Combination Antibiotic Therapy for Orthopedic Infections
Abstract
1. Introduction
- To enhance bacterial coverage by employing broad-spectrum antibiotics that are effective against Gram-positive (aerobic) bacteria (including methicillin-resistant staphylococci), Gram-negative (aerobic) bacteria, and, sometimes, anaerobic bacteria. Broad-spectrum treatment is generally necessary for empirical treatment or in cases of documented polymicrobial infection.
- To add a bactericidal antibiotic such as an aminoglycoside, which is typically administered for at least 24 to 48 h in the case of severe sepsis or septic shock, to achieve a synergistic effect, particularly against staphylococci, enterococci, and certain Gram-negative bacilli infections.
- To enhance antibiofilm activity when utilizing rifampicin, for instance.
- To diminish the risk of resistance emergence to vulnerable antibiotics, including rifampicin, fusidic acid, fosfomycin, and even fluoroquinolones, when employed as anti-staphylococcal agents or fosfomycin and colistin when used to treat multi-resistant Gram-negative bacteria.
2. Methodology
3. To Broaden the Spectrum of Antibiotic Treatment
4. Probabilistic Treatment
4.1. Fracture-Related Infections (FRI)
4.2. Periprosthetic Joint Infection (PJI)
4.3. Spinal Infections
4.4. Anterior Cruciate Ligament Reparation Infection (ACLRI)
Type of Orthopedic Infection | FRI | PJIs | Spine Implant-Associated Infections | ACLR-Related Infections | |
---|---|---|---|---|---|
Antibiotics | |||||
Antibiotics active on Gram-positive bacteria | |||||
Vancomycin | + [11,15] | + [15,16,17,23] | + [18,19] | + [21] | |
Teicoplanin | + [23] | + [23] | + [18] | ||
Daptomycin | + [23] | + [16,23] | + [18,19] | + [21] | |
Linezolid | + [23] | + [18] | |||
Cloxacillin | + [16] | ||||
Amoxicillin-clavulanic acid a | + [23] | ||||
Ceftriaxone b | + [23] | ||||
3rd-generation cephalosporin + Fosfomycin c | + [15] | + [15] | |||
Antibiotics active on Gram-negative bacteria | |||||
Ampicillin-sulbactam or Amoxicillin-clavulanic acid a | + [19] | + [21] | |||
Cefazoline or Cefuroxime a | + [19] | + [21] if non-type 1 penicillin allergy | |||
Piperacillin-tazobactam | + [10,15] | + [15] | + [18,19] only in case of multiple previous revisions | ||
Ceftriaxone or Cefotaxime | + [15] | + [15] | |||
Ceftazidime | + [10] | + [16] | |||
Cefepime | + [10] | + [16] | + [15] | ||
Imipenem | + [15] | + [15] | |||
Meropenem | + [15] | + [15,16] | |||
Fosfomycin + Ceftriaxone c | + [15] | + [15] | |||
Fosfomycin d | + [19] |
4.5. Polymicrobial Infections
5. To Enhance the Bactericidal Activity of the Initial Treatment
6. To Achieve a Synergistic Effect for Targeted Treatment (See Table 2)
IV a | Oral b | ||
---|---|---|---|
Staphylococci | |||
MS | [(Cl or Dicl or Flux) Oxacillin or Cefazolin] + [Rifampicin c,d or Gentamicin e or Fosfomycin] If contraindications to beta-lactams: [Daptomycin or Vancomycin or Teicoplanin] + [fosfomycin or rifampicin c,d or gentamicin e or fusidic acid f] | Levofloxacin (or ciprofloxacin or moxifloxacin) + Rifampicin Oral alternatives without quinolones: Rifampicin + [cotrimoxazole or clindamycin g, minocycline (or doxycycline) or dicloxacillin or cefalexin or linezolid (or tedizolid) or fusidic acid] Oral alternatives without rifampicin: Levofloxacin + [linezolid (or tedizolid) or cotrimoxazole or fusidic acid] Linezolid + [cotrimoxazole or fusidic acid] h Clindamycin + fusidic acid | |
MR | See IV combinations, listed above in the case of contraindications to beta-lactams. | Levofloxacin i (or Moxifloxacin) + Rifampicin Oral treatment without quinolones: see oral combinations listed above, except for dicloxacillin and cephalexin. Oral treatment without rifampicin: see oral combinations listed above. | |
Enterococci | |||
Penicillin G (or amoxicillin)-S | [Penicillin G or Ampicillin or Amoxicillin] + [Ceftriaxone or Gentamicin (+ Fosfomycin) or Rifampicin c,d]. If contraindication to beta-lactam: [Vancomycin or Teicoplanin or Daptomycin or Linezolid] + [Gentamicin (+ Fosfomycin) or Rifampicin c,d] | Amoxicillin + rifampicin | |
