Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (755)

Search Parameters:
Keywords = targeted antibiotic therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 1574 KiB  
Review
Anti-QS Strategies Against Pseudomonas aeruginosa Infections
by Abdelaziz Touati, Nasir Adam Ibrahim, Lilia Tighilt and Takfarinas Idres
Microorganisms 2025, 13(8), 1838; https://doi.org/10.3390/microorganisms13081838 - 7 Aug 2025
Abstract
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of [...] Read more.
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of anti-QS strategies as alternatives to antibiotics against P. aeruginosa infections. Comprehensive literature searches were conducted using databases such as PubMed, Scopus, and Web of Science, focusing on studies addressing QS inhibition strategies published recently. Anti-QS strategies significantly attenuate bacterial virulence by disrupting QS-regulated genes involved in biofilm formation, motility, toxin secretion, and immune evasion. These interventions reduce the selective pressure for resistance and enhance antibiotic efficacy when used in combination therapies. Despite promising outcomes, practical application faces challenges, including specificity of inhibitors, pharmacokinetic limitations, potential cytotoxicity, and bacterial adaptability leading to resistance. Future perspectives should focus on multi-target QS inhibitors, advanced delivery systems, rigorous preclinical validations, and clinical translation frameworks. Addressing current limitations through multidisciplinary research can lead to clinically viable QS-targeted therapies, offering sustainable alternatives to traditional antibiotics and effectively managing antibiotic resistance. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

24 pages, 10760 KiB  
Article
Pseudomonas Phage Banzai: Genomic and Functional Analysis of Novel Pbunavirus with Lytic Activity Against Pseudomonas aeruginosa
by Andrei V. Chaplin, Nina N. Sykilinda, George A. Skvortsov, Konstantin S. Troshin, Anna A. Vasilyeva, Sofia A. Shuraleva, Artem A. Malkov, Vladislav S. Simonov, Boris A. Efimov, Lyudmila I. Kafarskaia, Konstantin A. Miroshnikov, Anna A. Kuznetsova and Peter V. Evseev
Viruses 2025, 17(8), 1088; https://doi.org/10.3390/v17081088 - 6 Aug 2025
Abstract
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with [...] Read more.
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with lytic activity against multiple P. aeruginosa isolates, including multidrug-resistant strains. Genomic analysis revealed a 66,189 bp genome, lacking antibiotic resistance or virulence factors, and suggested a headful packaging mechanism and the presence of a bidirectional component in the replication. In vivo experiments using Galleria mellonella showed therapeutic potential, significantly improving larval survival (87% at 24 h). Host range analysis revealed activity against 13 of 30 P. aeruginosa isolates, including members of O1, O3, O5 and O6 in silico predicted serogroups. Phylogenomic analyses place phage Banzai within the genus Pbunavirus, sharing 94.8% intergenomic similarity with its closest relatives, supporting its classification as a novel species. These findings highlight phage Banzai as a potential candidate for phage therapy, demonstrating genomic stability, a strictly lytic lifestyle, and in vivo efficacy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Biocontrol of Phage Resistance in Pseudomonas Infections: Insights into Directed Breaking of Spontaneous Evolutionary Selection in Phage Therapy
by Jumpei Fujiki, Daigo Yokoyama, Haruka Yamamoto, Nana Kimura, Manaho Shimizu, Hinatsu Kobayashi, Keisuke Nakamura and Hidetomo Iwano
Viruses 2025, 17(8), 1080; https://doi.org/10.3390/v17081080 - 4 Aug 2025
Viewed by 238
Abstract
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for [...] Read more.
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for innovative countermeasures to AMR, which will cause an estimated 10 million deaths annually by 2050. However, the emergence of phage-resistant variants presents challenges similar to AMR, thus necessitating a deeper understanding of phage resistance mechanisms and control strategies. The highest priority must be to prevent the emergence of phage resistance. Although phage cocktails targeting multiple receptors have demonstrated a certain level of phage resistance suppression, they cannot completely suppress resistance in clinical settings. This highlights the need for strategies beyond simple resistance suppression. Notably, recent studies examining fitness trade-offs associated with phage resistance have opened new avenues in phage therapy that offer the potential of restoring antibiotic susceptibility and attenuating pathogen virulence despite phage resistance. Thus, controlling phage resistance may rely on both its suppression and strategic redirection. This review summarizes key concepts in the control of phage resistance and explores evolutionary engineering as a means of optimizing phage therapy, with a particular focus on Pseudomonas infections. Harnessing evolutionary dynamics by intentionally breaking the spontaneous evolutionary trajectories of target bacterial pathogens could potentially reshape bacterial adaptation by acquisition of phage resistance, unlocking potential in the application of phage therapy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

14 pages, 590 KiB  
Article
General Practitioner’s Practice in Romanian Children with Streptococcal Pharyngitis
by Reka Borka Balas, Lorena Elena Meliț, Ancuța Lupu, Boglarka Sandor, Anna Borka Balas and Cristina Oana Mărginean
Medicina 2025, 61(8), 1408; https://doi.org/10.3390/medicina61081408 - 2 Aug 2025
Viewed by 107
Abstract
Background and Objectives: A correct diagnosis of beta-hemolytic group A streptococcus (GAS)-pharyngitis allows the prevention of complications and unnecessary use of antibiotics. The aim of this study was to assess the management of pediatric GAS-pharyngitis in Romanian general practitioners (GPs)’ practice. Material [...] Read more.
Background and Objectives: A correct diagnosis of beta-hemolytic group A streptococcus (GAS)-pharyngitis allows the prevention of complications and unnecessary use of antibiotics. The aim of this study was to assess the management of pediatric GAS-pharyngitis in Romanian general practitioners (GPs)’ practice. Material and Methods: a cross-sectional study was conducted using a questionnaire distributed to Romanian GPs. Results: In total, 56 GPs completed the questionnaire, mostly females (83.9%, n = 47) from an urban area (60.7%, n = 34). They treated 5–10 (35.7%) or more than 10 (32.1%) cases of GAS monthly and considered white exudate on tonsils (92.9%, n = 52) to be the most suggestive clinical sign. Of the GPs, 25% (n = 14) used the Centor Criteria, 10.7% (n = 6) performed a rapid antigen detection test, and 42.9% (n = 24) requested throat culture for diagnosis. The younger GPs used the Centor Criteria significantly more often (p = 0.027) than the older ones. Most GPs (69.6%, n = 39) preferred targeted antibiotic therapy. Amoxicillin-clavulanate was the most commonly used antibiotic (55.4%, n = 31). Most GPs preferred oral antibiotics (89%, n = 50) for 10 days (55.4%, n = 31). Conclusions: Antibiotic treatment was initiated mostly based on clinical symptoms and in a short-course therapy. GPs stated that they prefer targeted antibiotic therapy, but they did not use proper diagnostic tools. Full article
(This article belongs to the Section Pediatrics)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 222
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

6 pages, 3862 KiB  
Case Report
Gastric Sarcina ventriculi: A Report on Two Cases
by Yaomin Chen, Yu Liu and Zhiyan Fu
Reports 2025, 8(3), 128; https://doi.org/10.3390/reports8030128 - 1 Aug 2025
Viewed by 184
Abstract
Background and Clinical SignificanceSarcina ventriculi is a rare Gram-positive coccus that thrives in acidic environments such as the human stomach. It has been increasingly identified in individuals with delayed gastric emptying and has been reported in association with various gastric disorders. [...] Read more.
Background and Clinical SignificanceSarcina ventriculi is a rare Gram-positive coccus that thrives in acidic environments such as the human stomach. It has been increasingly identified in individuals with delayed gastric emptying and has been reported in association with various gastric disorders. However, its exact pathogenic role is not fully understood and remains controversial. Case Presentation: We present two cases of patients, one with a small bowel obstruction and the other with epigastric pain, both diagnosed with Sarcina ventriculi infection by histological examination of gastric biopsies. The patients were managed with a combination of antibiotics and a proton pump inhibitor, resulting in symptom resolution and clearance of Sarcina ventriculi upon follow-up examinations. Conclusions: This report explores the pathogenicity of Sarcina ventriculi by documenting its presence in symptomatic patients without other identifiable pathogens and demonstrating complete symptom resolution following targeted therapy. These findings raise the possibility of Sarcina ventriculi’s pathogenic potential under specific clinical conditions, suggesting it may act as more than a benign colonizer. Full article
(This article belongs to the Section Gastroenterology)
Show Figures

Figure 1

26 pages, 1426 KiB  
Review
Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy
by Magdalena Druszczynska, Beata Sadowska, Agnieszka Zablotni, Lesia Zhuravska, Jakub Kulesza and Marek Fol
Appl. Sci. 2025, 15(15), 8543; https://doi.org/10.3390/app15158543 (registering DOI) - 31 Jul 2025
Viewed by 331
Abstract
This review addresses the urgent need for alternative strategies to combat drug-resistant mycobacterial infections, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, as well as non-tuberculous mycobacterial (NTM) diseases. Traditional antibiotics are increasingly limited by resistance, toxicity, and poor efficacy, particularly in immunocompromised [...] Read more.
This review addresses the urgent need for alternative strategies to combat drug-resistant mycobacterial infections, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, as well as non-tuberculous mycobacterial (NTM) diseases. Traditional antibiotics are increasingly limited by resistance, toxicity, and poor efficacy, particularly in immunocompromised patients. A comprehensive literature search was conducted using PubMed, Scopus, and Google Scholar, covering publications primarily from 2000 to 2025. Only articles published in English were included to ensure consistency in data interpretation. Search terms included “mycobacteriophages,” “phage therapy,” “drug-resistant mycobacteria, “diagnostic phages,” and “phage engineering.” The review examines the therapeutic and diagnostic potential of mycobacteriophages—viruses that specifically infect mycobacteria—focusing on their molecular biology, engineering advances, delivery systems, and clinical applications. Evidence suggests that mycobacteriophages offer high specificity, potent bactericidal activity, and adaptability, positioning them as promising candidates for targeted therapy. Although significant obstacles remain—including immune interactions, limited host range, and regulatory challenges—rapid progress in synthetic biology and delivery platforms continues to expand their clinical potential. As research advances and clinical frameworks evolve, mycobacteriophages are poised to become a valuable asset in the fight against drug-resistant mycobacterial diseases, offering new precision-based solutions where conventional therapies fail. Full article
(This article belongs to the Special Issue Tuberculosis—a Millennial Disease in the Age of New Technologies)
Show Figures

Figure 1

16 pages, 317 KiB  
Review
Combination Antibiotic Therapy for Orthopedic Infections
by Eric Bonnet and Julie Lourtet-Hascoët
Antibiotics 2025, 14(8), 761; https://doi.org/10.3390/antibiotics14080761 - 29 Jul 2025
Viewed by 302
Abstract
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may [...] Read more.
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may be utilized in the treatment of orthopedic infections. Methods: We reviewed the existing guidelines on orthopedic infections and focused on situations where antibiotic combinations are recommended or proposed optionally. We chose vitro and animal studies that provide evidence for the effectiveness of several widely recommended combinations. Results: The combinations serve multiple purposes: they provide empirical coverage while awaiting microbiological results, offer targeted treatment for difficult-to-treat infections, and facilitate oral treatment primarily for staphylococcal infections. The objectives include enhancing bacterial coverage against Gram-positive and Gram-negative bacteria, achieving synergistic effects with bactericidal agents, and reducing the risk of antibiotic resistance. The review outlines specific combinations for fracture-related infections, periprosthetic joint infections, spinal infections, and anterior cruciate ligament reconstruction infections, emphasizing the importance of tailoring antibiotic choices based on local epidemiology and patient history. The review also addresses potential drawbacks of combination therapy, such as toxicity, higher costs, and drug interactions, underscoring the complexity of managing orthopedic infections effectively. Conclusions: According to the guidelines, several different proposals are made, depending in part on the countries’ epidemiology. In a well-defined situation, various authors propose either monotherapy or a combination of antibiotics. When a combination is suggested, the choice of antibiotics is based on the expected effect: broadening the spectrum, enhancing bactericidal activity, achieving a synergistic effect, or reinforcing biofilm activity to optimize the treatment. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
15 pages, 540 KiB  
Review
Achalasia and Gut Microbiota: Is Dysbiosis an Overlooked Factor in Postoperative Surgical Outcomes?
by Agostino Fernicola, Giuseppe Palomba, Armando Calogero, Antonella Sciarra, Annachiara Cavaliere, Felice Crocetto, Caterina Sagnelli, Antonio Alvigi, Raffaele Basile, Domenica Pignatelli, Andrea Paolillo, Federico Maria D’Alessio, Giacomo Benassai, Gennaro Quarto and Michele Santangelo
Surgeries 2025, 6(3), 63; https://doi.org/10.3390/surgeries6030063 - 28 Jul 2025
Viewed by 307
Abstract
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In [...] Read more.
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In various gastrointestinal surgeries, microbiota have been implicated in modulating clinical outcomes; however, their role in achalasia surgery remains unexplored. Methods: We performed a narrative literature search of various databases to identify studies exploring potential interactions between the gastroesophageal microbiota, achalasia pathophysiology, and surgical treatment, proposing clinical implications and future research avenues. Results: Chronic esophageal stasis in achalasia promotes local dysbiosis by facilitating aberrant bacterial colonization. Surgical restoration of esophageal motility and gastroesophageal transit induces substantial shifts in the microbial ecosystem. Analogous microbiota alterations following procedures such as fundoplication, gastrectomy, and bariatric surgery underscore the significant impact of mechanical modifications on microbial composition. Comprehensive microbiota profiling in patients with achalasia may enable the identification of dysbiotic phenotypes predisposed to complications, thereby providing personalized therapeutic interventions including probiotics, prebiotics, dietary modulation, or targeted antibiotic therapy. These insights hold promise for clinical benefits, including the mitigation of inflammation and infection, monitoring of surgical efficacy through microbial biomarkers, and optimization of postoperative nutritional strategies to reestablish microbial homeostasis, ultimately enhancing patient outcomes beyond conventional treatment paradigms. Conclusions: The gastroesophageal microbiota is a compelling mediator of surgical outcomes in achalasia. Future investigations integrating microbiological and inflammatory profiling are warranted to elucidate the functional role of the gastroesophageal microbiota and assess its potential as a biomarker and therapeutic target. Full article
Show Figures

Figure 1

12 pages, 380 KiB  
Study Protocol
Impact of Perioperative Antibiotic Prophylaxis Targeting Multidrug-Resistant Gram-Negative Bacteria on Postoperative Infection Rates in Liver Transplant Recipients
by Eleni Massa, Dimitrios Agapakis, Kalliopi Tsakiri, Nikolaos Antoniadis, Elena Angeloudi, Georgios Katsanos, Vasiliki Dourliou, Antigoni Champla, Christina Mouratidou, Dafni Stamou, Ioannis Alevroudis, Ariadni Fouza, Konstantina-Eleni Karakasi, Serafeim-Chrysovalantis Kotoulas, Georgios Tsoulfas and Eleni Mouloudi
Diagnostics 2025, 15(15), 1866; https://doi.org/10.3390/diagnostics15151866 - 25 Jul 2025
Viewed by 264
Abstract
Infections with multidrug-resistant (MDR) organisms remain a significant cause of morbidity and mortality among liver transplant recipients, despite advances in surgical techniques and immunosuppressive therapy. This prospective observational study aimed to evaluate the impact of targeted perioperative antibiotic prophylaxis against MDR Gram-negative bacteria [...] Read more.
Infections with multidrug-resistant (MDR) organisms remain a significant cause of morbidity and mortality among liver transplant recipients, despite advances in surgical techniques and immunosuppressive therapy. This prospective observational study aimed to evaluate the impact of targeted perioperative antibiotic prophylaxis against MDR Gram-negative bacteria on postoperative infections and mortality in liver transplant recipients. Seventy-nine adult patients who underwent liver transplantation and were admitted to the ICU for more than 24 h postoperatively were included. Demographics, disease severity scores, comorbidities, and lengths of ICU and hospital stay were recorded. Colonization with carbapenem-resistant Gram-negative bacteria was assessed via preoperative and postoperative cultures from the blood, urine, rectum, and tracheal secretions. Patients were divided into two groups: those with MDR colonization or infection who received targeted prophylaxis and controls who received standard prophylaxis. Infectious complications (30.4%) occurred significantly less frequently than non-infectious ones (62.0%, p = 0.005). The most common infections were bacteremia (22.7%), pneumonia (17.7%), and surgical site infections (2.5%), with most events occurring within 15 days post-transplant. MDR pathogens isolated included Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Although overall complication and mortality rates at 30 days and 3 months did not differ significantly between groups, the targeted prophylaxis group had fewer infectious complications (22.8% vs. 68.5%, p = 0.008), particularly bacteremia (p = 0.007). Infection-related mortality was also significantly reduced in this group (p = 0.039). These findings suggest that identification of MDR colonization and administration of targeted perioperative antibiotics may reduce septic complications in liver transplant patients. Further prospective studies are warranted to confirm benefits on outcomes and resource utilization. Full article
Show Figures

Figure 1

22 pages, 4596 KiB  
Article
Gut Microbiota Dysbiosis Remodels the Lysine Acetylome of the Mouse Cecum in Early Life
by Yubing Zeng, Jinying Shen, Xuejia He, Fan Liu, Yi Wang, Yi Wang, Yanan Qiao, Pei Pei and Shan Wang
Biology 2025, 14(8), 917; https://doi.org/10.3390/biology14080917 - 23 Jul 2025
Viewed by 288
Abstract
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. [...] Read more.
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. However, there are currently no reports on how gut microbiota dysbiosis affects host physiology in early life through global lysine acetylation. In this study, we constructed a mouse model of gut microbiota dysbiosis using antibiotic cocktail therapy (ABX). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the cecum, we analyzed the cecal lysine acetylome and proteome. As a result, we profiled the lysine acetylation landscape of the cecum and identified a total of 16,579 acetylation sites from 5218 proteins. Differentially acetylated proteins (DAPs) are involved in various metabolic pathways, including the citrate cycle (TCA cycle), butanoate metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis. Moreover, both glycolysis and gluconeogenesis are significantly enriched in acetylation and protein modifications. This study aimed to provide valuable insights into the epigenetic molecular mechanisms associated with host protein acetylation as influenced by early-life gut microbiota disturbances. It reveals potential therapeutic targets for metabolic disorders linked to gut microbiota dysbiosis, thereby establishing a theoretical foundation for the clinical prevention and treatment of diseases arising from such dysbiosis. Full article
Show Figures

Figure 1

17 pages, 646 KiB  
Article
Screening of Potential Drug Targets Based on the Genome-Scale Metabolic Network Model of Vibrio parahaemolyticus
by Lingrui Zhang, Bin Wang, Ruiqi Zhang, Zhen He, Mingzhi Zhang, Tong Hao and Jinsheng Sun
Curr. Issues Mol. Biol. 2025, 47(7), 575; https://doi.org/10.3390/cimb47070575 - 21 Jul 2025
Viewed by 329
Abstract
Vibrio parahaemolyticus is a pathogenic bacterium widely distributed in marine environments, posing significant threats to aquatic organisms and human health. The overuse and misuse of antibiotics has led to the development of multidrug- and pan-resistant V. parahaemolyticus strains. There is an urgent need [...] Read more.
Vibrio parahaemolyticus is a pathogenic bacterium widely distributed in marine environments, posing significant threats to aquatic organisms and human health. The overuse and misuse of antibiotics has led to the development of multidrug- and pan-resistant V. parahaemolyticus strains. There is an urgent need for novel antibacterial therapies with innovative mechanisms of action. In this work, a genome-scale metabolic network model (GMSN) of V. parahaemolyticus, named VPA2061, was reconstructed to predict the metabolites that can be explored as potential drug targets for eliminating V. parahaemolyticus infections. The model comprises 2061 reactions and 1812 metabolites. Through essential metabolite analysis and pathogen–host association screening with VPA2061, 10 essential metabolites critical for the survival of V. parahaemolyticus were identified, which may serve as key candidates for developing new antimicrobial strategies. Additionally, 39 structural analogs were found for these essential metabolites. The molecular docking analysis of the essential metabolites and structural analogs further investigated the potential value of these metabolites for drug design. The GSMN reconstructed in this work provides a new tool for understanding the pathogenic mechanisms of V. parahaemolyticus. Furthermore, the analysis results regarding the essential metabolites hold profound implications for the development of novel antibacterial therapies for V. parahaemolyticus-related disease. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

30 pages, 874 KiB  
Review
Liposome-Encapsulated Antibiotics for the Therapy of Mycobacterial Infections
by Metin Yıldırım and Nejat Düzgüneş
Antibiotics 2025, 14(7), 728; https://doi.org/10.3390/antibiotics14070728 - 20 Jul 2025
Viewed by 528
Abstract
About a quarter of the world’s population is infected with Mycobacterium tuberculosis. Growing antibiotic resistance by this microorganism is a major problem in the therapy of the disease. M. avium-M. intracellulare that emerged as a major opportunistic infection of HIV/AIDS continues to [...] Read more.
About a quarter of the world’s population is infected with Mycobacterium tuberculosis. Growing antibiotic resistance by this microorganism is a major problem in the therapy of the disease. M. avium-M. intracellulare that emerged as a major opportunistic infection of HIV/AIDS continues to afflict immunocompromised individuals. We describe the use of liposome-encapsulated antibiotics in the experimental and clinical therapy of mycobacterial infections, as well as recent experimental liposomal vaccines against tuberculosis. Liposome-mediated intravenous or inhalational delivery of antibiotics enhances the antibacterial effects of the drugs, particularly for infections of resident macrophages, where the liposomes are passively targeted. Despite experimental successes of liposomal antibiotics in the treatment of mycobacterial and other bacterial infections, applications of this method to the clinic have been lagging. This review underscores the significance of liposomes in the treatment of mycobacterial infections, encompassing their synthesis methods, limitations, and both preclinical and clinical studies, providing guidance for the development of future therapeutic approaches and innovative antimicrobial strategies. Full article
Show Figures

Figure 1

21 pages, 2552 KiB  
Review
The Impact of Fusobacterium nucleatum and the Genotypic Biomarker KRAS on Colorectal Cancer Pathogenesis
by Ahmed Dewan, Ivan Tattoli and Maria Teresa Mascellino
Int. J. Mol. Sci. 2025, 26(14), 6958; https://doi.org/10.3390/ijms26146958 - 20 Jul 2025
Viewed by 628
Abstract
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, [...] Read more.
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, while KRAS mutations—present in 60% of CRC cases—amplify proliferative signaling and inflammatory pathways. Here, we review the molecular interplay by which F. nucleatum enhances KRAS-driven oncogenic cascades and, conversely, how KRAS mutations reshape the tumor niche to favor bacterial colonization. We further discuss the use of KRAS as a prognostic biomarker and explore promising non-antibiotic interventions—such as phage therapy, antimicrobial peptides, and targeted small-molecule inhibitors—aimed at selectively disrupting F. nucleatum colonization and virulence. This integrated perspective on microbial–genetic crosstalk offers novel insights for precision prevention and therapy in CRC. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop