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Abstract: This paper presents an incremental backstepping sliding-mode (IBS) controller for trajectory
control of a tailless aircraft with unknown disturbances and model uncertainties. The proposed
controller is based on a nonlinear dynamic model of the tailless aircraft. A stability enhancer (SE) that
limits both the rate and amplitude of the virtual control input is proposed. The stability enhancer
consists of two layers. When the virtual control input approaches the edge, the first layer SE would be
activated to modify the trajectory tracking error; when the virtual control input exceeds the edge, the
second layer SE would reduce the control gains to make sure the virtual control input drops within
the edge as soon as possible. With the help of SE, the incremental control method could be extended
to outer-loop control without considering the dynamics of the inner-loop system. In addition, an
adaptive estimator for state derivatives is proposed, together with IBS, allowing the controller to
show excellent robustness. Finally, two simulations are presented. The first simulation shows that the
system is insensitive to external disturbances and model uncertainties, and the effectiveness of SE is
proved in the second simulation.

Keywords: incremental control; trajectory control; tailless aircraft; sliding-mode; backstepping

1. Introduction

In past decades, tailless aircraft have attracted widespread attention. Due to excellent
stealth performance, tailless aircraft have already been successfully used in the military.
The future battlefield environment needs the next-generation combat aircraft to be low ob-
servable as well as super maneuverable. This goal prompts next-generation combat aircraft
to adopt a tailless design with a small aspect ratio. However, this kind of aerodynamic
layout brings stronger coupling, nonlinear, and non-affine effects [1–3], challenging its
controller design.

The most widely used framework in flight control is the gain-scheduled linear feedback
controller with Jacobian linearization around specific operational points. Traditionally,
this framework is an effective way to deal with nonlinearity and is still used now because
well-established linear control theories can support its design. Such approaches, however,
have failed to address the significant nonlinearities throughout the flight envelope, and,
because of the linearized model it uses, the stability between the operational points is
always questionable.

Nonlinear control methods do not suffer from the above shortcomings. The essence
of these nonlinear control methods is to cancel the nonlinearity through feedback, and
then the linear control technique could be applied. Backstepping (BS) is a typical nonlinear
control method. To exactly cancel the nonlinear dynamic, BS highly depends on accurate
model knowledge. However, for tailless aircraft, it is not easy to extract useful model
knowledge, such as control effectiveness, from aerodynamic data. Specifically, due to the
interaction between the state variables and control inputs, the structure of the aircraft may
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not be very apparent, and the control input may appear non-affine, making the BS very
hard to deal with.

Of course there have been many studies concerning non-affine systems using BS, but
it should be noted that a strict decoupling condition 0 6 fl 6

∂ f (x,u)
∂u 6 fu is used in many

of them [4–9]. However, it is hard to prove that such a condition is satisfied in practice, and
the application of the condition will cause the many accessible details of actuator dynamics
to be underused, making it a very difficult work to choose the controller’s parameters.
In addition, this condition is very difficult to extend to multiple control input systems,
especially if there are coupling effects between control inputs.

To reduce the dependence on the model information, incremental backstepping (IB)
was proposed by [10–13] and others. As an effective control method, IB has received
considerable scholarly attention in the flight control field ever since it was proposed, and
has achieved quite fruitful results [14–18]. Instead of relying on model information, IB
cancels the nonlinearity of the system through the feedback of state derivatives. Because
state derivatives contain all the information of the model and disturbances, IB no longer
needs accurate model information. The only model information that IB requires is control
effectiveness. Recent studies [19–21] have found a condition under which the stability of
the IB-controlled system will not be degraded by the uncertainties in control effectiveness;
by increasing the sample rate, the effect of uncertainty in control effectiveness can be largely
attenuated. Generally, IB obtains control effectiveness through numerical differentiation of
aerodynamic data. With this condition, the designer of the IB controller would know how
accurate the control effectiveness needs to be to keep the system stable, so the IB will not
waste time in obtaining over-accurate control effectiveness, making IB response more faster
and more applicable.

In addition, IB is also a powerful tool to cope with a non-affine system, as it transforms
a non-affine system to an incremental affine form by Taylor expansion. Therefore, there
is no need to consider complex model structures in IB control law design. In recent years,
tailless aircraft tend to take a multiple control surfaces design to improve maneuverability.
For example, the Innovative Control Effector (ICE) aircraft is equipped with 11 control
surfaces with overlapping functionality [2]. Because of the compact layout, there are strong
coupling effects between control surfaces and state variables, making the aerodynamic
model very complex, and the control inputs appear non-affine. Therefore, for this kind of
non-affine system with multiple control inputs, the incremental control methods seems to
be the only option.

However, the derivation of IB is based on the time scale separation principle, which
means that the control action should change far faster than the state [22]. Thus, the actuator
dynamics are very important to IB. When the command cannot be implemented fast enough,
the stability of the system will degrade [23]. Because the dynamic of the inner-loop state is
usually non-negligible, it would be hard to tell whether the command can be implemented
fast enough. Therefore, most studies only use IB in the last step of controller design, and
the application of an incremental control method in the outer loop of the cascade system
is hardly seen. Because of the time delay caused by inner-loop dynamics, the time scale
separation principle is longer applicable. Specifically, due to the strong nonlinearity of a
tailless vehicle, incremental control methods should be an effective tool that can be used
in trajectory tracking, but the time scale separation principle limits most recent studies
from using an incremental control method in attitude control. Therefore, it would be a
very meaningful work to find a effective way that could alleviate the time scale separation
requirement and extend the incremental control to outer-loop control.

From another perspective, however, if the rate and amplitude of the virtual control
input produced by the outer-loop controller are limited, it would be more reasonable to
assume the instantaneous reaction of the inner-loop dynamics, which would guarantee
the stability of the system. This brings to mind that many anti-windup measures [24,25]
could meet such needs. Thus, a two-layer stability enhancer (SE) is proposed in this paper.
The first layer SE works the same as a traditional anti-windup measure, which modifies
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the feedback of the outer-loop system when the virtual control input is going to run out of
edge. When the virtual control input runs out of edge, the second layer SE will reduce the
control gain to make sure the virtual control input falls within the edge as soon as possible.

