Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy
Abstract
Featured Application
Abstract
1. Introduction
2. Study Methodology
3. Mycobacteriophages—General Characteristics and Overview
4. The Use of Mycobacteriophages in Diagnostics and Therapy
4.1. Phage-Based Diagnostic Strategies for Mycobacteria
4.2. In Vitro Studies
4.3. Animal Studies
4.4. Clinical Studies in Humans
4.5. Phage–Antibiotic Combination Therapy
5. New Technologies to Support the Development of Phage Therapy
6. Problems, Challenges, and the Future of Phage Therapy
6.1. Biological Challenges and Possible Solutions
6.2. Regulatory and Standardization Barriers
6.3. Cost–Benefit Analysis and Geographic Prioritization
7. Limitations of the Review
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine-5′-triphosphate |
BACTEC460 | Automated Adiometric Mycobacterial Broth Culture Detection System |
BRED | Bacteriophage Recombineering of Electroporated DNA |
CF | Cystic Fibrosis |
CRISPR-Cas | Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Associated Proteins |
GFP | Green Fluorescent Protein |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating factor |
GPL | Glycopeptidolipid |
IL | Interleukin |
KITLG | Ligand for the Receptor-Type Protein-Tyrosine Kinase KIT |
LJ | Löwenstein-Jensen Medium |
LRP | Luciferase Reporter Phage |
MDR | Multidrug-Resistant |
MGIT960 | Mycobacterial Growth Indicator Tube (MGIT) 960TB System |
Mpr | Multicopy Phage Resistance Exonuclease |
MRSA | Methicyllin-Resistant Staphylococcus aureus |
NAP | P-nitro-α-acetylamino-β-hydroxypropiophenone |
NTM | Non-tuberculous Mycobacteria |
PAA | Phage Amplification Assay |
PAS | Phage-Antibiotic Synergy |
PET-CT | Positron Emission Tomography-Computed Tomography |
PNB | P-nitrobenzoic Acid |
PRA | Phage Reporter Assay |
SEA-PHAGES | Science Education Alliance–Phage Hunters Advancing Genomics and Evolutionary Science |
SLC | Sub-lethal Concentrations |
TB | Tuberculosis |
TTP | Trehalose Polyphleates |
XDR | Extensively Drug-Resistant |
References
- Global Tuberculosis Report 2024. Available online: https://www.who.int/publications/i/item/9789240101531 (accessed on 18 July 2025).
- Shenoi, S.; Heysell, S.; Moll, A.; Friedland, G. Multidrug-resistant and extensively drug-resistant tuberculosis: Consequences for the global HIV community. Curr. Opin. Infect. Dis. 2009, 22, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Sanchini, A.; Lanni, A.; Giannoni, F.; Mustazzolu, A. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis 2024, 148, 102522. [Google Scholar] [CrossRef] [PubMed]
- Wrohan, I.; Redwood, L.; Ho, J.; Velen, K.; Fox, G.J. Ototoxicity among multidrug-resistant TB patients: A systematic review and meta-analysis. Int. J. Tuberc. Lung Dis. 2021, 25, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Buziashvili, M.; Mirtskhulava, V.; Kipiani, M.; Blumberg, H.M.; Baliashvili, D.; Magee, M.J.; Furin, J.J.; Tukvadze, N.; Kempker, R.R. Rates and risk factors for nephrotoxicity and ototoxicity among tuberculosis patients in Tbilisi, Georgia. Int. J. Tuberc. Lung Dis. 2019, 23, 1005–1011. [Google Scholar] [CrossRef]
- Datta, D.; Jamwal, S.; Jyoti, N.; Patnaik, S.; Kumar, D. Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. FEBS J. 2024, 291, 4433–4452. [Google Scholar] [CrossRef]
- Veve, M.P.; Kenney, R.M.; Aljundi, A.M.; Dierker, M.S.; Athans, V.; Shallal, A.B.; Patel, N. Multicenter, retrospective cohort study of antimycobacterial treatment-related harms among patients with non-tuberculosis Mycobacterium infections in the United States. Antimicrob. Agents Chemother. 2025, 69, e01596-24. [Google Scholar] [CrossRef]
- Conyers, L.E.; Saunders, B.M. Treatment for non-tuberculous mycobacteria: Challenges and prospects. Front. Microbiol. 2024, 15, 1394220. [Google Scholar] [CrossRef]
- Gu, Y.; Nie, W.; Huang, H.; Yu, X. Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugs. Front. Cell Infect. Microbiol. 2023, 13, 1243457. [Google Scholar] [CrossRef]
- Azimi, T.; Mosadegh, M.; Nasiri, M.J.; Sabour, S.; Karimaei, S.; Nasser, A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: A comprehensive review. Infect. Drug Resist. 2019, 12, 2943–2959. [Google Scholar] [CrossRef]
- Opperman, C.J.; Brink, A.J. Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential. Infect. Dis. Rep. 2025, 17, 24. [Google Scholar] [CrossRef]