Penicillin G (or amoxicillin)-R | See IV combinations, listed above in the case of contraindications to beta-lactams. | Linezolid + rifampicin | |
Streptococci | Amoxicillin (or Ceftriaxone) + Gentamicin j If contraindication to beta-lactam: [Vancomycin or Teicoplanin or Levofloxacin] + [Gentamicin or Rifampicin] c,d,j | Amoxicillin + Rifampicin j If contraindication to beta-lactam: [Levofloxacin or Clindamycin g] + Rifampicin j | |
IV a | Oral b | ||
Enterobacterales | Beta-lactam j,k [Ceftriaxone or Cefotaxime or Piperacillin-tazobactam or Cefepime l or Imipenem m or Meropenem m] + [Aminoglycoside (Gentamicin or Tobramycin or Amikacin) or Fluoroquinolone (Ciprofloxacin or Levofloxacin) or Fosfomycin n and/or Colistin n] | Monotherapy | |
P. aeruginosa | [Cefepime or Ceftazidime or Piperacillin-tazobactam or Meropenem or Imipenem] + [Aminoglycoside (Gentamicin or Tobramycin or Amikacin) or Fluoroquinolone (Ciprofloxacin or Levofloxacin) or Fosfomycin n and/or Colistin n] | Monotherapy | |
Cutibacterium acnes and other Gram+ anaerobes | Monotherapy | [Levofloxacin or Doxycycline] + rifampicin j | |
Gram− anaerobes | Monotherapy | Monotherapy |
6.1. Staphylococcal Infections
6.2. Enterococcal Infections
6.3. GNB
7. To Reinforce Antibiofilm Activity (See Table 2)
8. To Reduce the Risk of Resistance Emergence (See Table 2)
8.1. Gram-Positive Cocci
8.2. Gram-Negative Bacilli
9. Conclusions
Funding
Conflicts of Interest
References
- Depypere, M.; Sliepen, J.; Onsea, J.; Debaveye, Y.; Govaert, G.A.M.; Ijpma, F.F.A.; Zimmerli, W.; Metsemakers, W.-J. The Microbiological Etiology of Fracture-Related Infection. Front. Cell Infect. Microbiol. 2022, 12, 934485. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.; Zhang, J.; Patel, R.; Zhou, A.K.; Thahir, A.; Krkovic, M. Fracture Related Infections and Their Risk Factors for Treatment Failure—A Major Trauma Centre Perspective. Diagnostics 2022, 12, 1289. [Google Scholar] [CrossRef]
- Simon, S.; Frank, B.J.H.; Hartmann, S.; Hinterhuber, L.; Reitsamer, M.; Aichmair, A.; Dominkus, M.; Söderquist, B.; Hofstaetter, J.G. Dalbavancin in Gram-positive periprosthetic joint infections. J. Antimicrob. Chemother. 2022, 77, 2274–2277. [Google Scholar] [CrossRef]
- Mairesse, R.; Gautie, L.; Merouani, M.; Bouige, A.; Fourcade, C.; Krin, G.; Marlin, P.; Giordano, G.; Baklouti, S.; Gandia, P.; et al. Dalbavancin for prosthetic joint infections: Empirical treatment. Infect. Dis. Now 2025, 55, 105035. [Google Scholar] [CrossRef]
- Darouiche, R.O. Treatment of Infections Associated with Surgical Implants. N. Engl. J. Med. 2004, 350, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Dubouix, A.; Bonnet, E.; Alvarez, M.; Bensafi, H.; Archambaud, M.; Chaminade, B.; Chabanon, G.; Marty, N. Bacillus cereus infections in Traumatology–Orthopaedics Department: Retrospective investigation and improvement of healthcare practices. J. Infect. 2005, 50, 22–30. [Google Scholar] [CrossRef]
- Sheehy, S.; Atkins, B.; Bejon, P.; Byren, I.; Wyllie, D.; Athanasou, N.; Berendt, A.; McNally, M. The microbiology of chronic osteomyelitis: Prevalence of resistance to common empirical anti-microbial regimens. J. Infect. 2010, 60, 338–343. [Google Scholar] [CrossRef]
- Eisner, R.; Lippmann, N.; Josten, C.; Rodloff, A.C.; Behrendt, D. Development of the Bacterial Spectrum and Antimicrobial Resistance in Surgical Site Infections of Trauma Patients. Surg. Infect. 2020, 21, 684–693. [Google Scholar] [CrossRef]
- Patel, K.H.; Gill, L.I.; Tissingh, E.K.; Galanis, A.; Hadjihannas, I.; Iliadis, A.D.; Heidari, N.; Cherian, B.; Rosmarin, C.; Vris, A. Microbiological Profile of Fracture Related Infection at a UK Major Trauma Centre. Antibiotics 2023, 12, 1358. [Google Scholar] [CrossRef]
- Depypere, M.; Kuehl, R.; Metsemakers, W.-J.; Senneville, E.; McNally, M.A.; Obremskey, W.T.; Zimmerli, W.; Atkins, B.L.; Trampuz, A.; on behalf of the Fracture-Related Infection (FRI) Consensus Group. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J. Orthop. Trauma 2020, 34, 30–41. [Google Scholar] [CrossRef] [PubMed]
- On behalf of the Fracture-Related Infection (FRI) group; Metsemakers, W.-J.; Morgenstern, M.; Senneville, E.; Borens, O.; Govaert, G.A.M.; Onsea, J.; Depypere, M.; Richards, R.G.; Trampuz, A.; et al. General treatment principles for fracture-related infection: Recommendations from an international expert group. Arch. Orthop. Trauma Surg. 2020, 140, 1013–1027. [Google Scholar] [CrossRef]
- Triffault-Fillit, C.; Ferry, T.; Laurent, F.; Pradat, P.; Dupieux, C.; Conrad, A.; Becker, A.; Lustig, S.; Chidiac, C.; Valour, F.; et al. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 353–358. [Google Scholar] [CrossRef]
- Casenaz, A.; Piroth, L.; Labattut, L.; Sixt, T.; Magallon, A.; Guilloteau, A.; Neuwirth, C.; Amoureux, L. Epidemiology and antibiotic resistance of prosthetic joint infections according to time of occurrence, a 10-year study. J. Infect. 2022, 85, 492–498. [Google Scholar] [CrossRef]
- Matthews, P.C.; Berendt, A.R.; A McNally, M.; Byren, I. Diagnosis and management of prosthetic joint infection. BMJ 2009, 338, b1773. [Google Scholar] [CrossRef] [PubMed]
- Recommandations de pratique clinique. Infections osteo-articulaires sur materiel (prothese, implant, osteo-synthese). Med. Mal. Infect. 2009, 39, 815–863. [Google Scholar] [CrossRef] [PubMed]
- Ariza, J.; Cobo, J.; Baraia-Etxaburu, J.; Benito, N.; Bori, G.; Cabo, J.; Corona, P.; Esteban, J.; Horcajada, J.P.; Lora-Tamayo, J.; et al. Executive summary of management of prosthetic joint infections. Clinical practice guidelines by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm. Infecc. Microbiol. Clin. 2017, 35, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Metcalf, S.; Paterson, D.L.; Robinson, J.O.; Clarke, B.; Manning, L. Proposed empiric antibiotic therapy for prosthetic joint infections: An analysis of the Prosthetic Joint Infection in Australia and New Zealand, Observational (PIANO) cohort. Intern. Med. J. 2022, 52, 322–325. [Google Scholar] [CrossRef]
- Lacasse, M.; Derolez, S.; Bonnet, E.; Amelot, A.; Bouyer, B.; Carlier, R.; Coiffier, G.; Cottier, J.; Dinh, A.; Maldonado, I.; et al. 2022 SPILF—Clinical Practice guidelines for the diagnosis and treatment of disco-vertebral infection in adults. Infect. Dis. Now 2023, 53, 104647. [Google Scholar] [CrossRef]
- Palmowski, Y.; BürGer, J.; Kienzle, A.; Trampuz, A. Antibiotic treatment of postoperative spinal implant infections. J. Spine Surg. 2020, 6, 785–792. [Google Scholar] [CrossRef]
- Reissier, S.; Couzigou, C.; Courseau, R.; Aubert, E.; Le Monnier, A.; Bonnet, E.; Upex, P.; Moreau, P.-E.; Riouallon, G.; Lourtet-Hascoët, J. Microbiological Profile of Instrumented Spinal Infections: 10-Year Study at a French Spine Center. Antibiotics 2024, 13, 791. [Google Scholar] [CrossRef]
- Pérez-Prieto, D.; Totlis, T.; Madjarevic, T.; Becker, R.; Ravn, C.; Monllau, J.C.; Renz, N. ESSKA and EBJIS recommendations for the management of infections after anterior cruciate ligament reconstruction (ACL-R): Prevention, surgical treatment and rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4204–4212. [Google Scholar] [CrossRef]
- Lourtet-Hascoët, J.; Javois, C.; Potel, J.-F.; Merouani, M.; Bouige, A.; Giordano, G.; Bonnet, E. Septic arthritis after anterior cruciate ligament reconstruction: Microbiological epidemiology, treatment, and outcome A 95 case-series among 12,650 patients. Clin. Surg. J. 2022, 3, 1–7. [Google Scholar]
- Esposito, S.; Leone, S.; Bassetti, M.; Borrè, S.; Leoncini, F.; Meani, E.; Venditti, M.; Mazzotta, F.; Bone Joint Infections Committee for the Italian Society of Infectious Tropical Diseases (SIMIT). Italian Guidelines for the Diagnosis and Infectious Disease Management of Osteomyelitis and Prosthetic Joint Infections in Adults. Infection 2009, 37, 478–496. [Google Scholar] [CrossRef]
- Courcol, R.J.; Martin, G.R. In-vitro activity of the combination of ceftriaxone and fosfomycin against staphylococci. J. Antimicrob. Chemother. 1987, 19, 276–278. [Google Scholar] [CrossRef]
- Kastoris, A.C.; Rafailidis, P.I.; Vouloumanou, E.K.; Gkegkes, I.D.; Falagas, M.E. Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria. Eur. J. Clin. Pharmacol. 2010, 66, 359–368. [Google Scholar] [CrossRef]