With the rapid development of hardware in recent years, the controller’s sample rate
is getting higher. This allows the incremental control method to be applied more often, and
some satisfactory results are seen in [26–29]. The advantages of incremental control noted
above make it a promising application in the field of flight control. Up to now, there are
only a few kinds of incremental control methods, such as incremental nonlinear dynamic
inversion and incremental backstepping. It would be very meaningful work to develop an
incremental version for other classic control methods.

Motivated by the aforementioned discussion, this paper proposes an incremental
backstepping sliding-mode (IBS) trajectory controller with stability enhancer (SE) for tailless
aircraft featuring strong nonlinearity and non-affine input. The SE considers both rate
and amplitude limits. When the virtual control input approaches the virtual edge, the
first layer SE will be activated to modify the tracking error; when the virtual control input
exceeds the virtual edge, the second layer SE will be activated, and the control gain will
be reduced to make sure the virtual control input is within the limits. With the help of
the SE, the proposed IBS is extended to outer-loop control. Considering the condition
proposed in [21], only a linear spline is used to obtain the control effectiveness, which
reduces the computational load and maintains the performance. Together with an adaptive
estimator for state derivation, the proposed control method shows robustness against
external disturbances and model uncertainties.

The paper is arranged as follows: Section 2 presents the aircraft model. The description
of the problem is given in Section 3, which is followed by the main result in Section 4,
where the control law and stability analysis is presented. Section 5 gives the simulation
results. With the proposed stability enhancer, the incremental control methods could be
extended to outer-loop control for the cascade system. The proposed control method also
show robustness against model uncertainties and disturbance.

2. Nonlinear Tailless Aircraft Model

In this section, the tailless aircraft model used for controller design is introduced. This
model originated from Lockheed Martin’s Innovative Control Effector (ICE) project [30].
The unique shape of the ICE aircraft makes it a potential option for future air combat
aircraft. In [2,3], the aerodynamic characteristics of the ICE aircraft were analyzed, and
it was found that the strong nonlinearity of the ICE aircraft yields great challenge for its
flight control. Based on the aerodynamic data given in [1], we could build a high-fidelity
data-based model. The 6-DOF aircraft motion equation [31] is given as follows.

Define the position vector in the earth fixed coordinate x0 = [X Y Z]T , and the
derivatives of x0 are:

ẋ0 =

Ẋ
Ẏ
Ż

 =

vx
vy
vz

 =

Vcγcχ

Vcγsχ

−Vsγ

 (1)

where vx, vy, vz are velocity components in the x, y, z directions; V =
√

v2
x + v2

y + v2
z is the

total velocity, χ = arctan( vy
vx
) is the ground tracking angle, γ = arcsin( vz

V ) is the flight path
angle, c? represent cos ?, and s? represent sin ?. Define x1 = [vx vy vz], and the dynamics
of x1 are [32]:

ẋ1 =

 cχcγ −Vsχcγ −Vcγsγ

sχcγ Vcχcγ −Vsγsγ

−sγ 0 −Vcγ

 ·
V̇

χ̇
γ̇

 (2)
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and the derivative of [V χ γ]T is:V̇
χ̇
γ̇

 =


1
M 0 0
0 1

MVcγ
0

0 0 −1
MV

 ·
TveG f + TvbTf +

 1 0 0
0 sµ cµ

0 cµ −sµ

 · Fa

 (3)

where G f = [0 0 Mg]T represents gravitational forces ,Tf = [T 0 0]T represents engine
thrust, and Fa = [D L Y]T represents aerodynamic force, which is defined by:

Fa =

D
L
Y

 = q̄S

CD
CL
CY

 = q̄S

CD,base(α, β, V) + ∑
j
i=1 CD,i(α, β, δ)

CL,base(α, β, V) + ∑
j
i=1 CL,i(α, β, δ)

CY,base(α, β, V) + ∑
j
i=1 CY,i(α, β, δ)

 (4)

Because the ICE aircraft has 11 independent control surfaces, δ = [δ1, δ2, · · · , δ11]
T

represents the control surface deflection vector, and C·,base and ∑
j
i=1 C·,i(α, β, δ) are the

aerodynamic coefficients generated by the body and control surfaces.
Considering the aircraft capacity and flight safety, the amplitude of Tf , α, µ as well as

their rates should be limited. Define x′2 = [Tf α µ]T
.
= [x′2,1 x′2,2 x′2,3]

T and denote its upper

and lower limits of amplitude as x′2s and x′2s and the upper and lower limits of rate as ẋ′2s
and ẋ′2s.

The expression Tvb is the transformation matrix from the body frame to the velocity
frame, and Tve is the transformation matrix from the earth frame to the velocity frame.
These matrices are given as [33]:

Tvb =

 cαcβ sβ sαcβ

−cαsβcµ + sαsµ cβcµ −sαsβcµ − cαsµ

−cαsβsµ − sαcµ cβsµ −sαsβsµ + cαcµ

 (5)

Tve =

 cχcγ sχcγ sγ

−sχ cχ 0
cχsγ sχsγ cγ

 (6)

where µ is the bank angle, α is the angle of attack, and β is the sideslip angle.
Define x2 = [µ α β]T . The derivatives of x2 are given as:

ẋ2 =

 cαcβ 0 sα

sβ 1 0
sαcβ 0 −cα

−1Tbv

−χ̇sγ

γ̇
χ̇cγ

+

p
q
r

 (7)

where p, q, and r are the body-axis roll, pitch, and yaw rates.
Further define the angular rate vector as x3 = [p q r]T . Its kinematics are described as:

ẋ3 = J−1(Ma − x3 × Jx3) (8)

where J is moment of inertia matrix, defined as:

J =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (9)

and Ma = [l m n] is the aerodynamic moment, defined by:

Ma =

 l
m
n

 = q̄S

 b · Cl
c̄ · Cm
b · Cn

 = q̄S

 b · (Cl,base(α, β, V) + ∑
j
i=1 Cl,i(α, β, δ))

c̄ · (Cm,base(α, β, V) + ∑
j
i=1 Cm,i(α, β, δ))

b · (Cn,base(α, β, V) + ∑
j
i=1 Cn,i(α, β, δ))

 (10)
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Remark 1. The aircraft model noted before is constructed using the spline technique based on
the discrete aerodynamic data provided in [1]. Considering the controller’s efficiency, only linear
interpolation is used in the controller design. Of course, the aerodynamic coefficients obtained
through linear interpolation cannot be very accurate. In the following sections, we will prove that
these errors will not affect the performance of the controller we propose.

