ✓ |
Planning | Building and Construction | ✓ | ✓ |
Community Engagement | ✓ | ||
Heritage | ✓ | ||
Social and Community | Indigenous Affairs | ✓ | |
Arts and Culture | ✓ | ✓ | |
Children and Youth | ✓ | ||
Waste and Recycling | Waste Management | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmetz-Weiss, C.; Marshall, N.; Bishop, K.; Wei, Y. Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice. Appl. Sci. 2025, 15, 8519. https://doi.org/10.3390/app15158519
Steinmetz-Weiss C, Marshall N, Bishop K, Wei Y. Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice. Applied Sciences. 2025; 15(15):8519. https://doi.org/10.3390/app15158519
Chicago/Turabian StyleSteinmetz-Weiss, Christine, Nancy Marshall, Kate Bishop, and Yuan Wei. 2025. "Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice" Applied Sciences 15, no. 15: 8519. https://doi.org/10.3390/app15158519
APA StyleSteinmetz-Weiss, C., Marshall, N., Bishop, K., & Wei, Y. (2025). Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice. Applied Sciences, 15(15), 8519. https://doi.org/10.3390/app15158519