- Farina, C.; Russello, G.; Chinello, P.; Pasticci, M.B.; Raglio, A.; Ravasio, V.; Rizzi, M.; Scarparo, C.; Vailati, F.; Suter, F.; et al. In vitro Activity Effects of Twelve Antibiotics Alone and in Association against Twenty-Seven Enterococcus faecalis Strains Isolated from Italian Patients with Infective Endocarditis: High in vitro Synergistic Effect of the Association Ceftriaxone-Fosfomycin. Chemotherapy 2011, 57, 426–433. [Google Scholar] [CrossRef] [PubMed]
- del Río, A.; García-De-La-Mària, C.; Entenza, J.M.; Gasch, O.; Armero, Y.; Soy, D.; Mestres, C.A.; Pericás, J.M.; Falces, C.; Ninot, S.; et al. Fosfomycin plus β-Lactams as Synergistic Bactericidal Combinations for Experimental Endocarditis Due to Methicillin-Resistant and Glycopeptide-Intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2016, 60, 478–486. [Google Scholar] [CrossRef]
- David, M.Z.; Dryden, M.; Gottlieb, T.; Tattevin, P.; Gould, I.M. Recently approved antibacterials for methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive pathogens: The shock of the new. Int. J. Antimicrob. Agents 2017, 50, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Flamm, R.K.; Mendes, R.E.; Streit, J.M.; Smart, J.I.; Hamed, K.A.; Duncan, L.R.; Sader, H.S. Ceftobiprole Activity against Gram-Positive and -Negative Pathogens Collected from the United States in 2006 and 2016. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R.; Infectious Diseases Society of America. Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of Americaa. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef]
- Delgado, V.; Marsan, N.A.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef] [PubMed]
- Le Moing, V.; Bonnet, É.; Cattoir, V.; Chirouze, C.; Deconinck, L.; Duval, X.; Hoen, B.; Issa, N.; Lecomte, R.; Tattevin, P.; et al. Antibiotic therapy and prophylaxis of infective endocarditis—A SPILF-AEPEI position statement on the ESC 2023 guidelines. Infect. Dis. Now 2025, 55, 105011. [Google Scholar] [CrossRef]
- Correction to: 2023 ESC Guidelines for the management of endocarditis: Developed by the task force on the management of endocarditis of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2024, 45, 56, Erratum in Eur. Heart J. 2023, 44, 3948–4042. https://doi.org/10.1093/eurheartj/ehad193. [CrossRef]
- Correction to: 2023 ESC Guidelines for the management of endocarditis: Developed by the task force on the management of endocarditis of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2025, 46, 1082, Erratum in Eur. Heart J. 2023, 44, 3948–4042. https://doi.org/10.1093/eurheartj/ehad193. [CrossRef]
- DonePeiffer-Smadja, N.; Guillotel, E.; Luque-Paz, D.; Maataoui, N.; Lescure, F.-X.; Cattoir, V. In vitro bactericidal activity of amoxicillin combined with different cephalosporins against endocarditis-associated Enterococcus faecalis clinical isolates. J. Antimicrob. Chemother. 2019, 74, 3511–3514. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; A Bonomo, R. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Mancuso, A.; Pipitò, L.; Rubino, R.; Distefano, S.A.; Mangione, D.; Cascio, A. Ceftazidime-Avibactam as Osteomyelitis Therapy: A Miniseries and Review of the Literature. Antibiotics 2023, 12, 1328. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; De Pascale, G.; Cascio, A.; De Rosa, F.G.; Cattelan, A.M.; Oliva, A.; Saracino, A.; Bassetti, M.; et al. Outcomes and Predictors of Mortality in Patients with PC-Kp Infections Treated With Meropenem Vaborbactam: An Observational Multicenter Study. Open Forum Infect Dis. 2024, 11, ofae273. [Google Scholar] [CrossRef]
- Clancy, C.J.; Cornely, O.; Marcella, S.W.; Nguyen, S.T.; Gozalo, L.; Cai, B. Effectiveness and Safety of Cefiderocol in Clinical Practice for Treatment of Patients with Gram-Negative Bacterial Infections: US Interim Results of the PROVE Study. Infect. Drug Resist. 2024, 17, 4427–4443. [Google Scholar] [CrossRef] [PubMed]
- Mancheño-Losa, M.; Murillo, O.; Benavent, E.; Sorlí, L.; Riera, M.; Cobo, J.; Benito, N.; Morata, L.; Ribera, A.; Sobrino, B.; et al. Efficacy and safety of colistin plus beta-lactams for bone and joint infection caused by fluoroquinolone-resistant gram-negative bacilli: A prospective multicenter study. Infection 2025, 53, 359–372. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Ribera, A.; Mavrogenis, A.F.; Rodriguez-Pardo, D.; Bonnet, E.; Salles, M.J.; del Toro, M.D.; Nguyen, S.; Blanco-García, A.; Skaliczki, G.; et al. Multidrug-resistant and extensively drug-resistant Gram-negative prosthetic joint infections: Role of surgery and impact of colistin administration. Int. J. Antimicrob. Agents 2019, 53, 294–301. [Google Scholar] [CrossRef]
- Zimmerli, W. Role of Rifampin for Treatment of Orthopedic Implant–Related Staphylococcal Infections: A Randomized Controlled Trial. JAMA 1998, 279, 1537. [Google Scholar] [CrossRef] [PubMed]
- Renz, N.; Trampuz, A.; Zimmerli, W. Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified? Antibiotics 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Pos, E.; Nogueira, D.R.; Ferreira, F.P.; Sousa, R.; Abreu, M.A. Antibiotics with antibiofilm activity—Rifampicin and beyond. Front. Microbiol. 2024, 15, 1435720. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, H.K.; Lazarinis, S.; Järhult, J.D.; Hailer, N.P. Early Staphylococcal Periprosthetic Joint Infection (PJI) Treated with Debridement, Antibiotics, and Implant Retention (DAIR): Inferior Outcomes in Patients with Staphylococci Resistant to Rifampicin. Antibiotics 2023, 12, 1589. [Google Scholar] [CrossRef] [PubMed]
- Pupaibool, J. The Role of Rifampin in Prosthetic Joint Infections: Efficacy, Challenges, and Clinical Evidence. Antibiotics 2024, 13, 1223. [Google Scholar] [CrossRef]
- Gachet, B.; Dechartres, A.; Senneville, E.; Robineau, O. Systematic review on oral antibacterial relay therapy for acute staphylococcal prosthetic joint infections treated with debridement, antibiotics and implant retention (DAIR). J. Antimicrob. Chemother. 2024, 79, 3091–3099. [Google Scholar] [CrossRef]
- Bernard, A.; Kermarrec, G.; Parize, P.; Caruba, T.; Bouvet, A.; Mainardi, J.-L.; Sabatier, B.; Nich, C. Dramatic reduction of clindamycin serum concentration in staphylococcal osteoarticular infection patients treated with the oral clindamycin-rifampicin combination. J. Infect. 2015, 71, 200–206. [Google Scholar] [CrossRef]
- Curis, E.; Pestre, V.; Jullien, V.; Eyrolle, L.; Archambeau, D.; Morand, P.; Gatin, L.; Karoubi, M.; Pinar, N.; Dumaine, V.; et al. Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentration in patients with bone and joint infections. Infection 2015, 43, 473–481. [Google Scholar] [CrossRef]
- Goulenok, T.; Seurat, J.; de La Selle, A.; Jullien, V.; Leflon-Guibout, V.; Grall, N.; Lescure, F.X.; Lepeule, R.; Bertrand, J.; Fantin, B.; et al. Pharmacokinetic interaction between rifampicin and clindamycin in staphylococcal osteoarticular infections. Int. J. Antimicrob. Agents 2023, 62, 106885. [Google Scholar] [CrossRef]
- Bonnaire, A.; Vernet-Garnier, V.; Lebrun, D.; Bajolet, O.; Bonnet, M.; Hentzien, M.; Ohl, X.; Diallo, S.; Bani-Sadr, F. Clindamycin combination treatment for the treatment of bone and joint infections caused by clindamycin-susceptible, erythromycin-resistant Staphylococcus spp. Diagn. Microbiol. Infect. Dis. 2021, 99, 115225. [Google Scholar] [CrossRef]
- Xu, Q.; Sang, Y.; Gao, A.; Li, L. The effects of drug-drug interaction on linezolid pharmacokinetics: A systematic review. Eur. J. Clin. Pharmacol. 2024, 80, 785–795. [Google Scholar] [CrossRef]
- Thompson, J.M.; Saini, V.; Ashbaugh, A.G.; Miller, R.J.; Ordonez, A.A.; Ortines, R.V.; Wang, Y.; Sterling, R.S.; Jain, S.K.; Miller, L.S. Oral-Only Linezolid-Rifampin Is Highly Effective Compared with Other Antibiotics for Periprosthetic Joint Infection. J. Bone Jt. Surg. 2017, 99, 656–665. [Google Scholar] [CrossRef]
- Goetz, J.; Keyssner, V.; Hanses, F.; Greimel, F.; Leiß, F.; Schwarz, T.; Springorum, H.-R.; Grifka, J.; Schaumburger, J. Animal experimental investigation on the efficacy of antibiotic therapy with linezolid, vancomycin, cotrimoxazole, and rifampin in treatment of periprosthetic knee joint infections by MRSA. Bone Jt. Res. 2022, 11, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Morata, L.; Senneville, E.; Bernard, L.; Nguyen, S.; Buzelé, R.; Druon, J.; Tornero, E.; Mensa, J.; Soriano, A. A Retrospective Review of the Clinical Experience of Linezolid with or Without Rifampicin in Prosthetic Joint Infections Treated with Debridement and Implant Retention. Infect. Dis. Ther. 2014, 3, 235–243. [Google Scholar] [CrossRef]
- Legout, L.; Valette, M.; Dezeque, H.; Nguyen, S.; Lemaire, X.; Loïez, C.; Caillaux, M.; Beltrand, E.; Dubreuil, L.; Yazdanpanah, Y.; et al. Tolerability of prolonged linezolid therapy in bone and joint infection: Protective effect of rifampicin on the occurrence of anaemia? J. Antimicrob. Chemother. 2010, 65, 2224–2230. [Google Scholar] [CrossRef]
- Albano, M.; Karau, M.J.; Greenwood-Quaintance, K.E.; Osmon, D.R.; Oravec, C.P.; Berry, D.J.; Abdel, M.P.; Patel, R. In Vitro Activity of Rifampin, Rifabutin, Rifapentine, and Rifaximin against Planktonic and Biofilm States of Staphylococci Isolated from Periprosthetic Joint Infection. Antimicrob. Agents Chemother. 2019, 63, e00959-19. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.; Patel, R. Rifampin, Rifapentine, and Rifabutin Are Active against Intracellular Periprosthetic Joint Infection-Associated Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2021, 65, e01275-20. [Google Scholar] [CrossRef]
- Thill, P.; Robineau, O.; Roosen, G.; Patoz, P.; Gachet, B.; Lafon-Desmurs, B.; Tetart, M.; Nadji, S.; Senneville, E.; Blondiaux, N. Rifabutin versus rifampicin bactericidal and antibiofilm activities against clinical strains of Staphylococcus spp. isolated from bone and joint infections. J. Antimicrob. Chemother. 2022, 77, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Pinto, M.; Aires-Da-Silva, F.; Bettencourt, A.; Gaspar, M.M.; Aguiar, S.I. Rifabutin: A repurposed antibiotic with high potential against planktonic and biofilm staphylococcal clinical isolates. Front. Microbiol. 2024, 15, 1475124. [Google Scholar] [CrossRef]
- Karau, M.J.; Schmidt-Malan, S.M.; Albano, M.; Mandrekar, J.N.; Rivera, C.G.; Osmon, D.R.; Oravec, C.P.; Berry, D.J.; Abdel, M.P.; Patel, R. Novel Use of Rifabutin and Rifapentine to Treat Methicillin-Resistant Staphylococcus aureus in a Rat Model of Foreign Body Osteomyelitis. J. Infect. Dis. 2020, 222, 1498–1504. [Google Scholar] [CrossRef]
- Doub, J.B.; Heil, E.L.; Ntem-Mensah, A.; Neeley, R.; Ching, P.R. Rifabutin Use in Staphylococcus Biofilm Infections: A Case Series. Antibiotics 2020, 9, 326. [Google Scholar] [CrossRef]
- Monk, M.; Elshaboury, R.; Tatara, A.; Nelson, S.; Bidell, M.R.; Babiker, A. A Case Series of Rifabutin Use in Staphylococcal Prosthetic Infections. Microbiol. Spectr. 2022, 10, e0038422. [Google Scholar] [CrossRef]
- Vilchez, H.H.; Escudero-Sanchez, R.; Fernandez-Sampedro, M.; Murillo, O.; Auñón, Á.; Rodríguez-Pardo, D.; Jover-Sáenz, A.; Del Toro, D.; Rico, A.; Falgueras, L.; et al. Prosthetic Shoulder Joint Infection by Cutibacterium acnes: Does Rifampin Improve Prognosis? A Retrospective, Multicenter, Observational Study. Antibiotics 2021, 10, 475. [Google Scholar] [CrossRef]
- Kusejko, K.; Auñón, Á.; Jost, B.; Natividad, B.; Strahm, C.; Thurnheer, C.; Pablo-Marcos, D.; Slama, D.; Scanferla, G.; Uckay, I.; et al. The Impact of Surgical Strategy and Rifampin on Treatment Outcome in Cutibacterium Periprosthetic Joint Infections. Clin. Infect. Dis. 2021, 72, e1064–e1073. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, G.; Meyssonnier, V.; Kerroumi, Y.; Heym, B.; Lidove, O.; Marmor, S.; Zeller, V. Cutibacterium acnes Prosthetic Joint Infections: Is Rifampicin-Combination Therapy Beneficial? Antibiotics 2022, 11, 1801. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Pereira, S.; Benavent, E.; Ulldemolins, M.; Sobrino-Díaz, B.; Iribarren, J.A.; Escudero-Sánchez, R.; Del Toro, M.D.; Nodar, A.; Sorli, L.; Bahamonde, A.; et al. Cutibacterium spp. Infections after Instrumented Spine Surgery Have a Good Prognosis Regardless of Rifampin Use: A Cross-Sectional Study. Antibiotics 2023, 12, 518. [Google Scholar] [CrossRef] [PubMed]