3. Description of Problem

Based on the model in Section 2, the trajectory tracking problem will be discussed in
the following context.

Define x′2 = [T µ α]T
.
= [x′2,1 x′2,2 x′2,3]

T . Accroding to Section 2, we have x0 = [X Y Z]T ,
x1 = [vx vy vz]T , x2 = [µ α β]T , x3 = [p q r]T , and x1 and x3 appear affine in ẋ0 and ẋ2,
x′2 and δ appear non-affine in ẋ1 and ẋ3. We rewrite the system in the following compact
form [34]:

ẋ0 = x1 (11)

ẋ1 = f 1(x1) + g1(x1, β, δ, x′2) (12)

ẋ2 = f 2(x1, x2, δ) + g2 · x3 (13)

ẋ3 = f 3(x3) + g3(x1, x2, x3, δ) (14)

Remark 2. As to f 1, f 2, g2, and f 3, their corresponding definitions are obvious in Section 2.
Because x′2 and δ appear nonlinearly in C·,base and C·,i, g1 and g3 are seen as non-affine functions
here.

Assumption 1. The aircraft system is sufficiently time scale separated. This means that, in a small
time increment, changes of control input cause the state derivative that is directly affected to change
much faster than the controlled one.

According to Assumption 1, it is obvious that we see x1, x3, and δ as the virtual control
input of Equations (11), (13), and (14). Note that from Equations (2)–(4), we know g1 should
be the function of x1, x2, δ, and T, we choose x′2 = [Tf α µ]T as the virtual control input of
Equation (12). Because the aerodynamic forces contributed by δ are relatively small as they
are designed to produce moments, and for the flight safety, the command signal of β is
usually set as βc = 0. However, due to the unique control surface setting of the ICE aircraft,
the aerodynamic force δ generated by the control surface cannot be neglected in g1.

During flight, disturbances are ubiquitous, which will affect the stability and per-
formance of the flight control system. Neither disturbances from modeling error nor
external disturbances are easy to measure in practice, making the disturbance rejection a
challenge of controller design. In this paper, the modeling error comes from the acquisition
of aerodynamic force and moment, which are involved in g1, f 2, and g3; thus we define:

ḡ1(x1, β, δ, x′2) = g1(x1, β, δ, x′2)− g1,e(x1, β, δ, x′2) (15)

f̄ 2(x1, x2, δ) = f 2(x1, x2, δ)− f 2,e(x1, x2, δ) (16)

ḡ3(x1, x2, x3, δ) = g3(x1, x2, x3, δ)− g3,e(x1, x2, x3, δ) (17)

where g1,e, f 2,e, and g3,e represent the model uncertainties, ḡ1, f̄ 2 and ḡ3 are konwn
dynamics used for control law design.

The external disturbance is assumed to be time varying and exists in the form of
aerodynamic force and moment, which are defined as dF = [dF1, dF2, dF3]

T and dM =
[dM1, dM2, dM3]

T, respectively. Equations (12) and (14) can be modified as:
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ẋ1 = f 1(x1) + ḡ1(x1, β, δ, x′2) + d1 (18)

ẋ2 = f̄ 2(x1, x2, δ) + g2 · x3 + d2 (19)

ẋ3 = f 3(x3) + ḡ3(x1, x2, x3, δ) + d3 (20)

where d1 = M−1dF + g1,e(x1, β, δ, x′2), d2 = f 2,e, and d3 = J−1dM + g3,e(x1, β, δ, x′2).
Considering the non-affine input in ẋ1 and ẋ3, the incremental control law is only used

in velocity and angular rate control loops. Thus, using a one-order Taylor expansion, we
rewrite ẋ1 and ẋ3 in incremental form:

ẋ1 = ẋ1,0 + A1∆x1 + B1∆β + C1∆δ + (Ḡ1 + G1,e)∆x′2 + ∆d1 (21)

ẋ3 = ẋ3,0 + A3∆x1 + B3∆x2 + C3∆x3 + (Ḡ3 + G3,e)∆δ + ∆d3 (22)

A1 =
∂ f 1
∂x1

+
∂g1
∂x1

B1 =
∂g1
∂β

C1 =
∂g1
∂δ

Ḡ1 =
∂ḡ1
∂x′2

G1,e =
∂g1,e

∂x′2

A3 =
∂ f 3
∂x3

+
∂g3
∂x3

B3 =
∂g3
∂x1

C3 =
∂g3
∂x2

Ḡ3 =
∂ḡ3
∂δ

G3,e =
∂g3,e

∂δ

where A1, A3, B3, C3, Ḡ1, G1,e ∈ R3×3; B1 ∈ R3×1; and C3, Ḡ3, G3,e ∈ R3×13.
According to Assumption 3, ∆x′2 changes much faster than ∆x1, so the latter can be

neglected here. Because we set βc = 0, with sufficiently high sample rate, both ∆β and
∆d1 can be neglected as well. It should be noted that because the control surface obviously
change faster than the attitude angle, ∆δ cannot be neglected here. Therefore, we modify
Equation (21) as:

ẋ1 = ẋ1,0 + C1∆δ + (Ḡ1 + G1,e)∆x′2 (23)

For the same reason, ∆x1, ∆x2, and ∆x3 can also be neglected in Equation (22), so it
can be rewritten as:

ẋ3 = ẋ3,0 + (Ḡ3 + G3,e)∆δ (24)

The objective of control is to design a control law of thrust and δ such that the output
x0 can track xc

0, where xc
0, ẋc

0, and ẍc
0 are bounded.

The structure of the control system is shown in the Figure 1. For convenience, we
denote ·c as the command signal that was given to controllers to follow, and ·d as the virtual
control input produced by the controller.

Figure 1. Control system.

