Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = tailless control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 26260 KiB  
Article
Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
by Weiji Wang, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang and Wei Qian
Aerospace 2025, 12(8), 688; https://doi.org/10.3390/aerospace12080688 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has [...] Read more.
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has been developed. Both numerical simulation and wind tunnel tests (WTTs) are employed to study the aeroelastic characteristics of this unique design. The numerical simulation involves the coupling of computational fluid dynamics (CFD) and implicit dynamic approaches (IDAs). Using the CFD/IDA coupling method, aeroelastic response results are obtained under different flow dynamic pressures. The critical flutter dynamic pressure is identified by analyzing the trend of the damping coefficient, with a focus on its transition from negative to positive values. Additionally, the critical flutter velocity and flutter frequency are obtained from the WTT results. The critical flutter parameters, including dynamic pressure, velocity, and flutter frequency, are examined under different wingtip rotation frequencies and angles. These parameters are derived using both the CFD/IDA coupling method and WTT. The results indicate that the rotating wingtip plays a significant role in influencing the flutter behavior of aircraft with such a configuration. Research has shown that the rotation characteristics of the rotating wingtip are the primary factor affecting its aeroelastic behavior, and increasing both the rotation frequency and rotation angle can raise the flutter boundary and effectively suppress flutter onset. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Figure 1

24 pages, 1678 KiB  
Article
An Adaptation of Nonlinear Aerodynamic Models for Non-Traditional Control Effectors
by Christian R. Bolander and Douglas F. Hunsaker
Aerospace 2025, 12(5), 426; https://doi.org/10.3390/aerospace12050426 - 10 May 2025
Viewed by 362
Abstract
This paper presents the development of a novel aerodynamic model tailored for the Bio-Inspired Rotating Empennage (BIRE), a non-traditional fixed-wing aircraft empennage inspired by avian flight. The BIRE replaces the conventional vertical stabilizer with an extra degree of freedom for the horizontal stabilizer, [...] Read more.
This paper presents the development of a novel aerodynamic model tailored for the Bio-Inspired Rotating Empennage (BIRE), a non-traditional fixed-wing aircraft empennage inspired by avian flight. The BIRE replaces the conventional vertical stabilizer with an extra degree of freedom for the horizontal stabilizer, which is allowed to rotate about the body-fixed x axis. This empennage is similar to the tail of a bird, and allows control of both longitudinal and lateral moments. However, such a design introduces complex nonlinear longitudinal and lateral aerodynamic interactions, not typically accounted for in most fixed-wing aircraft aerodynamic models below stall. This work presents a nonlinear sinusoidal aerodynamic model that can be used for fixed-wing aircraft with this type of empennage. Although the aerodynamic model is constructed to accurately capture the degrees of freedom of this particular empennage design, similar methods could be used to develop other aerodynamic models for non-traditional control effectors. A large dataset of low-fidelity aerodynamic data was generated using a modern numerical lifting-line algorithm, and these data were fit to the nonlinear sinusoidal aerodynamic model. A method for fitting the data is demonstrated, and the results show that the nonlinear sinusoidal aerodynamic model can be fit to the data with an accuracy of less than 10% of the maximum deviation of the aerodynamic coefficients in root-mean-square error. The underlying physics of many of the longitudinal and lateral nonlinear sinusoidal aerodynamic properties of the aircraft are discussed in detail. The methodology presented here can be extended to other non-traditional control effectors, encouraging innovative approaches in aerodynamic modeling and aircraft design. In contrast, choosing to model control effectors using the traditional, linear approach can obscure key aerodynamic behaviors key for trim and control analyses. The study’s findings underscore the importance of developing adaptable aerodynamic models to support the advancement of next-generation aircraft designs and control systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 7121 KiB  
Article
Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall
by Dioser Santos, Guilherme D. Fernandes, Ali Doosttalab and Victor Maldonado
Aerospace 2024, 11(11), 947; https://doi.org/10.3390/aerospace11110947 - 17 Nov 2024
Cited by 1 | Viewed by 1422
Abstract
A passive flow control technique in the form of microfiber coatings with a diverging pillar cross-section area was applied to the wing suction surface of a small tailless unmanned aerial vehicle (UAV). The coatings are inspired from ‘gecko feet’ surfaces, and their impact [...] Read more.
A passive flow control technique in the form of microfiber coatings with a diverging pillar cross-section area was applied to the wing suction surface of a small tailless unmanned aerial vehicle (UAV). The coatings are inspired from ‘gecko feet’ surfaces, and their impact on steady and unsteady aerodynamics is assessed through wind tunnel testing. Angles of attack from −2° to 17° were used for static experiments, and for some cases, the elevon control surface was deflected to study its effectiveness. In forced oscillation, various combinations of mean angle of attack, frequency and amplitude were explored. The aerodynamic coefficients were calculated from load cell measurements for experimental variables such as microfiber size, the region of the wing coated with microfibers, Reynolds number and angle of attack. Microfibers with a 140 µm pillar height reduce drag by a maximum of 24.7% in a high-lift condition and cruise regime, while 70 µm microfibers work best in the stall flow regime, reducing the drag by 24.2% for the same high-lift condition. Elevon deflection experiments showed that pitch moment authority is significantly improved near stall when microfibers cover the control surface and upstream, with an increase in CM magnitude of up to 22.4%. Dynamic experiments showed that microfibers marginally increase dynamic damping in pitch, improving load factor production in response to control surface actuation at low angles of attack, but reducing it at higher angles. In general, the microfiber pillars are within the laminar boundary layer, and they create a periodic slip condition on the top surface of the pillars, which increases the near-wall momentum over the wing surface. This mechanism is particularly effective in mitigating flow separation at high angles of attack, reducing pressure drag and restoring pitching moment authority provided by control surfaces. Full article
Show Figures