- Lora-Tamayo, J.; Senneville, É.; Ribera, A.; Bernard, L.; Dupon, M.; Zeller, V.; Li, H.K.; Arvieux, C.; Clauss, M.; Uçkay, I.; et al. The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study. Clin. Infect. Dis. 2017, 64, 1742–1752. [Google Scholar] [CrossRef]
- Mahieu, R.; Dubée, V.; Seegers, V.; Lemarié, C.; Ansart, S.; Bernard, L.; Moal, G.L.; Asseray, N.; Arvieux, C.; Ramanantsoa, C.; et al. The prognosis of streptococcal prosthetic bone and joint infections depends on surgical management—A multicenter retrospective study. Int. J. Infect. Dis. 2019, 85, 175–181. [Google Scholar] [CrossRef]
- Yusuf, E.; Bramer, W.; Anas, A.A. Clinical outcomes of rifampicin combination therapy in implant-associated infections due to staphylococci and streptococci: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2024, 63, 107015. [Google Scholar] [CrossRef]
- Maurille, C.; Michon, J.; Isnard, C.; Rochcongar, G.; Verdon, R.; Baldolli, A. Interest in the combination of antimicrobial therapy for orthopaedic device-related infections due to Enterococcus spp. Arch. Orthop. Trauma Surg. 2023, 143, 5515–5526. [Google Scholar] [CrossRef]
- Widmer, A.F.; Wiestner, A.; Frei, R.; Zimmerli, W. Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob. Agents Chemother. 1991, 35, 741–746. [Google Scholar] [CrossRef]
- Yassien, M.; Khardori, N.; Ahmedy, A.; Toama, M. Modulation of biofilms of Pseudomonas aeruginosa by quinolones. Antimicrob. Agents Chemother. 1995, 39, 2262–2268. [Google Scholar] [CrossRef]
- Geremia, N.; Giovagnorio, F.; Colpani, A.; De Vito, A.; Botan, A.; Stroffolini, G.; Toc, D.-A.; Zerbato, V.; Principe, L.; Madeddu, G.; et al. Fluoroquinolones and Biofilm: A Narrative Review. Pharmaceuticals 2024, 17, 1673. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Di Luca, M.; Tkhilaishvili, T.; Trampuz, A.; Moreno, M.G. Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against Escherichia coli and Pseudomonas aeruginosa Biofilms. Front. Microbiol. 2019, 10, 2522. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.K.; Rouse, M.S.; Whitesell, A.L.; E McConnell, M.; Wilson, W.R. Treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis with ciprofloxacin or vancomycin alone or in combination with rifampin. Am. J. Med. 1987, 82, 73–75. [Google Scholar]
- Kaatz, G.W.; Seo, S.M.; Barriere, S.L.; Albrecht, L.M.; Rybak, M.J. Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 1989, 33, 1184–1187. [Google Scholar] [CrossRef]
- Bahl, D.; A Miller, D.; Leviton, I.; Gialanella, P.; Wolin, M.J.; Liu, W.; Perkins, R.; Miller, M.H. In vitro activities of ciprofloxacin and rifampin alone and in combination against growing and nongrowing strains of methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1997, 41, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- A Firsov, A.; Vostrov, S.N.; Lubenko, I.Y.; A Portnoy, Y.; Zinner, S.H. Prevention of the selection of resistant Staphylococcus aureus by moxifloxacin plus doxycycline in an in vitro dynamic model: An additive effect of the combination. Int. J. Antimicrob. Agents 2004, 23, 451–456. [Google Scholar] [CrossRef]
- Grabein, B.; Graninger, W.; Rodríguez Baño, J.; Dinh, A.; Liesenfeld, D.B. Intravenous fosfomycin—Back to the future. Systematic review and meta-analysis of the clinical literature. Clin. Microbiol. Infect. 2017, 23, 363–372. [Google Scholar] [CrossRef]
- Dijkmans, A.C.; Zacarías, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Tsegka, K.G.; Voulgaris, G.L.; Kyriakidou, M.; Kapaskelis, A.; Falagas, M.E. Intravenous fosfomycin for the treatment of patients with bone and joint infections: A review. Expert Rev. Anti Infect. Ther. 2022, 20, 33–43. [Google Scholar] [CrossRef]
- Wang, J.-L.; Tang, H.-J.; Hsieh, P.-H.; Chiu, F.-Y.; Chen, Y.-H.; Chang, M.-C.; Huang, C.-T.; Liu, C.-P.; Lau, Y.-J.; Hwang, K.-P.; et al. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2012, 40, 103–107. [Google Scholar] [CrossRef]
- Klein, S.; Nurjadi, D.; Eigenbrod, T.; Bode, K.A. Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospitals in Germany: Is there a role for fusidic acid? Int. J. Antimicrob. Agents 2016, 47, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Werth, B.J.; E Barber, K.; Tran, N.; Nonejuie, P.; Sakoulas, G.; Pogliano, J.; Rybak, M.J.; Tran, K.-N.T. Ceftobiprole and ampicillin increase daptomycin susceptibility of daptomycin-susceptible and -resistant VRE. J. Antimicrob. Chemother. 2015, 70, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Rose, W.; Nonejuie, P.; Olson, J.; Pogliano, J.; Humphries, R.; Nizet, V. Ceftaroline Restores Daptomycin Activity against Daptomycin-Nonsusceptible Vancomycin-Resistant Enterococcus faecium. Antimicrob. Agents Chemother. 2014, 58, 1494–1500. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Costerton, J.W.; Post, J.C.; Ehrlich, G.D.; Hu, F.Z.; Kreft, R.; Nistico, L.; Kathju, S.; Stoodley, P.; Hall-Stoodley, L.; Maale, G.; et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol. Med. Microbiol. 2011, 61, 133–140. [Google Scholar] [CrossRef]
- Forge, A.; Schacht, J. Aminoglycoside Antibiotics. Audiol. Neurotol. 2000, 5, 3–22. [Google Scholar] [CrossRef]
- Goh, G.S.; Parvizi, J. Diagnosis and Treatment of Culture-Negative Periprosthetic Joint Infection. J. Arthroplast. 2022, 37, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef]
- Li, H.-K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Rinaldi, M.; Gatti, M.; Tedeschi, S.; Viale, P.; Pea, F. Usefulness of therapeutic drug monitoring in estimating the duration of dalbavancin optimal target attainment in staphylococcal osteoarticular infections: A proof-of-concept. Int. J. Antimicrob. Agents 2021, 58, 106445. [Google Scholar] [CrossRef]
- Hake, M.E.; Young, H.; Hak, D.J.; Stahel, P.F.; Hammerberg, E.M.; Mauffrey, C. Local antibiotic therapy strategies in orthopaedic trauma: Practical tips and tricks and review of the literature. Injury 2015, 46, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, K.; Zenke, Y.; Sato, N.; Hamada, D.; Ando, K.; Okada, Y.; Yamanaka, Y.; Sakai, A. Potential of Continuous Local Antibiotic Perfusion Therapy for Fracture-Related Infections. Infect. Dis. Ther. 2022, 11, 1741–1755. [Google Scholar] [CrossRef]
- A Suh, G.; Ferry, T.; Abdel, M.P. Phage Therapy as a Novel Therapeutic for the Treatment of Bone and Joint Infections. Clin. Infect. Dis. 2023, 77, S407–S415. [Google Scholar] [CrossRef]
- Onsea, J.; Post, V.; Buchholz, T.; Schwegler, H.; Zeiter, S.; Wagemans, J.; Pirnay, J.-P.; Merabishvili, M.; D’eSte, M.; Rotman, S.G.; et al. Bacteriophage Therapy for the Prevention and Treatment of Fracture-Related Infection Caused by Staphylococcus aureus: A Preclinical Study. Microbiol. Spectr. 2021, 9, e0173621. [Google Scholar] [CrossRef]
- Ikewaki, N.; Iwasaki, M.; Kurosawa, G.; Rao, K.-S.; Lakey-Beitia, J.; Preethy, S.; Abraham, S.J. β-glucans: Wide-spectrum immune-balancing food-supplement-based enteric (β-WIFE) vaccine adjuvant approach to COVID-19. Hum. Vaccin. Immunother. 2021, 17, 2808–2813. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Gong, M.-Q.; Zhang, H.-J.; Peng, A.-Q.; Xie, Z.; Sun, D.; Liu, L.; Zhou, S.-Q.; Chen, H.; Yang, X.-F.; et al. The safety and immunogenicity of a recombinant five-antigen Staphylococcus aureus vaccine among patients undergoing elective surgery for closed fractures: A randomized, double-blind, placebo-controlled, multicenter phase 2 clinical trial. Vaccine 2023, 41, 5562–5571. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnet, E.; Lourtet-Hascoët, J. Combination Antibiotic Therapy for Orthopedic Infections. Antibiotics 2025, 14, 761. https://doi.org/10.3390/antibiotics14080761
Bonnet E, Lourtet-Hascoët J. Combination Antibiotic Therapy for Orthopedic Infections. Antibiotics. 2025; 14(8):761. https://doi.org/10.3390/antibiotics14080761
Chicago/Turabian StyleBonnet, Eric, and Julie Lourtet-Hascoët. 2025. "Combination Antibiotic Therapy for Orthopedic Infections" Antibiotics 14, no. 8: 761. https://doi.org/10.3390/antibiotics14080761
APA StyleBonnet, E., & Lourtet-Hascoët, J. (2025). Combination Antibiotic Therapy for Orthopedic Infections. Antibiotics, 14(8), 761. https://doi.org/10.3390/antibiotics14080761