A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot
Abstract
1. Introduction
State of the Art
2. Materials and Methods
2.1. Description of the Platform
2.2. Kinematic Model
2.2.1. Meta-Learning Approach
2.2.2. The Role of Orientation in Control
2.2.3. Independent Distal Module Actuation Method
2.2.4. Actuation
2.3. Model Identification
2.3.1. Actuation Decoupling
2.3.2. Cable Decoupling
2.3.3. Pneumatic Decoupling
2.3.4. Module Identification
2.3.5. Vertical Configuration Identification
2.3.6. Horizontal Configuration Identification
3. Fractional-Order Controller Design
3.1. Tuning Method
Iso-m Tuning Method
3.2. Resulting Controllers
3.2.1. Vertical Configuration Controllers
3.2.2. Horizontal Configuration Controllers
4. Results
4.1. Vertical Configuration
4.1.1. Experimental Results Using Different Masses
4.1.2. Comparison of FOPI and Meta-Learning Approaches
4.2. Horizontal Configuration
4.2.1. Position Control
4.2.2. Orientation Control
4.2.3. Task Control
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DoF | Degrees of Freedom |
IDMA | Independent Distal Module Actuation |
FOPI | Fractional-order Proportional Integral |
FOPID | Fractional-order Proportional Integral Derivative |
MIMO | Multiple-Input Multiple-Output |
PID | Proportional Integral Derivative |
SISO | Single-Input Single-Output |
RGB | Red-Green-Blue |
References
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Polygerinos, P.; Correll, N.; Morin, S.A.; Mosadegh, B.; Onal, C.D.; Petersen, K.; Cianchetti, M.; Tolley, M.T.; Shepherd, R.F. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 2017, 19, 1700016. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Quan, J.; Li, L.; Zhang, G.; Zhou, D. Progress, challenges, and prospects of soft robotics for space applications. Adv. Intell. Syst. 2023, 5, 2200071. [Google Scholar] [CrossRef]
- Zlatintsi, A.; Dometios, A.; Kardaris, N.; Rodomagoulakis, I.; Koutras, P.; Papageorgiou, X.; Maragos, P.; Tzafestas, C.S.; Vartholomeos, P.; Hauer, K.; et al. I-Support: A robotic platform of an assistive bathing robot for the elderly population. Robot. Auton. Syst. 2020, 126, 103451. [Google Scholar] [CrossRef]
- Yasa, O.; Toshimitsu, Y.; Michelis, M.Y.; Jones, L.S.; Filippi, M.; Buchner, T.; Katzschmann, R.K. An overview of soft robotics. Annu. Rev. Control. Robot. Auton. Syst. 2023, 6, 1–29. [Google Scholar] [CrossRef]
- Relaño, C.; Muñoz, J.; Monje, C.A. Gaussian process regression for forward and inverse kinematics of a soft robotic arm. Eng. Appl. Artif. Intell. 2023, 126, 107174. [Google Scholar] [CrossRef]
- Calisti, M.; Picardi, G.; Laschi, C. Fundamentals of soft robot locomotion. J. R. Soc. Interface 2017, 14, 20170101. [Google Scholar] [CrossRef]
- Arleo, L.; Stano, G.; Percoco, G.; Cianchetti, M. I-support soft arm for assistance tasks: A new manufacturing approach based on 3D printing and characterization. Prog. Addit. Manuf. 2021, 6, 243–256. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Wang, Q.; Lyu, Z. Integrated actuation and sensing: Toward intelligent soft robots. Cyborg Bionic Syst. 2024, 5, 0105. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ye, Y.; Sun, M.; Mei, Y.; Ji, B.; Wang, M.; Song, E. Recent progress of soft and bioactive materials in flexible bioelectronics. Cyborg Bionic Syst. 2025, 6, 0192. [Google Scholar] [CrossRef] [PubMed]
- Della Santina, C.; Duriez, C.; Rus, D. Model-based control of soft robots: A survey of the state of the art and open challenges. IEEE Control Syst. Mag. 2023, 43, 30–65. [Google Scholar] [CrossRef]
- Samadikhoshkho, Z.; Zareinia, K.; Janabi-Sharifi, F. A brief review on robotic grippers classifications. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4. [Google Scholar]
- Ballester, C.; Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Hoist-Based Shape Memory Alloy Actuator with Multiple Wires for High-Displacement Applications. Actuators 2023, 12, 159. [Google Scholar] [CrossRef]
- Gupta, U.; Qin, L.; Wang, Y.; Godaba, H.; Zhu, J. Soft robots based on dielectric elastomer actuators: A review. Smart Mater. Struct. 2019, 28, 103002. [Google Scholar] [CrossRef]
- Cisse, C.; Zaki, W.; Zineb, T.B. A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 2016, 76, 244–284. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Liu, Y.; Chen, W.; Liang, X.; Pfeifer, R. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatron. 2016, 22, 41–50. [Google Scholar] [CrossRef]
- Thuruthel, T.G.; Falotico, E.; Renda, F.; Laschi, C. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Trans. Robot. 2018, 35, 124–134. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, P.; Xin, W.; Xie, Z.; Kan, L.; Mohanakrishnan, M.; Laschi, C. Meta-learning-based optimal control for soft robotic manipulators to interact with unknown environments. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 982–988. [Google Scholar]
- Richards, S.M.; Azizan, N.; Slotine, J.J.; Pavone, M. Control-oriented meta-learning. Int. J. Robot. Res. 2023, 42, 777–797. [Google Scholar] [CrossRef]
- Shi, G.; Azizzadenesheli, K.; O’Connell, M.; Chung, S.J.; Yue, Y. Meta-adaptive nonlinear control: Theory and algorithms. Adv. Neural Inf. Process. Syst. 2021, 34, 10013–10025. [Google Scholar]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5149–5169. [Google Scholar] [CrossRef] [PubMed]
- Arcari, E.; Carron, A.; Zeilinger, M.N. Meta learning MPC using finite-dimensional gaussian process approximations. arXiv 2020, arXiv:2008.05984. [Google Scholar]
- Chin, K.; Hellebrekers, T.; Majidi, C. Machine learning for soft robotic sensing and control. Adv. Intell. Syst. 2020, 2, 1900171. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.H.; Kim, T.; Kang, B.B.; Lee, M.; Park, W.; Ku, S.; Kim, D.; Kwon, J.; Lee, H.; et al. Review of machine learning methods in soft robotics. PLoS ONE 2021, 16, e0246102. [Google Scholar] [CrossRef] [PubMed]
- Podlubny, I. Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers. IEEE Trans. Autom. Control 1999, 44, 208–214. [Google Scholar] [CrossRef]
- Ma, C.; Hori, Y. Fractional-order control: Theory and applications in motion control [past and present]. IEEE Ind. Electron. Mag. 2007, 1, 6–16. [Google Scholar] [CrossRef]
- Muñoz, J.; Piqué, F.; A. Monje, C.; Falotico, E. Robust Fractional-Order Control Using a Decoupled Pitch and Roll Actuation Strategy for the I-Support Soft Robot. Mathematics 2021, 9, 702. [Google Scholar] [CrossRef]
- Relaño, C.; Muñoz, J.; Monje, C.A.; Martínez, S.; González, D. Modeling and Control of a Soft Robotic Arm Based on a Fractional Order Control Approach. Fractal Fract. 2022, 7, 8. [Google Scholar] [CrossRef]
- Young, P.; Jakeman, A. Refined instrumental variable methods of recursive time-series analysis Part III. Extensions. Int. J. Control 1980, 31, 741–764. [Google Scholar] [CrossRef]
- Muñoz, J.; Monje, C.A.; Nagua, L.F.; Balaguer, C. A graphical tuning method for fractional order controllers based on iso-slope phase curves. ISA Trans. 2020, 105, 296–307. [Google Scholar] [CrossRef]
Approach | Control Structure | Orientation Handling | Initial Movement | Adaptability |
---|---|---|---|---|
Meta-learning | Data-driven with online adaptation and optimal control | No explicit orientation control | Large initial movements for exploration | High adaptability, high computational cost |
IDMA + FOPI (proposed) | Decoupled model with FOPI control | Independent orientation control via distal module | Predictable response without initial exploration | Robust to loads and non-linearities, no training required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Relaño, C.; Tang, Z.; Laschi, C.; Monje, C.A. A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot. Biomimetics 2025, 10, 502. https://doi.org/10.3390/biomimetics10080502
Relaño C, Tang Z, Laschi C, Monje CA. A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot. Biomimetics. 2025; 10(8):502. https://doi.org/10.3390/biomimetics10080502
Chicago/Turabian StyleRelaño, Carlos, Zhiqiang Tang, Cecilia Laschi, and Concepción A. Monje. 2025. "A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot" Biomimetics 10, no. 8: 502. https://doi.org/10.3390/biomimetics10080502
APA StyleRelaño, C., Tang, Z., Laschi, C., & Monje, C. A. (2025). A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot. Biomimetics, 10(8), 502. https://doi.org/10.3390/biomimetics10080502