The IBS is applied in the outer-loop control, and it follows the trajectory command
xc

0 and produces thrust command T and virtual control inputαd, µd as the desired attitude
signal, while the SE is used to limit αd, µd, T, and α̇d, µ̇d, Ṫ. The inner-loop control consists
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of attitude control and angular rate control, where BS and IB are applied, respectively. The
attitude control loop is to follow the attitude signals given in the velocity control loop and
provides the desired angular rate signal xd

3 . Finally, the objective of the angular rate control
loop follows xd

3 and generates the effector deflection command δ.
Prior to controller design, the following assumptions are made:

Assumption 2. Accurate knowledge of the system states x0, x1, x2, and x3 is accessible.

Assumption 3. The model uncertainties d1, d2, and d3 are time-varying unknown yet bounded
variables.

Assumption 4. In the design of the outer control loops, it is believed that, with proper design of
the inner control loops, and within the amplitude and rate limits of the virtual control input, instan-
taneous response to x′2 is assumed. This means the difference between x′2 and x′c2 is negligible [22].

Assumption 5. The aerodynamic data we used are precise enough, so that ‖G1Ḡ−1
1 − I‖ 6 b1 6 1

and ‖G3Ḡ−1
3 − I‖ 6 b3 6 1, where Ḡ−1

3 is the generalized inversion of Ḡ3 [35].

Remark 3. In practice, the control effectiveness is obtained through numerical differentiation of
aerodynamic data. For example:

Ḡ1 =
∂ḡ1
∂β

=
ḡ1(x1, β + ε, δ, x′2)− ḡ1(x1, β− ε, δ, x′2)

2ε
(25)

where ḡ1(x1, β + ε, δ, x′2) and ḡ1(x1, β − ε, δ, x′2) is obtain through interpolating of discreet
aerodynamic data, and ε is small positive number. Note that the aerodynamic data are essentially
static and are well tailored in advance, so the numerical differentiation used here would not be
affected by disturbances or local chatter.

The accuracy of the control effectiveness is affected by two factors, namely the quality of the
aerodynamic data and the interpolation method. More detailed wind tunnel tests and more advanced
interpolation algorithms could help improve both the accuracy of the control effectiveness. In theory,
if the wind tunnel test is accurate enough, Ḡ1 can infinitely approach G1. However, as this paper is
controller design oriented, the wind tunnel test is not taken into account, so Assumption 5 is made.

According to [36], zero order of continuity would be enough for the controller design, so only
linear interpolation is used in this paper. In fact, a certain degree of error in controller effectiveness
will not affect the stability of the system, which will be discussed subsequently.

4. Main Result

In this section, the control strategies of the outer control loops and inner control loops
are introduced. The detail of the design procedure are shown as follows.

4.1. Outer Control Loops

Based on a slide-mode incremental backstepping technique and a novel two-stage SE
scheme, an adaptive controller is constructed for outer control loops. The design procedure
is divided into two steps. In step one, we introduce the nominal adaptive slide-mode
incremental backstepping controller, and then a two-stage SE scheme design is presented
in step two.

4.1.1. Nominal Sliding-Mode Incremental Backstepping Controller Design

First, we choose the sliding surface s, where

s = c0e0 + ė0 (26)

where e0 = x0 − xc
0 is the position error, and c0 is a positive definite diagonal matrix.
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Differentiating s and using Equation (11), we get:

ṡ = c0(ẋ0 − ẋc
0) + (ẍ0 − ẍc

0) = c0(x1 − ẋc
0) + (ẋ1 − ẍc

0) (27)

Substituting Equation (23) into Equation (27), we get:

ṡ = c0(x1 − ẋc
0)− ẍc

0 + f 1(x1) + ḡ1(x1, β, δ, x′2) + ξ1 + Ḡ1∆x′2 (28)

where ξ1 = d1 + C1∆δ + G1,e∆x′2.

Remark 4. Note that the control surface is designed to produce aerodynamic moments. Compared
with the attitude angles, the contribution of control surfaces to aerodynamic forces is relatively small,
which means C1 is smaller than G1. In addition, in small time increments, ∆δ is also bounded.
Thus, it is believed that C1∆δ is bounded.

According to Propositions 1 and 2 in [8,35,37], if the sample rate is sufficiently high, and
‖G1Ḡ−1

1 − I‖ 6 b 6 1, G1,e∆x′2 would be globally bounded. Considering the condition is satisfied
by Assumption 5, we know G1,e∆x′2 is bounded. Together with Assumption 3, it is concluded that
ξ = d1 + C1∆δ + G1,e∆x′2 is bounded, that is, |ξ1| < ξ̄1.

The desired incremental virtual control input is designed as:

∆x′d2 = Ḡ−1(−ks,1s− ks,2sgn(s)−msgn(s)ξ̂1 − c0(x1 − ẋc
0) + ẍc

0 − f 1(x1)− ḡ1(x1, β, x′2)) (29)

where Ḡ = ∂g1/∂x′2, sgn(s) = [sgn(s1), sgn(s2), sgn(s3)]
T for s = [s1 s2 s3]

T , msgn(s) =
diag(sgn(s)), and ξ̂1 is the adaptive compensation ξ1. The adaptive law is designed
as follows:

˙̂ξ1 = −cξ1(ξ̂1 + |s|) (30)

where cd is a positive defined symmetric matrix; with sufficiently high sample rate, the
derivative of virtual control input can be approximated as:

ẋ′d2 ≈
∆x′c2
∆t

(31)

Integrating ẋ′d2 , x′d2 obtains the desired signal of x′2.

4.1.2. Stability Enhancer

For the inner control loops, the instantaneous action of the actuator is assumed. For
the outer control loops, however, such a simple assumption is inappropriate, because
the dynamic of the attitude angle is obviously non-negligible. To meet the condition of
Assumption 4, both amplitude and rate of attitude angle should be limited. Therefore, a
two-layer stability enhancer is introduced.

As noted in Section 2, x′c2 and ẋ′c2 should be strictly limited in the ranges [x′2s, x′2s] and

[ẋ′2s, ẋ′2s]. For prevention, we set a virtual edge [x′2v, x′2v] and [ẋ′2v, ẋ′2v], so some action can
be taken before the virtual control input reaches the strict edge.

The multilayer PHC scheme works as follows: when both x′c2 and ẋ′c2 are within the
virtual edge, no stability enhancer is activated, so the nominal controller works; when
x′c2 or ẋ′c2 exceeds the virtual edge, the first layer SE is activated to modify s; when x′c2 or
ẋ′c2 exceeds the strict edge, the first and second layer SE work simultaneously, where the
second layer adjusts the gain to force the control input to reduce effectively.

Before elaborating on the two-layer SE, the definitions of the saturation functions are
given. First, we define the scalar rate saturation function as:
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sat?r,i(ẋ′d2 (i)) =


ẋ′2?(i), ẋd

2(i) > ẋ′2?(i)

ẋd
2(i), ẋ′2?(i) > ẋd

2(i) > ẋ′2?(i)

ẋ′2?(i), ẋ′2?(i) > ẋd
2(i)

(i = 1, 2, 3) (32)

where ? could be v or s and represent the virtual or strict edge.
Based on the above definition, the control input vector rate saturation function is given

as:
sat?v (ẋ′d2 ) = [sat?v,1(ẋ′d2 (1)) sat?v,2(ẋ′d2 (2)) sat?v,3(ẋ′d2 (3))]T (33)

In the same way, the control input vector amplitude saturation function is defined as:

sat?a (ẋ′d2 ) = [sat?a,1(ẋ′d2 (1)) sat?a,2(ẋ′d2 (2)) sat?a,3(ẋ′d2 (3))]T (34)

In the following, the details of the first and second layers of SE are introduced.
First layer SE
When x′d2 or ẋ′d2 exceeds the virtual edge but is within the strict edge, the first layer SE

is activated.
The first layer SE modifies the position error as:

e0 = x0 − xc
0 − µ1 (35){

µ̇1 = −cp1µ1 + µ2

µ̇2 = −cp2µ2 + Ḡ1(x̃′d2,v + ˜̇x′d2,v)
(36)

where x̃′d2,v = x′d2 − satv
a(x′d2,i), ˜̇x′d2,v = ẋ′d2 − satv

r (ẋ′d2,i), c1 and c2 are the designed positive
define matrix.

Differentiating s, we get:

ṡ = c0(x1 − ẋc
0 − µ̇1)− ẍc

0 + f 1(x1) + ḡ1(x1, β, δ, x′2) + ξ1 − µ̈1 + Ḡ1∆x′2 (37)

The modified desired incremental virtual control input with one layer SE is designed as:

∆x̄′d2 = Ḡ−1(−ks,1s− ks,2sgn(s)−msgn(s)ξ̂1 − c0(x1 − ẋc
0 − µ̇1) + ẍc

0 − f 1(x1)− ḡ1(x1, β, x′2) + µ̈1) (38)

Then, the derivative of virtual control input is modified as:

˙̄x′d2 ≈
∆x̄′d2
∆t

(39)

Integrating ˙̄x′d2 , x̄′d2 obtains the desired signal of x′2.
Second layer SE
When x′d2 or ẋ′d2 exceeds the strict edge, the second layer SE is activated. Before

introducing the second layer SE, a vector function is defined as:

tanh(x) = [tanh(x1) [tanh(x2) · · · tanh(xn)]
T , x = [x1 x2 · · · xn]

T (40)

where xi ∈ R.
In order to make the control input rapidly decrease when it exceeds the strict edge,

the second layer SE is designed as follows: υ̇ = cp3tanh(cp4 x̃′d2,s + cp5 ˜̇x′d2,s − υ)

ν =
1
2

diag(tanh(υ) + [1 1 1]T)
(41)

where x̃′d2,s = x′d2 − sats
a(x′d2,i), ˜̇x′d2,s = ẋ′d2 − sats

r (ẋ′d2,i), c3, c4, and c5 are the designed matrix.



Aerospace 2022, 9, 352 10 of 22

From Equation (41) we could know that, when x′d2 or ẋ′d2 exceeds the strict edge, µ will
rise form 0 to 1 rapidly, and when x′d2 or ẋ′d2 drops within the strict edge, µ goes back to 0.
Thus, the incremental virtual control input with two-layer SE is modified as:

∆ ¯̄x′d2 = Ḡ−1(−(ks,1 − ks,3ν)s− (ks,2 − ks,4ν)sgn(s)− sgn(s)ξ̂1 − c0(x1 − ẋc
0 − µ̇1) + ẍc

0 − f 1(x1)− ḡ1(x1, β, x′2) + µ̈1) (42)

Then, with sufficiently high sample rate, the derivative of virtual control input is
modified as:

˙̄̄x′d2 ≈
∆ ¯̄x′d2
∆t

(43)

Integrating ˙̄̄x′d2 , ¯̄x′d2 obtains the desired signal of x′2.

Remark 5. Considering the controller in the form of ˙̄̄x′d2 , it is concluded that, if the strict edge is
not exceeded, ν would stabilize at 0, so the ˙̄̄x′d2 turns to ˙̄x′d2 . For the same reason, ˙̄x′d2 would turn to
ẋ′d2 if the virtual edge is not exceeded, as λ1 and λ2 would also stabilize at 0 in this case. Therefore,
the controller ¯̄x′d2 will be equivalent to x̄′d2 and x′d2 . In conclusion, the controller ¯̄x′d2 is capable of
dealing with all situations.

Remark 6. Because ¯̄x′d2 = [ ¯̄T
d
f ¯̄αd ¯̄µd]T , ¯̄T

d
f is the desired signal of thrust that would be directly

sent to engine, whereas ¯̄αd and ¯̄µd are the virtual control inputs of the inner control loops, together
with βc = 0, define xd

2 = [ ¯̄µd ¯̄αd βc] as the virtual control input vector of inner control loops.

4.1.3. Stability Analysis of Outer Control Loops

Theorem 1. Consider the outer control loops, satisfying Assumptions 1–4, if the conditions

λmin(ks,1 − ks,3) >
1
2

(44)

λmin(cξ1) > 1 (45)

λmin(ks,2 − ks,4) > 0 (46)

are satisfied, the proposed adaptive controller together with a two-layer SE scheme guarantees the
asymptotic stability of system.

Proof. Select the Lyapunov function candidate for the outer control loops as:

Vs =
1
2

sTs +
1
2

ξ̃
T
1 c−1

ξ1 ξ̃1 (47)

where and ξ̃1 = ξ̂1 − ξ̄1.
Considering the first layer SE and adaptive law, according to Equations (30) and (37)

and Remark 4, and taking the derivation of Vs we obtain:

V̇s = sT(c0(x1 − ẋc
0 − µ̇1)− ẍc

0 + f 1(x1) + ḡ1(x1, β, δ, x′2) + ξ1 − µ̈1 + Ḡ1∆x′2) + ξ̃
T
1 (−ξ̂1 + |s|) (48)

Considering Assumption 4, we have ∆x′2 = ∆x′c2 . Noticing Equations (23) and (42)
and Remark 4, we get:

V̇s = sT(−(ks,1 − ks,3ν)s− (ks,2 − ks,4ν)sgn(s) + ξ1 −msgn(s)ξ̂1) + ξ̃
T
1 (−ξ̂1 + |s|)

6 sT(−(ks,1 − ks,3ν)s− (ks,2 − ks,4ν)sgn(s) + msgn(s)ξ̄1 −msgn(s)ξ̂1) + ξ̃
T
1 (−ξ̂1 + |s|)

6 sT(−(ks,1 − ks,3ν)s− (ks,2 − ks,4ν)sgn(s)) + msgn(s)sT(ξ̄ − ξ̂1) + ξ̃
T
1 (−ξ̂1 + |s|)

= sT(−(ks,1 − ks,3ν)s− (ks,2 − ks,4ν)sgn(s))− ξ̃
T
1 ξ̂1

6 sT(−(ks,1 − ks,3ν)s− (ks,2 − ks,4ν)sgn(s))− 1
2

ξ̂
T
1 ξ̂1 +

1
2

ξ̄
T
1 ξ̄1

(49)
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According to Equation (41), we have 0 < |λmax(ν)| < 1, and since λmin(cξ1) > 1, we
have λmax(c−1

ξ1 ) > 1, therefore:

V̇s 6 −sT(ks,1 − ks,3)s− sT(ks,2 − ks,4)sgn(s)− 1
2

ξ̃
T
1 cξ1ξ̃1 +

1
2

ξ̄
T
1 cξ1ξ̄1 (50)

Considering Equations (44)–(46), we have:

V̇s 6 −
1
2

sTs− 1
2

ξ̃
T
1 ξ̃1 + σs (51)

= −Vs + σs (52)

where σs =
1
2 ξ̄

T
1 ξ̄1, then we obtain

0 ≤ Vs(t) ≤ σs + [Vs(0)− σs]e−t (53)

Therefore, Vs is bounded, and the stability of the outer-loop control is proved.

4.2. Inner Control Loops

The objective of the inner control loops is to follow the virtual control input xd
2. The

design of the inner control loops is divided into two steps: the attitude control and the
angular rate control. The attitude control follows xd

2 and generates the desired angular rate
xd

3. Because there are no uncertainties in Equation (13), and control input is affine, BS is
used to control the attitude angle. The angular rate control follows xd

3 and generates the
desired control surface deflection. Due to strong nonlinearity of the control surface and
outside disturbances, IBS is used for angular rate control, with a adaptive model-based
estimator to obtain the state derivation. The details of inner control loops are shown as
follows:

4.2.1. Controller Design

Attitude control
Define the attitude error e2 as:

e2 = x2 − xd
2 (54)

Take the time derivation of e2 as:

ė2 = f̄ 2(x1, x2, δ) + ξ2 + g2 · x3 (55)

where ξ2 = d2 − ẋd
2.

According to Assumption 3, f 2,e(x1, x2, δ) is bounded; because ẋd
2 is a continuous

function of s, ξ̃, µ1, and ν, it is also bounded. Thus, it is concluded that ξ2 is bounded, that
is, ξ2 < ξ̄2.

The virtual control input is designed as:

xd
3 = g−1

2

(
−k2e2 −msgn(e2)ξ̂2 − f̄ 2(x1, x2, δ)

)
(56)

where k2 is a designed matrix, and ξ̂2 is the adaptive compensation for ξ2, which is designed
as:

˙̂ξ2 = −cξ2(ξ̂2 + |e2|) (57)

where ξ̃2 = ξ̂2 − ξ̄2.
Angular rate control
Define the angular rate error as:

e3 = x3 − xd
3 (58)
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Taking the derivation of e3 and writing it in incremental form according to Equations
(20) and (24), we get:

ė3 = f 3(x3) + ḡ3(x1, x2, x3, δ) + ξ3 + Ḡ3∆δ (59)

where ξ3 = d3 + G1,e∆δ− ẋd
3, for the same reason that ξ1 and ẋd

2 are bounded, ξ3 and ẋd
3

are bounded also, so we can conclude that there exists a 1*3 vector ξ̄3 = [ξ3,1 ξ3,2 ξ3,3]
T

where ξ3,1, ξ3,2, ξ3,3 ∈ R+, let |ξ3| < ξ̄3.
The desired moment increment ∆Md is designed as:

∆Md = −k3e3 − f 3(x3)− ḡ3(x1, x2, x3, δ)−msgn(e3)ξ̂3 −
1
τ3
(xd

3 − α3) (60)

where ξ̂3 is the adaptive compensation of ξ3, which is designed as:

˙̂ξ3 = −cξ3(ξ̂3 + |e3|) (61)

where ξ̃3 = ξ3 − ξ̂3.
Thus, the desired control surface deflection could be obtained as:

∆δd = Ḡ+
3 ∆Md (62)

where Ḡ+
3 = ḠT

3 (Ḡ3ḠT
3 )
−1 is a Moore–Penrose pseudoinversion of Ḡ3.

Remark 7. The 11 independent control surfaces of the ICE aircraft makes it an over-actuated system.
Mathematically, as Ḡ3 is not square and generally has a non-trivial null space, there are an infinite
number of rudder surface deflection combinations that could meet specific moment commands.
Therefore, some approaches must be taken to select the ’best’ among the infinite combinations. These
approaches are known as the ’control allocation’ method. The most intuitive way to conduct control
allocation is to introduce a secondary goal. For example, control allocation could be described as an
optimization problem as follows:

min
1
2

∆δT∆δ

s.t. Ḡ3∆δ = Md

The unique solution of this problem is ∆δd = Ḡ+
3 Md, and Ḡ+

3 is known as the Moore–
Penrose pseudoinversion [29] of Ḡ3. In the control allocation field, this method is known as
generalized inverse, which not only ensures the uniqueness of the solution, but also brings additional
benefits, that is, minimizing the increment of the control input. At present, is in-depth research
on control allocation. Many advance control allocation methods, such as reinforcement learning
control allocation and various kind of multi-objective optimization, are proposed. However, control
allocation is not the focus of this paper. We consider the simplicity of the mathematical definition
of the generalized inverse method and its successful application in practice. It is believed that the
generalized inverse method is capable of dealing with all situations involved in this paper.

4.2.2. Stability Analysis of Inner Control Loops

Theorem 2. Considering the inner control loops with Assumptions 1–5. If the conditions

−λmin(k2) +
1
2
6 −1

2
(63)

−λmin(k3) +
1
2

λmax(gT
2 g2) 6 −

1
2

(64)

λmin(cξ2) > 1 (65)

λmin(cξ3) > 1 (66)
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are satisfied, the proposed controller can guarantee the boundedness of all error signals.

Proof. Considering the attitude angle tracking error and filter error, define the candidate
Lyapunov function as:

V =
1
2

eT
2 e2 +

1
2

ξ̃
T
2 c−1

ξ2 ξ̃2 +
1
2

eT
3 e3 +

1
2

ξ̃
T
3 c−1

ξ3 ξ̃3 (67)

Take the time derivation of V:

V̇ = eT
2 ė2 + ξ̃

T
2 c−1

ξ2
˙̂ξ2 + eT

3 ė3 + ξ̃
T
3 c−1

ξ3
˙̂ξ3 (68)

According to Equations (55)–(58), we have:

eT
2 ė2 + ξ̃

T
2

˙̂ξ2 = eT
2 ( f̄ 2(x1, x2, δ) + ξ2 + g2 · (xd

3 + e3)) + ξ̃
T
2 (−ξ̂2 + |e2|)

= eT
2 (−k2e2 + ξ2 −msgn(e2)ξ̂2 + g2e3)− ξ̃

T
2 ξ̂2 + ξ̃

T
2 |e2|

6 −eT
2 k2e2 + |eT

2 |ξ2 − |eT
2 |ξ̂2 + eT

2 g2e3 − ξ̃
T
2 ξ̂2 + ξ̃

T
2 |e2|

6 −λmin(k2)eT
2 e2 + eT

2 g2e3 − ξ̃
T
2 ξ̂2

6 (−λmin(k2) +
1
2
)eT

2 e2 +
1
2

λmax(gT
2 g2)e

T
3 e3 −

1
2

ξ̂
T
2 ξ̂2 +

1
2

ξ̄
T
2 ξ̄2

(69)

According to Equations (59)–(61), we have:

eT
3 ė3 + ξ̃

T
3

˙̂ξ3 = eT
3 ( f 3(x3) + ḡ3(x1, x2, x3, δ) + ξ3 + Ḡ3∆δ) + ξ̃

T
3 (−ξ̂3 + |e3|)

= eT
3 (−k3e3 + ξ3 −msgn(e3)ξ̂3)− ξ̃

T
3 ξ̂3 + ξ̃

T
3 |e3|

6 −λmin(k3)eT
3 e3 −

1
2

ξ̃
T
3 ξ̃3 +

1
2

ξ̄
T
3 ξ̄3

(70)

Substituting Equations (69) and (70) into Equation (68), we get:

V̇ 6
(
−λmin(k2) +

1
2

)
eT

2 e2 −
1
2

ξ̃
T
2 ξ̃2 +

(
−λmin(k3) +

1
2

λmax(gT
2 g2)

)
eT

3 e3 −
1
2

ξ̃
T
3 ξ̃3 +

1
2

ξ̄
T
2 ξ̄2 +

1
2

ξ̄
T
3 ξ̄3 (71)

According to Equations (63)–(66), we have:

V̇ 6 −1
2

eT
2 e2 −

1
2

ξ̃
T
2 ξ̃2 −

1
2

eT
3 e3 −

1
2

ξ̃
T
3 ξ̃3 + σ (72)

= −V + σ (73)

where σ = 1
2 ξ̄

T
2 ξ̄2 +

1
2 ξ̄

T
3 ξ̄3, then we obtain

0 ≤ V(t) ≤ σ + [V(0)− σ]e−t (74)

Therefore, V is bounded, and the stability of inner-loop control is proved.

5. Simulation

The proposed incremental sliding-mode controller with two-layer SE has two main
advantages: its robustness and the two-layer SE’s contribution to stability and state satu-
ration. Thus, two simulations are presented in this section. The first simulation aims to
verify the robustness of the proposed controller, and the second simulation aims to verify
the effectiveness of two-layer SE.

The trajectory command signal is generated by the following system:

ẋc
0 =

Vc cos γc cos χc

Vc cos γc sin χc

Vc sin γc

 (75)
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The trajectory command signal in 3-dimensional space is given in Figure 2; γc and
χc are given in Figure 3, and Xc(0) = 0 ft, Yc(0) = 0, Zc(0) = 5000 ft. In addition,
Vc = 627 ft/s, βc = 0. This means that the aircraft should fly at a constant speed and
perform coordinated turns.

Figure 2. Trajectory command in 3-dimensional space.
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Figure 3. Rudder deflections in simulation 2.

The control parameters are chosen as: c0 = diag(0.21, 0.25, 0.13), ks,1 = diag(0.13, 0.13, 0.16),
ks,2 = diag(3.50, 3.50, 3.50), ks,3 = diag(0.76, 0.76, 0.85), ks,4 = diag(3.00, 3.00, 3.00), cξ1 =
diag(1.6, 1.6, 1.6), cξ2 = diag(1.5, 1.5, 1.5), cξ3 = diag(1.5, 1.5, 1.5), cp1 = diag(0.50, 0.50, 0.50),
cp2 = diag(0.50, 0.50, 0.50), cp3 = diag(1.50, 1.50, 1.50), cp4 = diag(0.10, 0.30, 0.20),
cp5 = diag(0.10, 0.10, 0.10), k2 = diag(1.5, 2, 1.5), and k3 = diag(10, 10, 10). The strict
edge is set to be x′2s = [0 − 5 − 60]T , x′2s = [40000 40 60]T , ẋ′2s = [−1000 − 0.1 − 0.1]T ,

ẋ′2s = [2000 0.1 0.1]T , and the virtual edge is set to be x′2v = [−2000 − 4 − 50]T ,

x′2s = [39000 35 50]T , ẋ′2s = [−1800 − 0.05 − 0.05]T , ẋ′2s = [1800 0.05 0.05]T .
The initial trim conditions are selected as: X0 = 0, Y0 = 0, Z0 = 5000 ft, vx0 = 627 ft/s,

vy0 = 0, vz0 = 0, β0 = −0.0196 deg, α0 = 3.76 deg, µ = 0.304 deg, p = 0, q = 0, r = 0.

5.1. Simulation 1

In the first simulation, the performance of the controller in the presence of disturbance
and without disturbance is tested. The disturbances here consists of aerodynamic coefficient
errors and external disturbances. Aerodynamic coefficient errors come from different
interpolation methods. Note, the same aerodynamic data are used in the aircraft model
build and controller design; however, to ensure high fidelity, an Akima spline is used
to build the aircraft model, whereas linear point slope is used in the controller design.
Different interpolation methods can cause errors up to 30 percent, as shown in Figure 4.
The external disturbances are designed as:

dF =

 0.25 sin(0.02t) 0 0
0 0.25 sin(0.02t + π/4) 0
0 0 0.25 sin(0.02t + π/2)

 · Fa · Tve (76)
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dM =

 0.3 sin(0.2t ++π/5) 0 0
0 0.3 sin(0.2t + π/4) 0
0 0 0.3 sin(0.2t + π/2)

 ·Ma (77)
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Figure 4. Aerodynamic coefficients.

The results of simulation 1 are shown in Figures 5–14. It can be observed from
Figures 5 and 6 that the presence of disturbances do not significantly affect the trajectory
tracking performance of the controller. From Figures 7–12, we know that the overshoot and
regulation time of the rest of the signals are not affected very much, either. The robustness
of the proposed controller is satisfactory.

Figure 5. Trajectory in 3-dimensional space.



Aerospace 2022, 9, 352 16 of 22

0

40000

80000

0
10000
20000

0 50 100 150 200 250
0

20000
40000

X(
fe

et
)

Y(
fe

et
)

 x1,c
 Without disturbance
 With disturbance

Z(
fe

et
)

Time (s)

Figure 6. Results for X, Y, and Z.
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Figure 7. Results for vx, vy, and vz.
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Figure 8. Results for α, β, and µ in presence of disturbances.
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Figure 9. Results for α, β, and µ without disturbances.
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Figure 10. Results for p, q, and r in persence of disturbances.
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Figure 11. Results for p, q, and r without disturbances.

0 50 100 150 200 250

0

20000

40000

Th
ru

st 
(lb

s)

Time (s)

 Without disturbance
 With disturbance

Figure 12. Thrust.

0 50 100 150 200 250

-30

0

30

60

Ef
fe

ct
or

 d
ef

le
ct

io
n(

de
g)

Time (s)

 lamt  lele  llefi  llefo  lssd  pf
 lamt  lele  llefi  llefo  lssd

Figure 13. Effector deflections in presence of disturbance.
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Figure 14. Effector deflections without disturbance.

5.2. Simulation 2

In the second simulation, the performance of the controller without two-layer SE is
tested, and the results are shown in Figures 15–22.

Figure 15. Trajectory in 3-dimensional space.
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Figure 16. Results for X, Y, and Z.
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Figure 22. Effector deflections without SE.

From Figures 15 and 16, we know that, in the absence of SE, the trajectory tracking
error does not converge, and the aircraft ends up losing control.

From Figures 18 and 20, we know the inner-loop control works well, so the problems
come from the outer-loop control. From Figures 18, 19, and 21, we see that, compared with
the controller with SE, the absence of SE causes saturation in α, µ, and T, respectively. In
Figure 21, T reaches the amplitude limits around 100 s, but the aircraft is still in control. It
appears that the amplitude saturation endures to some degree, and the direct reason the
aircraft loses control is that the virtual control input reaches the rate limit around 175 s, as
shown in Figure 19. To conclude, the system is more sensitive to rate saturation.

From a theoretical point of view, if the amplitude of the virtual control input is
saturated, at least the control direction is still correct, and the system will still remain stable
while the saturation is not too severe. The reason why the system is more sensitive to
rate saturation is that the stability of the system is based on Assumption 4. If the rate
of the virtual control input is saturated, it means that the virtual control input cannot be
responded to quickly enough, so Assumption 4 will no longer hold. Thereby, the virtual
control input may severely chatter, and the system would end up losing control.

In this simulation, we can found that the proposed SE can compensate for the satura-
tion and make the system more stable. Certainly, if saturation is not too severe, the system
may remain stable without SE. However, the absence of SE will make the time delay of the
inner-loop state become unbearable if the aircraft is at the edge of the flight envelope. The
results of this simulation demonstrate the effectiveness of the SE.

6. Conclusions

This paper proposes a trajectory controller for a tailless aircraft. The trajectory con-
troller is divided into three parts: outer-loop control, attitude control, and angular rate
control. The incremental backstepping sliding-mode control and incremental backstepping
control are applied in the outer-loop control and angular rate control, and the attitude
control loops are treated by the backstepping approach. A two-layer stability enhancer that
considers both amplitude and rate limits of the virtual control input is proposed. With the
help of SE, the incremental control method could be extended to outer-loop control. An
adaptive estimator for the state derivative is proposed, and, together with the incremental
control method, the controller shows excellent robustness. Using Lyapunov theory, the
system is proven to be globally asymptotic stable. In the simulations, the robustness of the
controller and the effectiveness of SE are proven. Due to disturbances, sensor errors, and
real-world bias, verifying the result in an experiment would be slightly more difficult than
in simulation. It also should be noted that, because the aerodynamic data in the simulation
are high-fidelity, we believe the result would still be well supported. Further investigation
could be devoted to studying if there is noise in state signals and how to deal with it. In
addition, for future research focusing on the robustness of incremental control methods,
it is expected to see how the incremental control method performs under more realistic
turbulence models, such as the Dryden model.
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