- Ouyang, X.; Li, X.; Song, J.; Wang, H.; Wang, S.; Fang, R.; Li, Z.; Song, N. Mycobacteriophages in diagnosis and alternative treatment of mycobacterial infections. Front. Microbiol. 2023, 14, 1277178. [Google Scholar] [CrossRef]
- Yang, F.; Labani-Motlagh, A.; Bohorquez, J.A.; Moreira, J.D.; Ansari, D.; Patel, S.; Spagnolo, F.; Florence, J.; Vankayalapati, A.; Sakai, T.; et al. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun. Biol. 2024, 7, 294. [Google Scholar] [CrossRef]
- Shield, C.G.; Swift, B.M.C.; McHugh, T.D.; Dedrick, R.M.; Hatfull, G.F.; Satta, G. Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment. Microorganisms 2021, 9, 2366. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Hendrix, R.W. Bacteriophages and their genomes. Curr. Opin. Virol. 2011, 1, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F. Dark Matter of the Biosphere: The Amazing World of Bacteriophage Diversity. J. Virol. 2015, 89, 8107–8110. [Google Scholar] [CrossRef] [PubMed]
- Grose, J.H.; Casjens, S.R. Understanding the enormous diversity of bacteriophages: The tailed phages that infect the bacterial family Enterobacteriaceae. Virology 2014, 468–470, 421–443. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, H.; Zhang, S. Diversities and interactions of phages and bacteria in deep-sea sediments as revealed by metagenomics. Front. Microbiol. 2024, 14, 1337146. [Google Scholar] [CrossRef]
- Filik, K.; Szermer-Olearnik, B.; Oleksy, S.; Brykała, J.; Brzozowska, E. Bacteriophage Tail Proteins as a Tool for Bacterial Pathogen Recognition—A Literature Review. Antibiotics 2022, 11, 555. [Google Scholar] [CrossRef]
- Abedon, S.T.; Thomas-Abedon, C.; Thomas, A.; Mazure, H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage 2011, 1, 174–178. [Google Scholar] [CrossRef]
- Deresinski, S. Bacteriophage Therapy: Exploiting Smaller Fleas. Clin. Infect. Dis. 2009, 48, 1096–1101. [Google Scholar] [CrossRef]
- Kropinski, A.M. Phage Therapy—Everything Old is New Again. Can. J. Infect. Dis. Med. Microbiol. 2006, 17, 297–306. [Google Scholar] [CrossRef]
- Ackermann, H. Bacteriophage taxonomy. Microbiol. Aust. 2011, 32, 90–94. [Google Scholar] [CrossRef]
- Diallo, K.; Dublanchet, A. A Century of Clinical Use of Phages: A Literature Review. Antibiotics 2023, 12, 751. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Peng, N.; Liang, Y.; Li, K.; Li, Y. Phage Therapy: Consider the Past, Embrace the Future. Appl. Sci. 2020, 10, 7654. [Google Scholar] [CrossRef]
- Ferry, T.; Kolenda, C.; Briot, T.; Souche, A.; Lustig, S.; Josse, J.; Batailler, C.; Pirot, F.; Medina, M.; Leboucher, G.; et al. Past and Future of Phage Therapy and Phage-Derived Proteins in Patients with Bone and Joint Infection. Viruses 2021, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- Keen, E.C. Phage therapy: Concept to cure. Front. Microbiol. 2012, 3, 238. [Google Scholar] [CrossRef]
- Turner, D.; Adriaenssens, E.M.; Lehman, S.M.; Moraru, C.; Kropinski, A.M. Bacteriophage Taxonomy: A Continually Evolving Disci-pline. Methods Mol. Biol. 2024, 2734, 27–45. [Google Scholar] [CrossRef]
- Elois, M.A.; Silva, R.D.; Pilati, G.V.T.; Rodríguez-Lázaro, D.; Fongaro, G. Bacteriophages as Biotechnological Tools. Viruses 2023, 15, 349. [Google Scholar] [CrossRef]
- Valencia-Toxqui, G.; Ramsey, J. How to introduce a new bacteriophage on the block: A short guide to phage classification. J. Virol. 2024, 98, e0182123. [Google Scholar] [CrossRef]
- Yap, M.L.; Rossmann, M.G. Structure and function of bacteriophage T4. Future Microbiol. 2014, 9, 1319–1327. [Google Scholar] [CrossRef]
- Casjens, S.R.; Hendrix, R.W. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015, 479–480, 310–330. [Google Scholar] [CrossRef] [PubMed]
- Reilly, B.E.; Spizizen, J. Bacteriophage deoxyribonucleate infection of competent Bacillus subtilis. J. Bacteriol. 1965, 89, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Bamford, D.H.; Mindich, L. Characterization of the DNA-protein complex at the termini of the bacteriophage PRD1 genome. J. Virol. 1984, 50, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Espejo, R.T.; Canelo, E.S. Properties of bacteriophage PM2: A lipid-containing bacterial virus. Virology 1968, 34, 738–747. [Google Scholar] [CrossRef]
- Gourlay, R.N. Mycoplasmatales virus-laidlawii 2, a new virus isolated from Acholeplasma laidlawii. J. Gen. Virol. 1971, 12, 65–67. [Google Scholar] [CrossRef]
- Gottlieb, P.; Alimova, A. Discovery and Classification of the φ6 Bacteriophage: An Historical Review. Viruses 2023, 15, 1308. [Google Scholar] [CrossRef]
- Marvin, D.A.; Symmons, M.F.; Straus, S.K. Structure and assembly of filamentous bacteriophages. Prog. Biophys. Mol. Biol. 2014, 114, 80–122. [Google Scholar] [CrossRef]
- Karimi, M.; Mirshekari, H.; Basri, S.M.M.; Bahrami, S.; Moghoofei, M.; Hamblin, M.R. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 2016, 106, 45–62. [Google Scholar] [CrossRef]
- Gardner, G.M.; Weiser, R.S. A bacteriophage for Mycobacterium smegmatis. Proc. Soc. Exp. Biol. Med. 1947, 66, 205. [Google Scholar] [CrossRef]
- Broxmeyer, L.; Sosnowska, D.; Miltner, E.; Chacón, O.; Wagner, D.; McGarvey, J.; Barletta, R.G.; Bermudez, L.E. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a Mycobacteriophage Delivered by a Nonvirulent Mycobacterium: A Model for Phage Therapy of Intracellular Bacterial Pathogens. J. Infect. Dis. 2002, 186, 1155–1160. [Google Scholar] [CrossRef]
- Hatfull, G.F. Mycobacteriophages: Genes and genomes. Annu. Rev. Microbiol. 2010, 64, 331–356. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Jacobs-Sera, D.; Lawrence, J.G.; Tantoco, A.T.; Paladin, E.C.; Myers, M.S.; Smith, A.L.; Grace, M.S.; Pham, T.T.; O’Brien, M.B.; et al. Comparative Genomic Analysis of 60 Mycobacteriophage Genomes: Genome Clustering, Gene Acquisition, and Gene Size. J. Mol. Biol. 2010, 397, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Cresawn, S.G.; Hendrix, R.W. Comparative genomics of the mycobacteriophages: Insights into bacteriophage evolution. Res. Microbiol. 2008, 159, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef]
- Hyman, P.; Abedon, S.T. Practical methods for determining phage growth parameters. Methods Mol. Biol. 2009, 501, 175–202. [Google Scholar] [CrossRef]
- Ackermann, H.W. Phage classification and characterization. Methods Mol. Biol. 2009, 501, 127–140. [Google Scholar] [CrossRef]
- Hatfull, G.F. Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Program; KwaZulu-Natal Research Institute for Tuberculosis and HIV Mycobacterial Genetics Course Students; Phage Hunters Integrating Research and Education Program. Complete genome sequences of 138 mycobacteriophages. J. Virol. 2012, 86, 2382–2384. [Google Scholar] [CrossRef]
- Hatfull, G.F. Mycobacteriophages. Microbiol. Spectr. 2018, 6, 10.1128. [Google Scholar] [CrossRef]
- Rees, C.; Botsaris, G. The Use of Phage for Detection, Antibiotic Sensitivity Testing and Enumeration [Internet]. In Understanding Tuberculosis—Global Experiences and Innovative Approaches to the Diagnosis; InTech: Tokyo, Japan, 2012; pp. 293–306. ISBN 978-953-307-938-7. [Google Scholar] [CrossRef]
- Weiss, S.M.; Happy, K.K.; Baliraine, F.W.; Beach, A.K.; Brobston, S.M.; Martinez, C.P.; Menard, K.J.; Orton, S.M.; Salazar, A.L.; Frederick, G.D.; et al. Complete genome sequences and characteristics of seven novel mycobacteriophages isolated in East Texas. Microbiol. Resour. Announc. 2023, 12, e0033523. [Google Scholar] [CrossRef]
- Casjens, S.R. Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res. Microbiol. 2008, 159, 340–348. [Google Scholar] [CrossRef]
- Ford, M.E.; Sarkis, G.J.; Belanger, A.E.; Hendrix, R.W.; Hatfull, G.F. Genome structure of mycobacteriophage D29: Implications for phage evolution. J. Mol. Biol. 1998, 279, 143–164. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.E.; Stenstrom, C.; Hendrix, R.W.; Hatfull, G.F. Mycobacteriophage TM4: Genome structure and gene expression. Tuber. Lung Dis. 1998, 79, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Jacobs-Sera, D.; Marinelli, L.J.; Bowman, C.; Broussard, G.W.; Bustamante, C.G.; Boyle, M.M.; Petrova, Z.O.; Dedrick, R.M.; Pope, W.H.; Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Sea-Phages Program; et al. On the nature of mycobacteriophage diversity and host preference. Virology 2012, 434, 187–201. [Google Scholar] [CrossRef]
- Hatfull, G.F. Molecular Genetics of Mycobacteriophages. Microbiol. Spectr. 2014, 2, 1–36. [Google Scholar] [CrossRef]
- The Actinobacteriophage Database. Available online: https://phagesdb.org/ (accessed on 23 June 2025).
- Hatfull, G.F. Phage Therapy for Nontuberculous Mycobacteria: Challenges and Opportunities. Pulm. Ther. 2023, 9, 91–107. [Google Scholar] [CrossRef]
- Hatfull, G.F. Mycobacteriophages: Windows into tuberculosis. PLoS Pathog. 2014, 10, e1003953. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef]
- Dulberger, C.L.; Guerrero-Bustamante, C.A.; Owen, S.V.; Wilson, S.; Wuo, M.G.; Garlena, R.A.; Serpa, L.A.; Russell, D.A.; Zhu, J.; Braunecker, B.J.; et al. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat. Microbiol. 2023, 8, 695–710. [Google Scholar] [CrossRef]
- Khambhati, K.; Bhattacharjee, G.; Gohil, N.; Dhanoa, G.K.; Sagona, A.P.; Mani, I.; Bui, N.L.; Chu, D.T.; Karapurkar, J.K.; Jang, S.H.; et al. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multi-drug-resistant pathogens. Bioeng. Transl. Med. 2022, 8, e10381. [Google Scholar] [CrossRef]
- Zein-Eddine, R.; Refrégier, G.; Cervantes, J.; Yokobori, N.K. The future of CRISPR in Mycobacterium tuberculosis infection. J. Biomed. Sci. 2023, 30, 34. [Google Scholar] [CrossRef] [PubMed]
- Vale, P.F.; Little, T.J. CRISPR-mediated phage resistance and the ghost of coevolution past. Proc. Biol. Sci. 2010, 277, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.M.; Sivanathan, V.; Asai, D.J.; Hatfull, G.F. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu. Rev. Virol. 2024, 11, 1–20. [Google Scholar] [CrossRef]
- Pope, W.H.; Bowman, C.A.; Russell, D.A.; Jacobs-Sera, D.; Asai, D.J.; Cresawn, S.G.; Jacobs, W.R.; Hendrix, R.W.; Lawrence, J.G.; Hatfull, G.F.; et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 2015, 4, e06416. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F. Actinobacteriophages: Genomics, Dynamics, and Applications. Annu. Rev. Virol. 2020, 7, 37–61. [Google Scholar] [CrossRef]
- Roach, D.R.; Debarbieux, L. Phage therapy: Awakening a sleeping giant. Emerg. Top. Life Sci. 2017, 1, 93–103. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Smith, B.E.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Whitney Brown, A.; Cohen, K.A.; Davidson, R.M.; van Duin, D.; et al. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clin. Infect. Dis. 2023, 76, 103–112. [Google Scholar] [CrossRef]
- Ryan, E.M.; Gorman, S.P.; Donnelly, R.F.; Gilmore, B.F. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 2011, 63, 1253–1264. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Skariah, S.; Büsselberg, D. Bacteriophage Treatment: Critical Evaluation of Its Application on World Health Organi-zation Priority Pathogens. Viruses 2020, 13, 51. [Google Scholar] [CrossRef]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef]
- Parracho, H.M.; Burrowes, B.H.; Enright, M.C.; McConville, M.L.; Harper, D.R. The role of regulated clinical trials in the development of bacteriophage therapeutics. J. Mol. Genet. Med. 2012, 6, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.S.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral Phage Therapy of Acute Bacterial Diarrhea with Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh. eBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Zizi, M.; Laire, G.; Lavigne, R.; Huys, I.; et al. The phage therapy paradigm: Prêt-à-porter or sur-mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef]
- Podlacha, M.; Grabowski, Ł.; Kosznik-Kawśnicka, K.; Zdrojewska, K.; Stasiłojć, M.; Węgrzyn, G.; Węgrzyn, A. Interactions of Bacterio-phages with Animal and Human Organisms-Safety Issues in the Light of Phage Therapy. Int. J. Mol. Sci. 2021, 22, 8937. [Google Scholar] [CrossRef]
- Loc-Carrillo, C.; Abedon, S.T. Pros and cons of phage therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef]
- Merabishvili, M.; Pirnay, J.P.; Verbeken, G.; Chanishvili, N.; Tediashvili, M.; Lashkhi, N.; Glonti, T.; Krylov, V.; Mast, J.; Van Parys, L.; et al. Quali-ty-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 2009, 4, e4944. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Buckling, A. Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evol. Appl. 2012, 5, 575–582. [Google Scholar] [CrossRef]
- Hitchcock, N.M.; Devequi Gomes Nunes, D.; Shiach, J.; Valeria Saraiva Hodel, K.; Dantas Viana Barbosa, J.; Alencar Pereira Rodrigues, L.; Coler, B.S.; Botelho Pereira Soares, M.; Badaró, R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023, 15, 1020. [Google Scholar] [CrossRef]
- Lu, T.K.; Koeris, M.S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 2011, 14, 524–531. [Google Scholar] [CrossRef]
- Vandamme, E.J.; Mortelmans, K. A century of bacteriophage research and applications: Impacts on biotechnology, health, ecology and the economy. J. Chem. Technol. Biotechnol. 2019, 94, 323–342. [Google Scholar] [CrossRef]
- Sulakvelidze, A.; Morris, J.G., Jr. Bacteriophages as therapeutic agents. Ann. Med. 2001, 33, 507–509. [Google Scholar] [CrossRef]
- Żaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Łusiak-Szelachowska, M.; Górski, A. Phage Therapy in Poland—A Centennial Journey to the First Ethically Approved Treatment Facility in Europe. Front. Microbiol. 2020, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- Weber-Dabrowska, B.; Mulczyk, M.; Górski, A. Bacteriophage therapy of bacterial infections: An update of our institute’s experience. Arch. Immunol. Ther. Exp. 2000, 48, 547–551. [Google Scholar]
- Wagner, D.; Young, L.S. Nontuberculous mycobacterial infections: A clinical review. Infection 2004, 32, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.M. Mechanisms of drug resistance in Mycobacterium Tuberculosis. Front. Biosci. 2004, 9, 975. [Google Scholar] [CrossRef]
- Iseman, M.D. Evolution of Drug-Resistant Tuberculosis: A Tale of Two Species. Proc. Natl. Acad. Sci. USA 1994, 91, 2428–2429. [Google Scholar] [CrossRef]
- Parrish, N.M.; Carroll, K.C. Role of the Clinical Mycobacteriology Laboratory in Diagnosis and Management of Tuberculosis in Low-Prevalence Settings. J. Clin. Microbiol. 2011, 49, 772–776. [Google Scholar] [CrossRef]
- Che-Engku-Chik, C.E.N.; Yusof, N.A.; Abdullah, J.; Othman, S.S.; Said, M.H.M.; Wasoh, H. Detection of tuberculosis (TB) using gold standard method, direct sputum smears microscopy, PCR, qPCR and electrochemical DNA sensor: A mini review. J. Biochem. Microbiol. Biotechnol. 2016, 4, 16–21. [Google Scholar] [CrossRef]
- Bartolomeu-Gonçalves, G.; de Souza, J.M.; Fernandes, B.T.; Spoladori, L.F.A.; Correia, G.F.; de Castro, I.M.; Borges, P.H.G.; Silva-Rodrigues, G.; Tavares, E.R.; Yamauchi, L.M.; et al. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024, 12, 202. [Google Scholar] [CrossRef]
- Nalugwa, T.; Shete, P.B.; Nantale, M.; Farr, K.; Ojok, C.; Ochom, E.; Mugabe, F.; Joloba, M.; Dowdy, D.W.; Moore, D.A.J.; et al. Challenges with Scale-up of GeneXpert MTB/RIF® in Uganda: A Health Systems Perspective. BMC Health Serv. Res. 2020, 20, 162. [Google Scholar] [CrossRef]
- Ankley, L.; Thomas, S.; Olive, A.J. Fighting Persistence: How Chronic Infections with Mycobacterium Tuberculosis Evade T Cell-Mediated Clearance and New Strategies to Defeat Them. Infect. Immun. 2020, 88, e00916–e00919. [Google Scholar] [CrossRef]
- Mole, R.J.; Maskell, T.W.O. Phage as a Diagnostic—The Use of Phage in TB Diagnosis. J. Chem. Technol. Biotechnol. 2001, 76, 683–688. [Google Scholar] [CrossRef]
- Schofield, D.; Sharp, N.J.; Westwater, C. Phage-Based Platforms for the Clinical Detection of Human Bacterial Pathogens. Bacteriophage 2012, 2, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Thaler, D.S.; Maiga, M.; Timmins, G.S.; Bishai, W.R.; Hatfull, G.F.; Larsen, M.H.; Jacobs, W.R. Reporter phage and breath tests: Emerging phenotypic assays for diagnosing active tuberculosis, antibiotic resistance, and treatment efficacy. J. Infect. Dis. 2011, 204 (Suppl. S4), S1142–S1150. [Google Scholar] [CrossRef] [PubMed]
- Riska, P.F.; Su, Y.; Bardarov, S.; Freundlich, L.; Sarkis, G.; Hatfull, G.; Carrière, C.; Kumar, V.; Chan, J.; Jacobs, W.R. Rapid Film-Based Determination of Antibiotic Susceptibilities of Mycobacterium Tuberculosis Strains by Using a Luciferase Reporter Phage and the Bronx Box. J. Clin. Microbiol. 1999, 37, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Anbarasu, S.; Revathy, K.; Radhakrishnan, M.; Krupakar, P.; Joseph, J.; Kumar, V. Luciferase Reporter Phage (LRP) Assay for Anti Tuberculosis Screening: Current Status and Challenges. Biosci. Biotech. Res. Commun. 2020, 13, 1236–1244. [Google Scholar] [CrossRef]
- Banaiee, N.; Bobadilla-del-Valle, M.; Bardarov, S.; Riska, P.F.; Small, P.M.; Ponce-de-Leon, A.; Jacobs, W.R.; Hatfull, G.F.; Sifuentes-Osornio, J. Luciferase Reporter Mycobacteriophages for Detection, Identification, and Antibiotic Susceptibility Testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol. 2001, 39, 3883–3888. [Google Scholar] [CrossRef]
- McNerney, R.; Kambashi, B.S.; Kinkese, J.; Tembwe, R.; Godfrey-Faussett, P. Development of a Bacteriophage Phage Replication Assay for Diagnosis of Pulmonary Tuberculosis. J. Clin. Microbiol. 2004, 42, 2115–2120. [Google Scholar] [CrossRef]
- McNerney, R.; Wilson, S.M.; Sidhu, A.M.; Harley, V.S.; Al Suwaidi, Z.; Nye, P.M.; Parish, T.; Stoker, N.G. Inactivation of Mycobacteriophage D29 Using Ferrous Ammonium Sulphate as a Tool for the Detection of Viable Mycobacterium smegmatis and M tuberculosis. Res. Microbiol. 1998, 149, 487–495. [Google Scholar] [CrossRef]
- Park, D.J.; Drobniewski, F.A.; Meyer, A.; Wilson, S.M. Use of a Phage-Based Assay for Phenotypic Detection of Mycobacteria Directly from Sputum. J. Clin. Microbiol. 2003, 41, 680–688. [Google Scholar] [CrossRef]
- Kalantri, S.; Pai, M.; Pascopella, L.; Riley, L.; Reingold, A. Bacteriophage-Based Tests for the Detection of Mycobacterium Tuberculosis in Clinical Specimens: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2005, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Cui, Z.; Zheng, R.; Yang, H.; Jin, R.; Qin, L.; Liu, Z.; Wang, J.; Hu, Z. A Multi-Center Study to Evaluate the Performance of Phage Amplified Biologically Assay for Detecting TB in Sputum in the Pulmonary TB Patients. PLoS ONE 2011, 6, e24435. [Google Scholar] [CrossRef]
- Kalapala, Y.C.; Sharma, P.R.; Agarwal, R. Antimycobacterial Potential of Mycobacteriophage Under Disease-Mimicking Conditions. Front. Microbiol. 2020, 11, 583661. [Google Scholar] [CrossRef]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef]
- De Paepe, M.; Leclerc, M.; Tinsley, C.R.; Petit, M.-A. Bacteriophages: An Underestimated Role in Human and Animal Health? Front. Cell Infect. Microbiol. 2014, 4, 39. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, M.; Fan, X.; Yan, J.; Li, W.; Xie, J. Mycobacteriophage SWU1 Gp39 Can Potentiate Multiple Antibiotics against Mycobacterium via Altering the Cell Wall Permeability. Sci. Rep. 2016, 6, 28701. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, J.; Liang, Y.; Peng, N.; Li, Y. Aminoglycoside Antibiotics Inhibit Mycobacteriophage Infection. Antibiotics 2020, 9, 714. [Google Scholar] [CrossRef]
- McNerney, R. TB: The return of the phage. A review of fifty years of mycobacteriophage research. Int. J. Tuberc. Lung Dis. 1999, 3, 179–184. [Google Scholar]
- Liu, K.; Wen, Z.; Li, N.; Yang, W.; Wang, J.; Hu, L.; Dong, X.; Lu, J.; Li, J. Impact of relative humidity and collection media on mycobacteriophage D29 aerosol. Appl. Environ. Microbiol. 2012, 78, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, T.L.; Jansen, M.; Horz, H.-P. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front. Cell Infect. Microbiol. 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Cristinziano, M.; Shashkina, E.; Chen, L.; Xiao, J.; Miller, M.B.; Doligalski, C.; Coakley, R.; Lobo, L.J.; Footer, B.; Bartelt, L.; et al. Use of Epigenetically Modified Bacteriophage and Dual Beta-Lactams to Treat a Mycobacterium abscessus Sternal Wound Infection. Nat. Commun. 2024, 15, 10360. [Google Scholar] [CrossRef] [PubMed]
- Jeyasankar, S.; Kalapala, Y.C.; Sharma, P.R.; Agarwal, R. Antibacterial Efficacy of Mycobacteriophages against Virulent Mycobacterium tuberculosis. BMC Microbiol. 2024, 24, 320. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.A.; Hatfull, G.F. PhagesDB: The Actinobacteriophage Database. Bioinformatics 2017, 33, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical Aspects of Phage Therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar]
- Bonacorsi, A.; Ferretti, C.; Di Luca, M.; Rindi, L. Mycobacteriophages and Their Applications. Antibiotics 2024, 13, 926. [Google Scholar] [CrossRef]
- Allué-Guardia, A.; Saranathan, R.; Chan, J.; Torrelles, J.B. Mycobacteriophages as Potential Therapeutic Agents against Drug-resistant Tuberculosis. Int. J. Mol. Sci. 2021, 22, 735. [Google Scholar] [CrossRef]
- Mohammed, H.T.; Mageeney, C.; Korenberg, J.; Graham, L.; Ware, V.C. Characterization of novel recombinant mycobacteriophages derived from homologous recombination between two temperate phages. G3 2023, 13, jkad210. [Google Scholar] [CrossRef]
- Sullivan, M.R.; Rubin, E.J.; Dulberger, C.L. Mycobacteriophages as genomic engineers and anti-infective weapons. mBio 2021, 12, e00632–e00721. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Bustamante, C.A.G.; Garlena, R.A.; Pinches, R.S.; Cornely, K.; Hatfull, G.F. MycobacteriophageZoeJ: A broad host-range close relative of mycobacteriophage TM4. Tuberculosis 2019, 115, 14–23. [Google Scholar] [CrossRef]
- Marinelli, L.J.; Piuri, M.; Swigonová, Z.; Balachandran, A.; Oldfield, L.M.; van Kessel, J.C.; Hatfull, G.F. BRED: A simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS ONE 2008, 3, e3957. [Google Scholar] [CrossRef]
- Nick, J.A.; Dedrick, R.M.; Gray, A.L.; Vladar, E.K.; Smith, B.E.; Freeman, K.G.; Malcolm, K.C.; Epperson, L.E.; Hasan, N.A.; Hendrix, J.; et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 2022, 185, 1860–1874.e12. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, K.M.; Collaco, J.M. Cystic Fibrosis. Pediatr. Rev. 2021, 42, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.M.P.; Higgs, M.G.; Muhlebach, M.S.; Wolfgang, M.C.; Borgatti, M.; Lampronti, I.; Cabrini, G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int. J. Mol. Sci. 2023, 24, 5010. [Google Scholar] [CrossRef] [PubMed]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Smytheman, T.; Pecor, T.; Miller, D.E.; Ferede, D.; Kaur, S.; Harband, M.H.; Abdelaal, H.F.M.; Guerrero-Bustamante, C.A.; Freeman, K.G.; Harrington, W.E.; et al. Evaluation of host immune responses to Mycobacteriophage Fionnbharth by route of delivery. Virol. J. 2025, 22, 14. [Google Scholar] [CrossRef]
- Howell, A.A.; Versoza, C.J.; Cerna, G.; Johnston, T.; Kakde, S.; Karuku, K.; Kowal, M.; Monahan, J.; Murray, J.; Nguyen, T.; et al. Phylogenomic analyses and host range prediction of cluster P mycobacteriophages. G3 2022, 12, jkac244. [Google Scholar] [CrossRef]
- Dunne, M.; Rupf, B.; Tala, M.; Qabrati, X.; Ernst, P.; Shen, Y.; Sumrall, E.; Heeb, L.; Pluckthun, A.; Loessner, M.J.; et al. Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Rep. 2019, 29, 1336–1350.e4. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Smith, B.E.; Garlena, R.A.; Russell, D.A.; Aull, H.G.; Mahalingam, V.; Divens, A.M.; Guerrero-Bustamante, C.A.; Zack, K.M.; Abad, L.; et al. Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021, 12, e03431–e03520. [Google Scholar] [CrossRef]
- Piuri, M.; Jacobs, W.R., Jr.; Hatfull, G.F. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS ONE 2009, 4, e4870. [Google Scholar] [CrossRef]
- Rondón, L.; Urdániz, E.; Latini, C.; Payaslian, F.; Matteo, M.; Sosa, E.J.; Do Porto, D.F.; Turjanski, A.G.; Nemirovsky, S.; Hatfull, G.F.; et al. Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days from Sputum Collection. Front. Microbiol. 2018, 9, 1471. [Google Scholar] [CrossRef]
- Das, L.; Chen, B.; Rajagopalan, S.; Vilcheze, C.; Mullholland, C.V.; Berney, M.; Andrews, P.K.; Edwards, A.; Lahiri, R.; Jacobs, W.R., Jr. Mycobacteriophage-mediated gene transfer enables in vitro drug screening and in vivo tracking of Mycobacterium leprae. Proc. Natl. Acad. Sci. USA 2025, 122, e2508271122. [Google Scholar] [CrossRef] [PubMed]
- Hosseiniporgham, S.; Sechi, L.A. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022, 11, 777. [Google Scholar] [CrossRef] [PubMed]
- Seniya, S.P.; Jain, V. Decoding phage resistance by mpr and its role in survivability of Mycobacterium smegmatis. Nucleic Acids Res. 2022, 8, 6938–6952. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, K.S.; Illouz, M.; Abad, L.; Aull, H.G.; Russell, D.A.; Garlena, R.A.; Cristinziano, M.; Malmsheimer, S.; Chalut, C.; Hatfull, G.F.; et al. Therapeutically useful mycobacteriophages BPs and Muddy require trehalosepolyphleates. Nat. Microbiol. 2023, 8, 1717–1731. [Google Scholar] [CrossRef]
- Gaborieau, B.; Delattre, R.; Adiba, S.; Clermont, O.; Denamur, E.; Ricard, J.-D.; Debarbieux, L. Variable fitness effects of bacteriophage resistance mutations in Escherichia coli: Implications for phage therapy. J. Virol. 2024, 98, e0111324. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Samson, J.E.; Magadán, A.H.; Sabri, M.; Moineau, S. Revenge of the phages: Defeating bacterial defences. Nat. Rev. Microbiol. 2013, 11, 675–687. [Google Scholar] [CrossRef]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Dy, R.L.; Przybilski, R.; Semeijn, K.; Salmond, G.P.; Fineran, P.C. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res. 2014, 42, 4590–4605. [Google Scholar] [CrossRef]
- Sala, A.; Bordes, P.; Genevaux, P. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 2014, 6, 1002–1020. [Google Scholar] [CrossRef]
- Bo, H.; Moure, U.A.E.; Yang, Y.; Pan, J.; Li, L.; Wang, M.; Ke, X.; Cui, H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front. Cell Infect. Microbiol. 2023, 13, 1062963. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Freeman, K.G.; Nguyen, J.A.; Bahadirli-Talbott, A.; Smith, B.E.; Wu, A.E.; Ong, A.S.; Lin, C.T.; Ruppel, L.C.; Parrish, N.M.; et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 2021, 27, 1357–1361. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [PubMed]
- Lapenkova, M.B.; Alyapkina, Y.S.; Vladimirsky, M.A. Bactericidal Activity of Liposomal Form of Lytic Mycobacteriophage D29 in Cell Models of Tuberculosis Infection In Vitro. Bull. Exp. Biol. Med. 2020, 169, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.Y.K.; Wallin, M.; Lin, Y.; Leung, S.S.Y.; Wang, H.; Morales, S.; Chan, H.K. Phage therapy for respiratory infections. Adv. Drug Deliv. Rev. 2018, 133, 76–86. [Google Scholar] [CrossRef]
- Pires, D.P.; Melo, L.; Vilas Boas, D.; Sillankorva, S.; Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 2017, 39, 48–56. [Google Scholar] [CrossRef]
- Borin, J.M.; Lee, J.J.; Gerbino, K.R.; Meyer, J.R. Comparison of bacterial suppression by phage cocktails, dual-receptor generalists, and coevolutionarily trained phages. Evol. Appl. 2022, 16, 152–162. [Google Scholar] [CrossRef]
- Tian, F.; Li, J.; Nazir, A.; Tong, Y. Bacteriophage—A Promising Alternative Measure for Bacterial Biofilm Control. Infect. Drug Resist. 2021, 14, 205–217. [Google Scholar] [CrossRef]
- Zalewska-Piątek, B. Phage therapy-challenges, opportunities and future prospects. Pharmaceuticals 2023, 16, 1638. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef]
- Abedon, S.T.; García, P.; Mullany, P.; Aminov, R. Editorial: Phage Therapy: Past, Present and Future. Front. Microbiol. 2017, 8, 981. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Blasdel, B.G.; Bretaudeau, L.; Buckling, A.; Chanishvili, N.; Clark, J.R.; Corte-Real, S.; Debarbieux, L.; Dublanchet, A.; De Vos, D.; et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 2015, 32, 2173–2179. [Google Scholar] [CrossRef]
- Verbeken, G.; De Vos, D.; Vaneechoutte, M.; Merabishvili, M.; Zizi, M.; Pirnay, J.P. European regulatory conundrum of phage therapy. Future Microbiol. 2007, 5, 485–491. [Google Scholar] [CrossRef]
- Lu, T.K.; Dedrick, R.M.; Hatfull, G.F. Phage Therapy for Tuberculosis. U.S. Patent Application No. 20220331382, 8 April 2022. [Google Scholar]
- Hatfull, G.F.; Guerrero, C.A.; Dedrick, R.M. Bacteriophages for Treatment of Tuberculosis. U.S. Patent No. 12016892, 25 June 2024. [Google Scholar]
Family | Nucleic Acid Type | Representative Phage | Characteristic Features | Typical Host | Application | Year/Author of Classification [Reference] |
---|---|---|---|---|---|---|
Myoviridae | dsDNA, linear | TM4 | Complex structure, contractile tail | Mycobacterium sp. | a genetic tool and diagnostic reporter for Mycobacterium tuberculosis and M. smegmatis | 1944/Delbrück M. [31] |
Siphoviridae | dsDNA, linear | L5 | Complex structure, long flexible tail | Mycobacterium sp. | widely used in mycobacterial genetics as a tool for transduction and gene delivery | 1951/Lederberg E. [32] |
Podoviridae | dsDNA, linear | Φ29 | Complex structure, short tail | Bacillus sp. | widely used in molecular biology for its high-fidelity DNA polymerase and DNA replication studies | 1965/Reilly B. [33] |
Tectiviridae | dsDNA, linear | PRD1 | Isometric structure, lipoprotein vesicle | Escherichia coli | a model to study virus assembly, DNA packaging, and evolution of membrane-containing viruses | 1984/Bamford D. [34] |
Corticoviridae | dsDNA, circular | PM2 | Isometric structure | Alteromonas sp. | a model to study membrane-containing viruses and virus evolution in aquatic environments | 1968/Espejo R. Canelo E. [35] |
Plasmaviridae | dsDNA, circular | L2 | No capsid, lipoprotein envelope | Acholeplasma sp. | a model to study phage–host interactions in wall-less bacteria (Mollicutes) and horizontal gene transfer | 1971/Gourlay R. [36] |
Cystoviridae | dsRNA, linear, and segmented | Φ6 | Isometric structure, lipoprotein envelope | Pseudomonas sp. | a model for studying segmented double-stranded RNA viruses and virus evolution | 1973/Vidaver A. [37] |
Inoviridae | ssDNA, circular | fd | Helical structure | Escherichia coli | used in phage display technology and studies of virus assembly and secretion | 1959/Hoffmann-Bering H. [38] |
Leviviridae | ssRNA, linear | MS2 | Isometric structure | Escherichia coli | a model for RNA virus replication, translational regulation, and phage display systems | 1961/Clark A. [39] |
Model | Target | Infection | Phage | Therapy Mode | Effects | Reference |
---|---|---|---|---|---|---|
Human (CF patient, genotype H199Y/2184insA) | M. abscessus | M. abscessus lung disease, and chronic lung infection with multidrug-resistant (MDR) P. aeruginosa and methicillin-resistant S. aureus (MRSA) | BPsΔ33HTH_HRM10 (a host range mutant of engineered lytic phage BPs with the deleted part of the repressor gene); D29_HRMGD40 (a host range mutant of lytic phage D29) | Phage cocktail administered intravenously (109 to 108 pfu/mLin PBS) twice daily alongside continued antibiotic therapy | Clinical improvements: Decreased lung nodules by day 81, sputum cultures converting to negative by day 118, and the patient underwent successful lung transplantation on day 379 | [124] |
Mouse (humanized NSG-SGM3 mice expressing human genes for IL-3, GM-CSF, and KITLG) | M. tuberculosis | M. tuberculosis lung infection | Unmodified DS6A | Phage solution administered intravenously (1 × 1011 pfu/dose for a total of 10 doses) | Improvement in the mice’s condition: Increased body weight, improved pulmonary function, and reduced inflammatory markers and M. tuberculosis load in organs (lungs, spleen) with complete eradication in 6 of 9 mice | [13] |
Mouse (C57BL/6 mice) | M. tuberculosis | Uninfected mouse to determine the impact of repeated mucosal or systemic delivery on anti-M. tuberculosis response | FionnbharthΔ45Δ47 (engineered lytic phage Fionnbharth with deleted integrase gene 45 and the repressor gene 47) | Phage solution administered weekly for 6 weeks via inhalation or intravenous injection | Inhalation: Phages were delivered across all lungs, well tolerated, and did not induce robust neutralizing humoral immunity Intravenous injection: Growing magnitude of neutralizing IgG and IgA response | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Druszczynska, M.; Sadowska, B.; Zablotni, A.; Zhuravska, L.; Kulesza, J.; Fol, M. Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy. Appl. Sci. 2025, 15, 8543. https://doi.org/10.3390/app15158543
Druszczynska M, Sadowska B, Zablotni A, Zhuravska L, Kulesza J, Fol M. Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy. Applied Sciences. 2025; 15(15):8543. https://doi.org/10.3390/app15158543
Chicago/Turabian StyleDruszczynska, Magdalena, Beata Sadowska, Agnieszka Zablotni, Lesia Zhuravska, Jakub Kulesza, and Marek Fol. 2025. "Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy" Applied Sciences 15, no. 15: 8543. https://doi.org/10.3390/app15158543
APA StyleDruszczynska, M., Sadowska, B., Zablotni, A., Zhuravska, L., Kulesza, J., & Fol, M. (2025). Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy. Applied Sciences, 15(15), 8543. https://doi.org/10.3390/app15158543