Figure 1

21 pages, 36914 KiB  
Article
Development of a Novel Tailless X-Type Flapping-Wing Micro Air Vehicle with Independent Electric Drive
by Yixin Zhang, Song Zeng, Shenghua Zhu, Shaoping Wang, Xingjian Wang, Yinan Miao, Le Jia, Xinyu Yang and Mengqi Yang
Biomimetics 2024, 9(11), 671; https://doi.org/10.3390/biomimetics9110671 - 3 Nov 2024
Viewed by 1844
Abstract
A novel tailless X-type flapping-wing micro air vehicle with two pairs of independent drive wings is designed and fabricated in this paper. Due to the complexity and unsteady of the flapping wing mechanism, the geometric and kinematic parameters of flapping wings significantly influence [...] Read more.
A novel tailless X-type flapping-wing micro air vehicle with two pairs of independent drive wings is designed and fabricated in this paper. Due to the complexity and unsteady of the flapping wing mechanism, the geometric and kinematic parameters of flapping wings significantly influence the aerodynamic characteristics of the bio-inspired flying robot. The wings of the vehicle are vector-controlled independently on both sides, enhancing the maneuverability and robustness of the system. Unique flight control strategy enables the aircraft to have multiple flight modes such as fast forward flight, sharp turn and hovering. The aerodynamics of the prototype is analyzed via the lattice Boltzmann method of computational fluid dynamics. The chordwise flexible deformation of the wing is implemented via designing a segmented rigid model. The clap-and-peel mechanism to improve the aerodynamic lift is revealed, and two air jets in one cycle are shown. Moreover, the dynamics experiment for the novel vehicle is implemented to investigate the kinematic parameters that affect the generation of thrust and maneuver moment via a 6-axis load cell. Optimized parameters of the flapping wing motion and structure are obtained to improve flight dynamics. Finally, the prototype realizes controllable take-off and flight from the ground. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

19 pages, 16864 KiB  
Article
Hovering of Bi-Directional Motor Driven Flapping Wing Micro Aerial Vehicle Based on Deep Reinforcement Learning
by Haitian Hu, Zhiyuan Zhang, Zhaoguo Wang and Xuan Wang
Drones 2024, 8(9), 508; https://doi.org/10.3390/drones8090508 - 20 Sep 2024
Viewed by 1723
Abstract
Inspired by hummingbirds and certain insects, flapping wing micro aerial vehicles (FWMAVs) exhibit potential energy efficiency and maneuverability advantages. Among them, the bi-directional motor-driven tailless FWMAV with simple structure prevails in research, but it requires active pose control for hovering. In this paper, [...] Read more.
Inspired by hummingbirds and certain insects, flapping wing micro aerial vehicles (FWMAVs) exhibit potential energy efficiency and maneuverability advantages. Among them, the bi-directional motor-driven tailless FWMAV with simple structure prevails in research, but it requires active pose control for hovering. In this paper, we employ deep reinforcement learning to train a low-level hovering strategy that directly maps the drone’s state to motor voltage outputs. To our knowledge, other FWMAVs in both reality and simulations still rely on classical proportional-derivative controllers for pose control. Our learning-based approach enhances strategy robustness through domain randomization, eliminating the need for manually fine-tuning gain parameters. The effectiveness of the strategy is validated in a high-fidelity simulation environment, showing that for an FWMAV with a wingspan of approximately 200 mm, the center of mass is maintained within a 20 mm radius during hovering. Furthermore, the strategy is utilized to demonstrate point-to-point flight, trajectory tracking, and controlled flight of multiple drones. Full article
Show Figures

Figure 1

19 pages, 1013 KiB  
Article
Global Low-Complexity Fault-Tolerant Control for Pure-Feedback Systems with Sensor Faults
by Chongchong Han, Zongcheng Liu, Liangfu Yao, Jianping Xue, Qiuni Li, Yong Chen and Jialong Jian
Electronics 2024, 13(16), 3166; https://doi.org/10.3390/electronics13163166 - 10 Aug 2024
Viewed by 1208
Abstract
A low-complexity global fault-tolerant control method is proposed to solve the tracking problem of uncertain pure-feedback systems in the presence of sensor faults. First, a novel modeling approach is introduced to reconstruct the non-affine term, which removes the restriction that the non-affine function [...] Read more.
A low-complexity global fault-tolerant control method is proposed to solve the tracking problem of uncertain pure-feedback systems in the presence of sensor faults. First, a novel modeling approach is introduced to reconstruct the non-affine term, which removes the restriction that the non-affine function must be differentiable. Second, a novel nonlinear mapping based on inverse-tangent function is utilized in the controller design such that the control parameters are free from initial values of states compared to the traditional prescribed performance control methods, resulting in global fault-tolerant control of pure-feedback systems under sensor and actuator faults. Furthermore, the designed global controller is low-complexity in the sense that no time derivatives of system signals are involved in the controller, and no neural networks or fuzzy logic systems are used, though unknown nonlinearities are present in the considered systems, and the control parameters are allowed to be arbitrary positive constants. Finally, the proposed method is applied to numerical and tailless fly-wing UAV examples, which fully demonstrates the effectiveness of the proposed method. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

13 pages, 6802 KiB  
Article
The Natural Infection of Freshwater Snails with the Avian Air Sac Fluke, Cyclocoelum mutabile (Trematoda: Cyclocoelidae), in Brazil
by Jordana Costa Alves de Assis and Hudson Alves Pinto
Diversity 2024, 16(7), 422; https://doi.org/10.3390/d16070422 - 19 Jul 2024
Viewed by 1473
Abstract
Trematodes of the family Cyclocoelidae are parasites mainly of the respiratory system of birds and present a cosmopolitan distribution. Although infection with these flukes can result in pathological changes and even bird death, information on their life cycles is scarce and almost entirely [...] Read more.
Trematodes of the family Cyclocoelidae are parasites mainly of the respiratory system of birds and present a cosmopolitan distribution. Although infection with these flukes can result in pathological changes and even bird death, information on their life cycles is scarce and almost entirely based on experimental infection data. Thus, the generation of knowledge on the mollusks that act as natural intermediate hosts of cyclocoelids is necessary and can aid control measures against these air sac trematodes. In the present study, gastropod mollusks collected in an urban stream from Belo Horizonte, Minas Gerais, Brazil, were subjected to the compression technique for the detection of non-emerging larval trematodes. Tailless cercariae with confluent ceca were found in 8/30 (26.7%) specimens of Biomphalaria glabrata and 3/33 (9.1%) specimen of Physella acuta. Samples of the cercariae were subjected to morphological characterization and genetic study (28S, Cox-1, and Nad-1). For comparative purposes, adult trematodes previously collected in the air sac of a common gallinule (Gallinula galeata) found dead in another waterbody from the same region were also characterized. The molecular sequences obtained revealed a high degree of similarity (100% in 28S, 99.2% in Cox-1, and 99.5% in Nad-1) between larval stages found in mollusks and adult parasites found in G. galeata and morphologically identified as Cyclocoelum mutabile. The conspecificity with this widely distributed cyclocoelid was also corroborated by phylogenetic analysis and comparison with isolates of this species previously characterized in Peru and the Czech Republic (99.4–100% and 96.7–97.0% of similarity in Nad-1, respectively). Thus, the integrative analysis carried out in the present work enabled us to identify C. mutabile in mollusks in South America for the first time. The finding of B. glabrata and P. acuta as new intermediate hosts corroborates the importance of freshwater gastropods in the transmission of C. mutabile, as well as the low specificity to the mollusk group, as previously characterized through experimental studies. Full article
(This article belongs to the Special Issue Diversity of Wildlife Pathogens)
Show Figures

Figure 1

25 pages, 15207 KiB  
Article
Design of Pseudo-Command Restricted Controller for Tailless Unmanned Aerial Vehicles Based on Attainable Moment Set
by Linxiao Han, Jianbo Hu, Yingyang Wang, Jiping Cong and Peng Zhang
Drones 2024, 8(3), 101; https://doi.org/10.3390/drones8030101 - 15 Mar 2024
Viewed by 1554
Abstract
This work investigates the pseudo-command restricted problem for tailless unmanned aerial vehicles with snake-shaped maneuver flight missions. The main challenge of designing such a pseudo-command restricted controller lies in the fact that the necessity of control allocation means it will be difficult to [...] Read more.
This work investigates the pseudo-command restricted problem for tailless unmanned aerial vehicles with snake-shaped maneuver flight missions. The main challenge of designing such a pseudo-command restricted controller lies in the fact that the necessity of control allocation means it will be difficult to provide a precise envelope of pseudo-command to the flight controller; designing a compensation system to deal with insufficient capabilities beyond this envelope is another challenge. The envelope of pseudo-command can be expressed by attainable moment sets, which leave some open problems, such as how to obtain the attainable moment sets online and how to reduce the computational complexity of the algorithm, as well as how to ensure independent control allocation and the convexity of attainable moments sets. In this article, an innovative algorithm is proposed for the calculation of attainable moment sets, which can be implemented by fitting wind tunnel data into a function to solve the problems presented above. Furthermore, the algorithm is independent of control allocation and can be obtained online. Moreover, based on the above attainable moment sets algorithm, a flight performance assurance system is designed, which not only guarantees that the command is constrained within the envelope so that its behavior is more predictable, but also supports adaptive compensation for the pseudo-command restricted controller. Finally, the effectiveness of the AMS algorithm and the advantages of the pseudo-command restricted control system are validated through two sets of independent simulations. Full article
Show Figures

Figure 1

17 pages, 14502 KiB  
Article
The Study of Selected Aspects of the Suborbital Vehicle Return Flight Trajectory
by Agnieszka Kwiek, Marcin Figat and Tomasz Goetzendorf-Grabowski
Aerospace 2023, 10(5), 489; https://doi.org/10.3390/aerospace10050489 - 22 May 2023
Cited by 5 | Viewed by 2420
Abstract
The article presents the results of preliminary studies of the parameters of the return flight trajectory of a rocket plane for suborbital tourist flights into space. The rocket plane is designed as a tailless vehicle and has an unconventional arrangement of control surfaces: [...] Read more.
The article presents the results of preliminary studies of the parameters of the return flight trajectory of a rocket plane for suborbital tourist flights into space. The rocket plane is designed as a tailless vehicle and has an unconventional arrangement of control surfaces: elevons and side plates that can rotate. The main aim of the research presented in this paper is to investigate the dynamic stability of the rocket plane and the response to control in the return suborbital flight. The secondary objective is to study the behavior of the rocket plane with respect to the initial state of the return flight. The key parameters taken into account in this study are the Mach number and G-load. Moreover, a study of the trim condition, dynamic stability and response to control of a rocket plane in the low part of the stratosphere is presented. The tests were carried out using a numerical simulation of the flight of a rocket plane. Dynamic stability was determined on the basis of time history analysis, and the results were compared with the results obtained by solving the eigenvalues problem. The results revealed that the rocket plane should be equipped with a Stability Augmentation System to improve short period damping at supersonic speeds at moderate altitudes. It can also be concluded that the maximum load G and Ma do not occur at the same height of flight. In terms of the effectiveness of the control surfaces, they start working at an altitude of 55 km. Due to the speed regime, the obtained results can be useful in the design of such objects as rocket planes, highly maneuverable and supersonic aircraft. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 3085 KiB  
Article
Attitude-Tracking Control for Over-Actuated Tailless UAVs at Cruise Using Adaptive Dynamic Programming
by Zihou He, Jianbo Hu, Yingyang Wang, Jiping Cong, Yuan Bian and Linxiao Han
Drones 2023, 7(5), 294; https://doi.org/10.3390/drones7050294 - 27 Apr 2023
Cited by 7 | Viewed by 2064
Abstract
Using adaptive dynamic programming (ADP), this paper presents a novel attitude-tracking scheme for over-actuated tailless unmanned aerial vehicles (UAVs) that integrates control and control allocation while accounting for nonlinearity and nonaffine control inputs. The proposed method uses the idea of nonlinear dynamic inversion [...] Read more.
Using adaptive dynamic programming (ADP), this paper presents a novel attitude-tracking scheme for over-actuated tailless unmanned aerial vehicles (UAVs) that integrates control and control allocation while accounting for nonlinearity and nonaffine control inputs. The proposed method uses the idea of nonlinear dynamic inversion to create an augmented system and converts the optimal tracking problem into an optimal regulation problem using a discounted performance function. Drawing inspiration from incremental control, this method achieves optimal tracking control for the nonaffine system by simply using a critic-only structure. Moreover, the unique design of the performance function ensures robustness against model uncertainties and external disturbances. The ADP method was found to outperform traditional control architectures that separate control and control allocation, achieving the same level of attitude-tracking performance through a more optimized approach. Furthermore, unlike many recent optimal controllers for nonaffine systems, our method does not require any model identifiers and demonstrates robustness. The superiority of the ADP-based approach is verified through two simulated scenarios, and its internal mechanism is further discussed. The theoretical analysis of robustness and stability is also provided. Full article
(This article belongs to the Special Issue Flight Control System Simulation)
Show Figures

Figure 1

23 pages, 9855 KiB  
Article
Carrier Aircraft Flight Controller Design by Synthesizing Preview and Nonlinear Control Laws
by Baoxu Jia, Liguo Sun, Xiaoyu Liu, Shuting Xu, Wenqian Tan and Junkai Jiao
Drones 2023, 7(3), 200; https://doi.org/10.3390/drones7030200 - 15 Mar 2023
Cited by 2 | Viewed by 2290
Abstract
This paper proposes an innovative automatic carrier landing control law for carrier-based aircraft considering complex ship motion and wind environment. Specifically, a strategy is proposed to synthesize preview control with an adaptive nonlinear control scheme. Firstly, incremental nonlinear backstepping control law is adopted [...] Read more.
This paper proposes an innovative automatic carrier landing control law for carrier-based aircraft considering complex ship motion and wind environment. Specifically, a strategy is proposed to synthesize preview control with an adaptive nonlinear control scheme. Firstly, incremental nonlinear backstepping control law is adopted in the attitude control loop to enhance the anti-disturbance capability of the aircraft. Secondly, to enhance the glide slope tracking performance under severe sea conditions, the carrier motion is predicted, and the forecasted motion is adopted in an optimal preview control guidance law to compensate influences induced by carrier motion. However, synthesizing the inner-loop and outer-loop control is not that straightforward since the preview control is naturally an optimal control law which requires a state-space model. Therefore, low-order equivalent fitting of the attitude-to-altitude high-order system model needs to be performed; furthermore, a state observer needs to be designed for the low-order equivalent system to supply required states to the landing controller. Finally, to validate the proposed methodology, an unmanned tailless aircraft model is used to perform the automatic landing tasks under variant sea conditions. Results show that the automatic carrier landing system can lead to satisfactory landing precision and success rate even under severe sea conditions. Full article
Show Figures

Figure 1

26 pages, 5793 KiB  
Article
Fault-Tolerant Attitude Control Incorporating Reconfiguration Control Allocation for Supersonic Tailless Aircraft
by Jiping Cong, Jianbo Hu, Yingyang Wang, Zihou He, Linxiao Han and Maoyu Su
Aerospace 2023, 10(3), 241; https://doi.org/10.3390/aerospace10030241 - 1 Mar 2023
Cited by 7 | Viewed by 2314
Abstract
This paper presents a fault-tolerant attitude control scheme, incorporating reconfiguration control allocation for supersonic tailless aircraft subject to nonlinear characteristics, actuator constraint, uncertainty, and actuator faults. The main idea is to propose an incremental reconfiguration closed-loop control allocation scheme, coupled with a basic [...] Read more.
This paper presents a fault-tolerant attitude control scheme, incorporating reconfiguration control allocation for supersonic tailless aircraft subject to nonlinear characteristics, actuator constraint, uncertainty, and actuator faults. The main idea is to propose an incremental reconfiguration closed-loop control allocation scheme, coupled with a basic backstepping attitude controller, to achieve attitude control. Based on the virtual control input generated by the basic backstepping attitude controller, firstly, the incremental nonlinear control allocation method is adopted to deal with the nonlinear characteristics and actuator constraint. Secondly, a distribution error feedback loop is constructed in the incremental nonlinear control allocation method to enhance the robustness against the uncertainty of the control effectiveness matrix. Thirdly, the control effectiveness matrix is reconstructed by different kinds of fault information to deal with actuator faults, and the proper combination of actuator deflections is generated to achieve accurate command tracking. The stability of the proposed scheme is guaranteed by the Jury stability criterion and the Lyapunov stability analysis. Finally, in comparison with the three existing approaches, the simulation results of two cases are provided to show the effectiveness of the proposed scheme. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 6355 KiB  
Article
High-Performance Attitude Control Design of Supersonic Tailless Aircraft: A Cascaded Disturbance Rejection Approach
by Zian Wang, Lei Hu, Wanghua Fei, Dapeng Zhou, Dapeng Yang, Chenxi Ma, Zheng Gong, Jin Wu, Chengxi Zhang and Yi Yang
Aerospace 2023, 10(2), 198; https://doi.org/10.3390/aerospace10020198 - 18 Feb 2023
Cited by 3 | Viewed by 3356
Abstract
This paper focuses on the triaxial augmentation ability of the active disturbance rejection control (ADRC) technique on the tailless layout with a fully moving wing tip to achieve high control performance for the supersonic tailless aircraft. Firstly, the stability characteristics and controllability of [...] Read more.
This paper focuses on the triaxial augmentation ability of the active disturbance rejection control (ADRC) technique on the tailless layout with a fully moving wing tip to achieve high control performance for the supersonic tailless aircraft. Firstly, the stability characteristics and controllability of the flying wing layout are analyzed to determine the coupling characteristics of this kind of aircraft. Secondly, an attitude controller is designed based on ADRC theory, and the linear ADRC frequency domain analysis method is introduced to analyze the influence of the bandwidth of linear extended stator on the control system. In addition, the tuning process of the attitude control law is given. Carrier dropping simulations of flight missions under nominal condition, model parameter perturbation, and wind disturbance are conducted. The results show that the designed controller can achieve full-speed domain triaxial augmentation of supersonic flying wing. This work has the potential to significantly boost the engineering acceptability and robustness of supersonic aircraft control design in real-world scenarios. The presented cascaded ADRC approach can significantly improve the performance and robustness of supersonic vehicles. Full article
(This article belongs to the Special Issue Advanced Motion Planning and Control in Aerospace Applications)
Show Figures

Figure 1

22 pages, 4249 KiB  
Article
Incremental Backstepping Sliding-Mode Trajectory Control for Tailless Aircraft with Stability Enhancer
by Zihou He, Jianbo Hu, Yingyang Wang, Jiping Cong, Linxiao Han and Maoyu Su
Aerospace 2022, 9(7), 352; https://doi.org/10.3390/aerospace9070352 - 30 Jun 2022
Cited by 7 | Viewed by 2268
Abstract
This paper presents an incremental backstepping sliding-mode (IBS) controller for trajectory control of a tailless aircraft with unknown disturbances and model uncertainties. The proposed controller is based on a nonlinear dynamic model of the tailless aircraft. A stability enhancer (SE) that limits both [...] Read more.
This paper presents an incremental backstepping sliding-mode (IBS) controller for trajectory control of a tailless aircraft with unknown disturbances and model uncertainties. The proposed controller is based on a nonlinear dynamic model of the tailless aircraft. A stability enhancer (SE) that limits both the rate and amplitude of the virtual control input is proposed. The stability enhancer consists of two layers. When the virtual control input approaches the edge, the first layer SE would be activated to modify the trajectory tracking error; when the virtual control input exceeds the edge, the second layer SE would reduce the control gains to make sure the virtual control input drops within the edge as soon as possible. With the help of SE, the incremental control method could be extended to outer-loop control without considering the dynamics of the inner-loop system. In addition, an adaptive estimator for state derivatives is proposed, together with IBS, allowing the controller to show excellent robustness. Finally, two simulations are presented. The first simulation shows that the system is insensitive to external disturbances and model uncertainties, and the effectiveness of SE is proved in the second simulation. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 7651 KiB  
Article
A Multidisciplinary Possibilistic Approach to Size the Empennage of Multi-Engine Propeller-Driven Light Aircraft
by Mohsen Rostami, Julian Bardin, Daniel Neufeld and Joon Chung
Aerospace 2022, 9(3), 160; https://doi.org/10.3390/aerospace9030160 - 15 Mar 2022
Cited by 8 | Viewed by 4305
Abstract
In considering aircraft design, it is very important to effectively size the tail configuration for stability and control. Multidisciplinary design optimization (MDO) focuses on the use of numerical optimization in the design of systems with multiple subsystems or disciplines of consideration. However, MDO [...] Read more.
In considering aircraft design, it is very important to effectively size the tail configuration for stability and control. Multidisciplinary design optimization (MDO) focuses on the use of numerical optimization in the design of systems with multiple subsystems or disciplines of consideration. However, MDO uses deterministic calculations, and does not consider the uncertainties that arise from the employed analyses, including errors due to linearization and simplification. For problems with inadequate input data, the possibility-based design optimization (PBDO) scheme can be implemented in its stead to achieve reliable designs using membership functions for epistemic uncertainties. A multidisciplinary, possibilistic approach is presented to define the sizing of the empennage configuration of a twin-engine propeller-driven aircraft by changing shape parameters while satisfying the design requirements given the tailless aircraft configuration, the flight conditions, and various uncertainties. The corresponding disciplines are aerodynamics, stability and control, propulsion and weight and balance. Herein, different design requirements are considered including longitudinal/lateral/directional trim and stability characteristics, manufacturing and controllability criteria, handling qualities, operational requirements, airworthiness and survivability. The resulting aerodynamic characteristics and flight dynamic stability outcomes show that the optimized tail configuration for the proposed aircraft fully complied with airworthiness requirements and predefined constraints while considering several uncertainties due to the use of early-stage statistical estimations. The proposed approach can be used to enhance the preliminary design of multi-engine propeller-driven light aircraft where only low-fidelity, statistical estimations are available. The resulting output is not only an optimized aircraft configuration, but one where the stability of the design has been ensured. In this work, the aerodynamic characteristics have been determined using a validated semi-empirical program called MAPLA, developed for light aircraft designs and development in the preliminary design phase. Furthermore, the optimization framework consists of a deterministic optimizer that runs sequentially with a possibility assessment algorithm. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop