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Abstract: Using adaptive dynamic programming (ADP), this paper presents a novel attitude-tracking
scheme for over-actuated tailless unmanned aerial vehicles (UAVs) that integrates control and control
allocation while accounting for nonlinearity and nonaffine control inputs. The proposed method uses
the idea of nonlinear dynamic inversion to create an augmented system and converts the optimal
tracking problem into an optimal regulation problem using a discounted performance function.
Drawing inspiration from incremental control, this method achieves optimal tracking control for
the nonaffine system by simply using a critic-only structure. Moreover, the unique design of the
performance function ensures robustness against model uncertainties and external disturbances.
The ADP method was found to outperform traditional control architectures that separate control
and control allocation, achieving the same level of attitude-tracking performance through a more
optimized approach. Furthermore, unlike many recent optimal controllers for nonaffine systems,
our method does not require any model identifiers and demonstrates robustness. The superiority of
the ADP-based approach is verified through two simulated scenarios, and its internal mechanism is
further discussed. The theoretical analysis of robustness and stability is also provided.

Keywords: attitude tracking; tailless unmanned aerial vehicle; adaptive dynamic programming;
UAV flight simulation; nonlinear flight control

1. Introduction

The tailless unmanned aerial vehicle (UAV) has garnered immense attention due to its
promising potential in both civil and military aviation. Its superior aerodynamic efficiency
in comparison to traditional designs offers benefits such as improved voyage, carrying
capacity, and stealth performance. This has led to the emergence of several tailless UAVs
such as Boeing’s X-45 A, X-45B/C, Lockheed Martin’s RQ-170 Sentinel, BAE’s Taranis, and
Dassault’s NEURON.

The Innovative Control Effector (ICE) aircraft [1,2], developed through research by
Lockheed Martin, stands out among the latest tailless aerial vehicles. ICE is equipped with
as many as 11 effectors relocated compactly on its main wing, which makes the system over-
actuated. Such a unique layout was designed to investigate and measure the aerodynamics
and performance of various low-observable tailless configurations using innovative control
effectors. After decades of research, ICE has been found to have excellent maneuverability
and stealth performance, making it a good choice for future UAV design.

The unique configuration of ICE allows its effectors to achieve goals beyond providing
aerodynamic moments, such as minimizing drag or maximizing lift [3]. However, this
configuration also poses challenges for control. Like other tailless vehicles, ICE suffers
from problems such as poor static stability and coupling between longitudinal and lateral
dynamics. Additionally, the redundant effectors of ICE require dealing with the control
allocation problem, which involves selecting appropriate effectors and providing deflection
commands to generate the required moments. However, the compact layout of ICE’s
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effectors results in strong coupling effects between them, causing the control inputs to
appear nonlinear in the system, which means that the system is nonaffine. As a result, the
control allocation of ICE is an extremely challenging task.

Since the proposal of the concept of ICE, researchers in the flight control field have
been paying constant attention to it [4–6]. In 2017, Niestroy et al. [7] published detailed
aerodynamic data for ICE, which enabled the construction of a highly precise control-
oriented nonlinear model and the development of advanced control algorithms. Many
researchers have developed different control algorithms for the nonlinear ICE model. In a
recent study, He et al. [8] proposed an altitude tracker for ICE using the well-known decou-
pling conditions for nonaffine systems [9–14], while other researchers prefer incremental
control methods.

The principle behind incremental control methods is timescale separation, which
makes use of Taylor expansion. Incremental control methods can transform nonaffine
systems into incremental affine forms. Therefore, the complexity of nonlinear optimiza-
tion in CA can be avoided. This approach is highly effective for dealing with nonaffine
systems [15]. Recently, there have been several advancements in incremental control for
ICE. Stolk et al. [3] proposed a minimum drag CA method based on incremental nonlinear
dynamic inversion. Matamoros [16] implemented an incremental nonlinear CA in ICE,
resulting in improved tracking and CA performance. Sun et al. [17] improved the CA of
ICE using hierarchical multi-objective optimization and adaptive incremental backstepping.
Additionally, He et al. [14] extended the incremental control to the outer-loop control of
ICE trajectory tracking using the pseudo-control hedging technique and relaxing the need
for a timescale separation principle.

The reason incremental control is effective for nonaffine systems is it makes good
use of the partial derivative of control inputs, ∂ f (x,u)

∂u . This is obtained through the digital
differentiation of aerodynamic data. It is worth noting that obtaining the partial derivative
of control inputs may be challenging in some systems. However, with the advancements in
wind-tunnel tests, we can obtain more accurate and economic aerodynamic data for flight
control. When combined with model identification techniques, incremental control has
great potential for the future.

Most of the aforementioned control methods separate the command tracking and
control allocation (CA) tasks. The command tracker provides the aerodynamic coefficients
command τc to ensure that the reference signal xc is accurately tracked, while the CA deter-
mines the specific effector deflection u based on the aerodynamic coefficients command and
its objective function. This framework is highly convenient for incorporating established
flight control algorithms, and the CA can be viewed as an optimization problem that can
leverage the well-established optimization theory. As a result, this framework is preferred
by most researchers.

However, there are some aspects of the above framework that could be improved. The
obvious drawback is that the CA is designed to minimize the objective function consisting
of the moments tracking error τe = τ − τc and the effector deflection u. From an input and
output perspective, the moments tracking error is only an intermediate value, and what
truly matters is the reference signal tracking error xe = x− xc. Therefore, the ideal objective
function should take both xe and the effector deflection into consideration, instead of just
τe. Additionally, most existing flight control algorithms are based on Lyapunov theory and
can only take into account the convergence of xe. To make these algorithms compatible
with the over-actuated UAV, the above framework must be adopted, and the second goal is
left to the CA.

Meanwhile, the above framework takes two steps to give effector deflection, increasing
the computational time. Hou et al. [18] introduced the recurrent neural network in CA and
claimed that the recurrent neural network model could be solved in parallel to meet the
real-time requirement. Still, this approach has only been validated in a linearized model,
where the computational load is inherently small.
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Hence, it is imperative to develop more reasonable and effective frameworks that
abandon the meaningless intermediate values, therefore ensuring convergence of xe and
achieving the second goal in one step. Optimal control is a promising option in this
regard. Unlike the objective function of CA that only considers τe and the second goal, the
performance function of optimal control can incorporate the tracking error and any other
desired second goals. This means that the command tracking and CA can be described
using a single equation. However, solving the nonlinear Hamilton–Jacobi–Bellman (HJB)
equation remains a formidable challenge.

Adaptive dynamic programming(ADP) provides new ideas for solving the nonlinear
HJB equation. ADP is a heuristic algorithm for solving optimal control. Compared with
other heuristic algorithms, such as reinforcement learning, ADP is supported by optimal
control theory, so it shows better convergence and stability and is more suitable for flight
control. The first application of ADP in optimal control could be seen in a study by Wer-
bos [19]. ADP’s basic idea is to use sampling data to drive a neural network to approximate
the optimal value function. In this way, APD turns the backward-in-time dynamic program-
ming process into a forward-in-time manner and greatly expands the application of optimal
control. For theoretical studies of ADP, Wei and Liu [20] give the stability analysis of policy
iterative APD, and the stability proof of value iterative ADP is given by Al-Tamimi and
Lewis [21]. Moreover, the researchers also proposed different frameworks of ADP, such
as heuristic dynamic programming [22], dual heuristic programming [23], and globalized
dual heuristic programming [24]. These studies lay the foundation of ADP, and a more
detailed review of recent studies on ADP can be found in the paper by Liu et al. [25]

Model identification is a commonly adopted technique in recent applications of ADP
in practical systems [26,27]. Model identification is an effective method for enhancing
the robustness of ADP, but it requires introducing an identifier network. Compared to
basic ADP, which uses only a critical network to approximate the value function, the
incorporation of additional networks significantly increases the computational complexity.
Therefore, approaches to alleviate the computational burden, such as the event-trigger
technique [28], are necessary for these methods.

However, it is often overlooked that the optimal control itself could be robust with an
appropriate design of performance function. This idea is illustrated in a book by Lin [29],
and the author systematically discusses how to handle disturbance and model uncertainty
in an optimal control way. This way, the ADP could enjoy robustness while avoiding heavy
computational burdens. However, the author also points out that it is still an open question
how to apply similar approaches to a nonaffine system. Most ADPs are developed to
address the optimal regulation problem, but for flight control, the optimal tracking control
has a more practical use. With the development of the aviation industry, modern flight
control is no longer satisfied with just ensuring flight stability. Many researchers [30–34]
began to consider how to track the command signal optimally.

In the control field, optimal tracking control has attracted increased attention. One
of the most common optimal tracking methods is the combination of feedforward control
and feedbackward control [35–40]. The feedforward control is a traditional steady-state
tracking controller to ensure the command reference signal is tracked. ADP is used in
the feedbackward control to stabilize the transient error optimally. With the help of the
traditional steady-state tracking controller, this optimal tracker shows good stability. Nev-
ertheless, this optimal tracker is not suitable for ICE. Designing a traditional steady-state
tracking controller for ICE has already been an arduous task, and the control allocation still
needs to be considered in this process.

Some ADP-based optimal trackers do not rely on the feedforward control [41–43].
These studies applied a discounted performance function to ensure the boundness of the
optimal value function in the infinite-time process and constructed an augmented system
using the error dynamic and reference signal dynamic to transform the tracking problem
into the regulation problem. However, the dynamic of the reference signal is unavailable in
these methods, limiting the use of these ADPs.
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From the other view, nonlinear dynamic inversion [44], as a tried-and-tested control
method in the flight control area, constructs the dynamic of the desired signal using
state value and command signal, which provides a new idea to overcome this drawback.
Moreover, these ADPs also cannot address the nonaffine system, so they cannot be directly
used for ICE.

To apply ADP in ICE, the nonaffine control input must be considered. Recent optimal
trackers for nonaffine systems can be grouped into two types. One type is mainly for single-
input systems, which decouple the nonaffine system into an affine system with model
uncertainties [45–47], but it is not easy to extend such a method to the multi-input system.
Using decoupling conditions, these methods show robustness, but neglecting model details
also makes their optimization performance poor. The other type uses the other neural
network, known as the actor network, to handle nonlinearity in control input and update
the policy through gradient-base algorithm [48–50]. This method performs well but also
needs more data and training, which undoubtedly increases the computational burden. Of
course, some tricks commonly used in reinforcement learning [34] could also help improve
the convergence rate of the method, but this also causes the lack of stability proofs.

Motivated by the aforementioned studies, this article proposes a critic-only ADP tech-
nique for the attitude tracking of ICE featured by nonaffine control inputs and redundant
effectors. Through ADP, our approach integrates control and control allocation so that the
same performance can be achieved at a cost less than conventional methods. By the idea of
nonlinear dynamic inversion, an augmented system is constructed. The optimal tracking
problem is transformed into an optimal regulation problem with discounted performance
function, and the command dynamic is avoided. Inspired by the successful use of ∂ f (x,u)

∂u in

incremental control, we introduce ∂ f (x,u)
∂u into APD, letting our method handle the nonaffine

system in a simple way. Moreover, this article proves that for the control of the nonaffine
system, the robust tracking problem could be equivalent to the optimal tracking problem
with an augmented cost. This provides another way to improve the robustness of ADP, and
complex model identification methods can be avoided.

The rest of the paper is arranged as follows: Section 2 introduces the aerodynamic
model of the UAV. Section 3 gives the problem formulation and shows at the theoretical
level that the optimal control with a specially designed performance function is equivalent
to robust control. Section 4 presents the control scheme and stability analysis. Section 5
presents two simulations that validate the superiority of our method over the conven-
tional approach and demonstrate its robustness, respectively. Finally, Section 6 gives the
conclusion and the outlook for the next steps of research.

2. Model Description

This section introduces the ICE model. The basic parameters of ICE can be found in
Table 1 [7], while more detailed information on the modeling of effectors can be found in
Chapter 3 of [3]. Due to space constraints, this information will not be repeated here.

Figure 1 displays the layout of ICE, which features a high-sweep, tailless flying wing
with a leading-edge sweep of 65 deg and 25 deg chevron shaping on the trailing edge. ICE
is equipped with 13 independent effectors, including two pairs of leading-edge flaps (LEF),
a pair of spoiler slot deflectors (SSD), a pair of all-moving tips (AMT), a pair of elevon
(ELE), a pair of ganged pitch flaps (PF), and multi-axis thrust vectoring (MTV). Since this
paper is focused on the cruising stage, MTV will not be taken into account.

The deflection ranges of the effectors are, inboard LEF: 0–40 deg, outboard LEF:
±40 deg, ELE: ±30 deg, PF: ±30 deg, AMT: ±60 deg, SSD: 0–60 deg. The rate limits on the
leading-edge devices are 40 deg/s and on all the other surfaces 150 deg/s.

The modeling of the UAV is based on the following two assumptions: 1st, the UAV
flies in the atmosphere, and the atmosphere is incompressible; 2nd, the UAV’s body is rigid.
Please note that only the body of the UAV is considered a rigid body, but the effectors
are deformable.
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Table 1. The basic parameters of ICE.

Parameter Nomenclature Value Unit

b Lateral–directional reference length, span 37.50 ft
c̄ Mean aerodynamic chord 28.75 ft
m Weight 32,750 LBF
Iyy Pitch Moment of Inertia 78,451 slug·ft2

Ixz Cross Product of Inertia −525 slug·ft2

Ixx Roll Moment of Inertia 35,479 slug·ft2

Izz Yaw Moment of Inertia 110,627 slug·ft2

S Reference area 808.60 ft2

Xth Moment arm for thrust vectoring 18.75 ft
Xcg Gravity center 38.84%c̄
Xac Aerodynamic center 38.00%c̄

Remark 1. In previous studies [8,44,51], the MTV was used solely during the UAV’s vigorous
maneuvers or when other effectors were saturated. However, this paper proposes a cruise-oriented
approach where ADP enables a superior trade-off between effector deflection and tracking error. This
effectively eliminates the need for MTV, ensuring that effector saturation is avoided.

Figure 1. The layout of ICE.

The motion equation of 6-DOF UAV model is given below[14,18,52], the nomenclature
of the variables in the following equation can be found in Table 2.V̇

χ̇
γ̇

 =


1
M 0 0
0 1

MVcγ
0

0 0 −1
MV

 · [TveG f + F
]

(1)

where V, γ, and χ are airspeed, flight path angle, and ground tracking angle, respectively.
s? and c? represent sin ? and cos ?. F donate the sum of aerodynamic force and thrust,
which could be approximated through accelerometers, and G f = [0 0 Mg]T represents
gravitational forces. Define µ, α, and β as the bank angle, angle of attack, and sideslip angle,
then the dynamic of [µ α β] is:µ̇

α̇
β̇

 =

 cαcβ 0 sα

sβ 1 0
sαcβ 0 −cα

−1−TT
bv

−χ̇sγ

γ̇
χ̇cγ

+

p
q
r

 (2)
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where p, q, and r are the body-axis roll, pitch, and yaw rates. The expression Tvb is the
transformation matrix from the body frame to the velocity frame, and Tve is the transfor-
mation matrix from the earth frame to the velocity frame. These matrices are given in [53]:

Tvb =

 cαcβ sβ sαcβ

−cαsβcµ + sαsµ cβcµ −sαsβcµ − cαsµ

−cαsβsµ − sαcµ cβsµ −sαsβsµ + cαcµ

 (3)

Tve =

 cχcγ sχcγ sγ

−sχ cχ 0
cχsγ sχsγ cγ

 (4)

The dynamic of [p q r] is: ṗ
q̇
ṙ

 = J−1(Ma −

p
q
r

× J

p
q
r

) (5)

where J is rotary inertia, defined as:

J =

 Ixx 0 Ixz
0 Iyy 0

Izx 0 Izz

 (6)

and Ma = [l m n] is the aerodynamic moment, defined by:

Ma =

 l
m
n

 = q̄S

 b · Cl
c̄ · Cm
b · Cn

 = q̄S

 b · [(Cl,base(α, β, V) + ∑
j
i=1 Cl,i(α, β, δ))]

c̄ · [(Cm,base(α, β, V) + ∑
j
i=1 Cm,i(α, β, δ))]

b · [(Cn,base(α, β, V) + ∑
j
i=1 Cn,i(α, β, δ))]

 (7)

where the q̄ is the dynamic pressure, b is span, c̄ is the mean aerodynamic chord, δ ∈ δmax
represents the deflection of effectors, δmax is the deflection range of effectors [3],
C·,base(α, β, V) and ∑

j
i=1 C·,i(α, β, δ) are the aerodynamic coefficients generated by the body

and control surfaces.

Table 2. Nomenclature of variables.

Parameter Nomenclature Unit

F = sum of aerodynamic force and thrust LBS
l, m, n = aerodynamic rolling, pitching, and yaw moment LBS·ft
p, q, r = body-axis roll, pitch, and yaw rate rad/s
V = airspeed ft/s
γ = flight path angle rad
χ = flight path sideslip angle rad
α = angle of attack rad
β = sideslip angle rad
µ = bank angle about the velocity vector rad

The coordinate system involved in the above kinetic equations is shown in Figure 2.
Equation (1) is defined in the tangent-plane coordinate system, which is aligned as a
geographic system but has its origin fixed at a point of interest on the spheroid; Equation (2)
is defined in the wind-axes system, and Equation (5) is defined in the body-fixed coordinate
system. The relationship between the wind-axes system and the body-fixed coordinate
system is shown in Figure 1. The origin of both is at the UAV’s center of gravity, but the
X-axis of the body-fixed coordinate system points in the direction of the nose, and the
X-axis of the wind-axes system points in the direction of the relative wind [53].



Drones 2023, 7, 294 7 of 27

Figure 2. Explanation of wind-axes system and body-fixed coordinate system.

To facilitate the design of the attitude tracker, we first construct a control-oriented
model that considers disturbances and model uncertainty caused by inaccurate aerody-
namic parameters. Define x1 = [µ α β], x2 = [p q r], then{

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x2) + g2(x1, δ) + dt
(8)

where

f1(x1) =

 cαcβ 0 sα

sβ 1 0
sαcβ 0 −cα

−1

· −TT
bv

−χ̇sγ

γ̇
χ̇cγ

 (9)

g1(x1) =

 cαcβ 0 sα

sβ 1 0
sαcβ 0 −cα

−1

(10)

f2(x2) = J−1x2 × Jx2 (11)

g2(x1, δ) = J−1Ma − g2,e(x1, δ) (12)

dt = g2,e(x1, δ) + d (13)

where dt stand for total uncertainty, g2,e represents the control effectiveness that aerody-
namic data fail to curve, and d represents the external disturbances.

3. Problem Formulation

The control structure is shown in Figure 3, donating ·c as the command signal. The
control system consists of two parts, attitude control using NDI and angular rate control
using ADP. The attitude control is to give the proper angular command so that the UAV
can track the attitude command, assuming that the derivative of the attitude command is
known, and gives the angular rate command as [44]:

xc
2 = g1

−1(x1) · (ẋd
1 − f1(x1)) (14)

where xc
2 = [pc, qc, rc]T .
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Figure 3. Control structure.

The goal of angular rate control is to give effectors’ deflection so that the angular
rate command can be tracked optimally according to the performance function. First, we
constructed an augmented system:

ẋ2 = f2(x2) + g2(x1, δ) (15)

ẋd
2 = λ(xc

2 − x2) (16)

where λ is positively defined, and xd
2 represents the desired angular rate.

Define X(t) = [x2
T , xd

2
T
]T , and rewrite the augmented system in the compact form:

Ẋ = F(X) + G(X, δ) + C + D (17)

where F(X) =

[
f2(x2)
−λx2

]
, G(X) =

[
g2(x1, δ)

03×1

]
, C =

[
03×1
λxc

2

]
, D =

[
dt

03×1

]
.

Remark 2. From Equation (14), it could be known that it is difficult to obtain the dynamic of xc
2

because of its dependence on the second order derivative of xd
1 . In many control methods, such as

incremental control methods [14], ẋc
1 is readily available, but ẋc

2 is usually obtained through digital
differentiation, which is not only sensitive to noise but also increases the computational complexity.
Therefore, in ADP, the dynamic of xd

2 is constructed using NDI, and the use of ẍd
1 could be avoided

in this way.

To facilitate the following analysis, the following assumptions are given:

Assumption 1. The total model uncertainty is bounded, there exist Dmax > 0 ,let ‖D‖ < Dmax.

Assumption 2. ∂g2(x1,δ)
∂δ ∈ R3×11 is line nonsingular, i.e., for ‖D‖ < Dmax, there exist

|∆δ| < δ̄, δ̄ > 0 such that ∂g2(x1,δ)
∂δ ∆δ = D.

Remark 3. From Equation (8), it is obvious that the total model uncertainties can be equated to
time-varying aerodynamic moment disturbances. To put it bluntly, Assumption 2 means that such
disturbances are contained in the attainable moments set of ICE, and considering the redundant
effectors that ICE is equipped with, its attainable moments set [54] has already been greatly expanded.
From Equation (13), it also could be found that g2(x1, δ) could only reflect the aerodynamic
characteristic of ICE to a certain degree. Except for the accuracy loss in the wind-tunnel test, the
raw aerodynamic data also must be well-tailored to make it more suitable for flight control design,
and the aerodynamic that g2(x1, δ) failed to reflect are seen as model uncertainties. Therefore, it is
reasonable to say that g2(x1, δ) has the properties stated in Assumption 2.
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Specifically, the angular rate control is to ensure the x2 tracks the xc
2 by minimizing

the following performance function. Consider that when the command signal does not
converge to 0, the control input also tends not to be 0. To ensure the boundness of the
performance function, the following discounted performance function is introduced:

J(X, δ) =
∫ ∞

t
e−υ(τ−t)(δ̄

T Rδ̄ + e2
TQe2 + δT Rδ) dτ (18)

where e2 = x2 − xd
2 , Q and R are positively defined matrices, υ > 0 is the discounted

factor. Compared to the conventional performance function, the upper bound of model
uncertainties δ̄ is introduced into the performance function.

Remark 4. As a tried-and-tested control algorithm, NDI has been used in flight control for decades.
In NDI, by feeding back the error between x2 and xd

2 , the tracking of xc
2 could be achieved. Therefore,

in the above performance function design, we also use the feedback of xd
2 instead of xc

2.

Since the exact value of model uncertainties is unavailable, only the optimal tracker
for the following nominal system that excludes the model uncertainties can be obtained:

Ẋ = F(X) + G(X, δ) + C (19)

However, the optimal tracker designed for the nominal system using the performance
function in Equation (18) is capable of handling model uncertainties. This point will be
elaborated on later, and the optimal tracker for the nominal system is derived as follows:

Define QT = [I3×3, −I3×3]TQ[I3×3, −I3×3], then the discounted performance func-
tion could be modified as:

J(X, δ) =
∫ ∞

t
e−υ(τ−t)(δ̄

T Rδ̄ + XTQT X + δT Rδ) dτ (20)

Then define the optimal value function:

V(X) = min J(X, δ) (21)

Remark 5. It is worth noting that the constraints imposed by the effector are not taken into account
when solving the optimal control problem. However, it is possible to effectively prevent effector
saturation by adjusting the weights in the performance function. This approach is widely adopted in
the solution of optimization problems.

Differentiating Equation (20) and noting Equation (21) give the following Hamil-
ton–Jacobi–Bellman (HJB) equation:

H(V, δ) , δ̄
T Rδ̄ + XTQT X + δT Rδ− υV + VT

X (F(X) + G(X, δ) + C) = 0 (22)

where VX = ∂V
∂X . Applying stationarity condition ∂H(V, δ)/∂δ = 0, then we have the

optimal tracker:

δ∗ = −1
2

R−1GT
δ VX (23)

where Gδ = ∂G(X,δ)
∂δ . If the HJB equation is solved, the optimal control can be obtained.

Therefore, the main issue of this paper is to solve the HJB equation using ADP.

Remark 6. From Equation (23), it can be found that the only difference between the proposed
optimal control for multi-input nonaffine systems and traditional optimal control lies in the use
of GT

δ , which is obtained through digital differentiation of aerodynamic data. In the theoretical
study of the optimal control of nonaffine systems [49,50,55–57], the nonaffine part of the system
is usually treated as completely unknown. Therefore, complex model identification methods are
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needed in these studies. However, for realistic control systems, even if the accurate analytical model
is not available, the data-based model can be built by observing the input and output of the system.
With the improvement of wind-tunnel tests for UAV modeling, the aerodynamic data we obtain is
more accurate than ever. The aforementioned theoretical studies, however, have not made sufficient
use of these data. This is undoubtedly a huge waste. In this paper, the wind-tunnel data are used
to assist ADP. By introducing Dmax into the performance function, the ADP shows robustness
against uncertainties in wind-tunnel data. Compared with online model identification, many more
computational resources could be saved in this way.

The following lemma shows that with the performance function Equation (20), the
optimal tracker in Equation (23) shows robustness against model uncertainties.

Lemma 1. Assume that the optimal control δ∗ of the nominal system (19) with performance
function (20) exist, δ∗ could also make the system with model uncertainties (17) asymptotically stable.

Proof. To facilitate the proof, an auxiliary system is proposed:
Ẋ = F(X) + G(X, δ) + C + D

ȧ = −1
2

υa
(24)

It is obvious that the subsystem ȧ = − 1
2 υa is asymptotically stable. Therefore, as long

as the auxiliary system is proven to be asymptotically stable, Lemma 1 holds. Consider the
optimal value function in Equation (21), for all X 6= 0, V > 0 and V = 0 only when X = 0.
Therefore, choose the Lyapunov function as VR = a2V, and the time derivation of VR is:

V̇R = a2V̇ − a2υV

= a2[VT
X (F(X) + G(X, δ) + C) + VT

X D− υV]

according to the HJB equation and stationarity condition, we have:

V̇R = a2[−δ̄
T Rδ̄− XTQT X − δT Rδ + υV − 2δT R

1
2 · R

1
2 G+

δ D− υV]

where the G+
δ is the Moore-Penrose inverse of Gδ. According to Assumption 2 G+

δ D = ∆δ,
such that:

V̇R = a2[−δ̄
T Rδ̄ + ∆δT R∆δ− XTQT X − δT Rδ− 2δT R

1
2 · R

1
2 ∆δ− ∆δT R∆δ]

= a2[−δ̄
T Rδ̄ + ∆δT R∆δ− XTQT X − (R

1
2 δ + R

1
2 ∆δ)T(R

1
2 δ + R

1
2 ∆δ)] (25)

according to Assumption 2, |∆δ| < δ̄ and R is positively definite, −δ̄
T Rδ̄ + ∆δT R∆δ < 0.

Therefore, it is clear that V̇R is negative definite, the auxiliary system is asymptotically
stable, and Lemma 1 is proven.

4. Main Result

As mentioned above, the main issue of this paper is solving the HJB equation and
obtaining the optimal value function. The following single-layer neural network(NN) is
applied to approximate the optimal value function:

V(X) = W T Ψ(X) + ς (26)

where Ψ(X) ∈ Rl is the activation function vector, l is the number of neurons, ς is the
approximation error, and the derivative to state of V(X) is:

VX = ∇ΨW +∇ς (27)

where W ∈ Rl is unknown ideal weights, ∇Ψ = ∂ΨT

∂X , ∇ς = ∂ς
∂X .
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Suppose that the optimal value function is continuous and is defined on a bounded
closed interval, according to the Weierstrass approximation theorem [58]. As l increases,
the optimal value function can be uniformly approximated by the NN with arbitrarily high
preciseness, which means that ς and ∇ς can be arbitrarily small. In practice, we use a
critical NN to approximate the optimal value function:

V̂(X) = Ŵ T Ψ(X) (28)

where Ŵ is the estimation of unknown weights W . Then the near-optimal control δ̂ can
be obtained:

δ̂ = −1
2

R−1GT
δ∇ΨŴ (29)

In this paper, ADP updates the critical NN online using sampling data. As more
sampling data ADP obtains, Ŵ would approach W gradually. The rest of this section
contains two parts. The first part introduces the update law of critical NN. The second part
is stability analysis, in which we will discuss why the Ŵ could approach Ŵ and why the
system stays stable.

4.1. Update Law for Critical NN

The goal of the update scheme is to minimize W̃ = W − Ŵ the estimation error of
unknown NN weights. To derive the update law, substitute Equations (26) and (27) into
HJB Equation (22), we have:

0 = H(V, δ) = δ̄
T Rδ̄ + XTQT X + δT Rδ− υ(W TΨ(X) + ς)

+ (W T∇ΨT +∇ςT)(F(X) + G(X, δ) + C)

= Λ + Ŵ T
Υ + W̃ T

Υ + ςH (30)

where

Λ = δ̄
T Rδ̄ + XTQT X + δT Rδ (31)

Υ = −υΨ(X) +∇ΨT(F(X) + G(X, δ) + C) (32)

ςH = −υς +∇ςT(F(X) + G(X, δ) + C) (33)

From Equation (30), both the estimation error W̃ and the weights of critical NN Ŵ
appear linearly. As discussed in Section 2, ςH is bounded and tends to be zero as l increases.
Moreover, the rest of variables Υ, Λ are accessible. This allows us to design the update law
that minimizes the estimation error. Therefore, we define the following filter:{

Ṗ = −kP + ΥΥT , P(0) = 0

Q̇ = −kQ + ΥΛ, Q(0) = 0
(34)

where k ∈ R+. The solution of the filter is:
P =

∫ t

0
e−k(t−τ)ΥΥT dτ

Q =
∫ t

0
e−k(t−τ)ΥΛ dτ

(35)

According to Equations (30) and (35), we have:

0 = Q + PŴ + PW̃ + µ (36)
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where µ =
∫ t

0 e−k(t−τ)ΥςH dτ. According to the above analysis, with sufficient neurons,
ς→ 0 and ∇ς→ 0. Therefore, it is reasonable to find thatµ is bounded, i.e., |µ| < µ̄, where
µ̄ ∈ R+.

Define an auxiliary vector M ∈ Rl :

M = Q + PŴ (37)

According to Equation (36), M could be seen as the estimation error of NN weights:

M = −PW̃ − µ (38)

Hence, we could obtain the online update law of Ŵ as:

˙̂W = −KM (39)

where K is constant positively defined matrix.
The update law in this paper is fundamentally different from some of the current

methods [41,42] that employ the gradient-based algorithm to minimize the bellman error
and only could ensure ultimately uniform boundlessness (UUB). The update law used
here intends to use measurable state values and the weights of critical NN to represent the
unknown estimation error of NN weights. In this way, the estimation error of NN weights
can be ensured to be asymptotically convergent, and good convergence makes this update
rate more suitable for online control systems. In what follows, we will show that Ŵ could
converge to the domain of W .

Remark 7. The idea of this paper is to use the optimal tracker of nominal systems with modified
performance functions to handle the systems with disturbances and model uncertainties. This idea
can be well applied in linear systems [29] since the optimal control for linear nominal systems is easy
to obtain by solving the Recatii equation. For the nonlinear system, however, it needs to solve the
HJB equation to obtain the optimal control. For algorithms such as ADP that solve the HJB equation
online, it gives the approximate solution of the HJB equation based on the sampled data. Still, for
the systems that suffer from disturbance, it is impossible to measure the state value of the nominal
system. According to Equations (31), (32) and (34), the information that update law uses include the
quadratic function of effector deflection δT Rδ, the nominal system dynamic F(X) + G(X, δ) + C,
and the quadratic function of state value XTQT X. The δT Rδ and F(X) + G(X, δ) + C are
directly accessible. Only the XTQT X is affected by disturbances and may influence the update law.

To address this problem, the filter system in Equation (34) is used here. Instead of using these
values directly, the values used by the update law are processed by the filter system. In this way, the
influence of disturbance on XTQT X could be mitigated to a certain extent and make the update law
more applicable. To further illustrate this opinion, the following example is introduced:

For the system with disturbance:
ẋ1 = −x1 + x2 + d

ẋ2 = x3

ẋ3 = −x2

(40)

where d is the disturbance.
Figure 4 shows the unfiltered value of x2

1, and the value of x2
1 filtered by 1

0.8s+1 . The real system
is affected by disturbance, while the nominal system is not. From Figure 4a, there is a distinct
difference between the unfiltered x2

1 of the real system and the nominal system. But by filtering the
two signals, the difference between the two becomes significantly smaller, as shown in Figure 4b. By
choosing the parameters of the filter wisely, the filtered x2

1 of the real system could approximate the
x2

1 of the nominal system pretty well.
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Figure 4. Effectiveness of the filter.

It should be noted that since the filter used in this paper is only the simplest first-order low-pass
filter, this method could achieve quite a good result when the frequency of disturbances is higher
than the frequency of state. Considering that high-frequency disturbance is a common kind of
disturbance in control systems, the applicability of this method is acceptable. To cope with more
complex situations, more targeted filters can be used according to the knowledge of the disturbance.

4.2. Stability Analysis

To prove that our approach can solve the optimal control online while making the
tracking error converge, the following stability analysis is performed. Accordingly, modify
the nominal system (24) in the following closed-loop form:Ẋ = F(X) + G(X, δ∗) + C + G(X, δ̂)−G(X, δ∗)

ȧ = −1
2

υa
(41)

Assumption 3. There exist constants f̄ , ḡ ∈ R+ such that ‖F(X)‖ 6 f̄ ‖X‖, ‖G(X, δ)‖ 6
ḡ‖X‖.

Assumption 4. The G(X, δ) is Lipschitz continuous with respect to δ, i.e., ‖G(X, δ1) − G
(X, δ2)‖ 6 L‖δ1 − δ2‖, where L ∈ R+.

Assumption 5. The command signal is bounded, i.e., there exists a constant c̄ ∈ R+ such that
‖C‖ 6 c̄.

Assumption 6. The activation function vector Ψ(X) and its derivative ∇Ψ is bounded.

Lemma 2. For the PE condition is satisfied for the regressor Υ of NN, the optimal control and
the update law could stabilize the tracking error of the nominal system (19), and the near-optimal
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control converges to a bounded neighborhood around optimal control, i.e., XT QT X 6 ξX and
‖δ̂− δ∗‖ 6 ξδ, where ξX , ξδ ∈ R+.

Proof. The Lyapunov function is constructed as:

J = J1 + J2 (42)

where J1 = 1
2 W̃ T K−1W̃ , J2 = ζ1XT QT X + ζ2a2V.

According to the Lemma 1 in [37], if the PE condition is satisfied for the regressor Υ of
NN, then P is positively defined, and since the inequality 2ab 6 ηa2 + b2

η , the derivative of
J1 is:

J̇1 = −W̃ T KW̃ + W̃ T µ

6 −(λmin(P)− η1)‖W̃‖2 +
1
η1
‖µ‖

6 −(λmin(P)− η1)‖W̃‖2 +
1
η1

µ̄2

(43)

where λmin(P) represents minimum eigenvalue of P, and η1 ∈ R+. According to
Equations (22) and (24), the derivative of J2 is:

J̇2 = 2ζ1XT QT Ẋ − υa2V + a2V̇

= 2ζ1XT QT [F(X) + G(X, δ∗) + C + G(X, δ̂)−G(X, δ∗)]− υa2V

+ a2(−δ̄
T Rδ̄− XTQT X − δT Rδ + υV)

= 2ζ1XT QT F(X) + 2ζ1XT QT G(X, δ∗) + 2ζ1XT QT C + 2ζ1XT QT (G(X, δ̂)−G(X, δ∗))

− ζ2a2δ̄
T Rδ̄− ζ2a2XTQT X − ζ2a2δT Rδ

6 ζ1(η2‖XT QT‖2 +
1
η2
‖F(X)‖2) + ζ1(η3‖XT QT‖2 +

1
η3
‖G(X, δ∗)‖2)

+ ζ1(η4‖XT QT‖2 +
1
η4
‖C‖2)

+ ζ1(η5‖XT QT‖2 +
1
η5
‖(G(X, δ∗)−G(X, δ̂))‖2)

− ζ2a2δ̄
T Rδ̄− ζ2a2λmin(QT )‖X‖2 − ζ2a2λmin(R)‖δ∗‖2

(44)

According to Assumptions 3–5, we have:

J̇2 6 [(ζ1η2 + ζ1η3 + ζ1η4 + ζ1η5)λ
2
max(QT) +

ζ1

η2
f̄ 2 +

ζ1

η3
ḡ2 − ζ2a2λmin(QT)]‖X‖2

+
ζ1

η5
L2bw‖W̃‖2 +

ζ1

η5
L2bς‖∇ς‖2 − ζ2a2δ̄

T Rδ̄− ζ2a2λmin(R)‖δ∗‖2
(45)

where bw = ‖ 1
2 R−1GT

δ∇Ψ‖, bς = ‖ 1
2 R−1GT

δ ‖ according to Assumptions 4 and 6, bw and bς

are bounded.
Therefore, the derivative of J is:

J̇ = J̇1 + J̇2 6 −ℵ1‖X‖ − ℵ2‖W̃‖ − ℵ3‖δ∗‖+ ℵ4 (46)

where

ℵ1 = −(ζ1η2 + ζ1η3 + ζ1η4 + ζ1η5)λ
2
max(QT)−

ζ1

η2
f̄ 2 − ζ1

η3
ḡ2 + ζ2a2λmin(QT)

ℵ2 = λmin(P)− η1 −
ζ1

η5
L2bw

ℵ3 = ζ2a2λmin(R)

ℵ4 = +
1
η1

µ̄2 +
ζ1

η5
L2bς‖∇ς‖2 − ζ2a2δ̄

T Rδ̄

(47)
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By designing the parameters wisely, it could be ensured that B1, B2, B3 > 0. B4 is
mainly influenced by critical NN’s estimation error, which would converge to zero as the
number of neurons increases.

According to Equation (47), if the following inequalities hold, J̇2 would be negative defined:

−ℵ1‖X‖+ ℵ4 < 0

−ℵ2‖W̃‖+ ℵ4 < 0

−ℵ3‖δ∗‖+ ℵ4 < 0

(48)

Therefore, according to Lyapunov theory, the closed-loop system is stable, and the
weights error of NN W̃ is bounded, consider the estimation error of critical NN is also
bounded, the near-optimal control will converge to a bounded neighborhood of optimal
control.

5. Simulation Verification

This section presents two representative simulations to illustrate the effectiveness
of the ADP-based integrated-control-and-control-allocation scheme. The simulations are
conducted using fixed-step ode4(Runge–Kutta) solver. The fixed-step size is 0.01 s. The
block diagram of the 6-DOF UAV simulation model can be found in Figure 10 of the
report given by Niestroy [7]. Simulation 1 compares our control scheme with conventional
incremental dynamic inversion and pseudo-inverse control allocation(INDIPI) to verify
the optimality of our method. Simulation 2 aims to test the robustness of the proposed
control scheme. It is assumed that the leading-edge actuators are represented by the
transfer function (18)(100)

((s+18)(s+100)) while all the other actuators, including thrust vectoring,

as (40)(100)
((s+40)(s+100)) .

The initial condition of the UAV is V(0) = 1240 ft/s, χ(0) = 0, γ(0) = 0,
β(0) = −0.0196 deg, α(0) = 3.759 deg, µ(0) = 0.304 deg, p(0) = 0, q(0) = 0, r(0) = 0,
and the initial height is H(0) = 10,000 ft. The angle of attack command αc is generated by
a band-limited white noise pass the second order filter 0.5

5s2+2s+0.5 , the bank angle signal
command µc = 6 sin(0.5t), and the sideslip angle command βc = 0.

The control parameters are set as λ = 3 · I3×3, R = I11×11, Q = 5 · I3×3,
K = 500 · I7×7, υ = 1. Define e1 = p− pc, e2 = q− qc, e3 = r− rc, then the activation func-
tion vector are designed as Ψ(X) = [e2

1, e2
2, e2

3, e2
1e2, e1e2e3, e2

3e2, e2
2e3]

T , with initial weights
Ŵ(0) = [1000, 1000, 1500, 0, 0, 0, 0]T .

Remark 8. We designed the activation function vector as above because it would be easier to

find the initial admissible control policy [59]. Clearly, there exists ∂e2
1

∂p = 2e1. In this sense, the
initial control is equivalent to proportional control. Compared with dealing with complex nonlinear
feedback, finding an admissible proportional control law is much easier.

Model uncertainty exists in both simulations. As mentioned above, model uncertainty
mainly comes from inaccurate aerodynamic data, which are used to obtain Gδ. Since the
aerodynamic data provided by Niestroy is a series of discrete points, it takes interpolation so
that these data are of practical use. In both simulations, different interpolation methods are
used for controller design and model construction to simulate that controller cannot access
accurate aerodynamic data. Specifically, the cubic spline is applied for model construction,
and linear interpolation is used in controller design.

Remark 9. The cubic spline is applied for model construction because the actual aerodynamic data
should be continuous and smooth. Meanwhile, using linear interpolation in control could save
online computational load. As mentioned in [14], different interpolation methods can cause errors of
up to 30%. Take the aerodynamic data of a set of all-moving wingtips as an example, as shown in
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Figure 5, from which it can be founded that the slopes of the tangents of linear interpolation and
cubic spline, i.e., tan τ2 and tan τ1, are different.
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Figure 5. Moment coefficients vs. left all-moving tips deflection.

5.1. Simulation 1

In this simulation, the ADP-based control scheme is compared with INDIPI [60].
Specifically, our approach and INDIPI are to track the same attitude command, and the
performance of both is judged according to the tracking performance, flight quality, and
control input. Considering that inaccurate control effectiveness could cause INDIPI to lose
stability and this simulation is not to compare the robustness of INDIPI and ADP-based
method, INDIPI could obtain accurate model information in this simulation, and model
uncertainties only influence our method. Set δ̄ as 11-dimensional vector [5.6, 5.6, · · · , 5.6]T .
Please note that the same NDI scheme is applied in attitude control of the ADP-based
method and INDIPI.

The result is shown in Figures 6–17. First, from Figure 17, ADP-based method shows
good convergence. Moreover, the proposed method outperforms INDIPI in three ways:
superior flight quality, intelligence, and better effector deflection pattern.

From Figures 9–12, the flight quality under ADP control is better than that of INDIPI.
From Figure 9, the p signal under ADP control is steadier. After the adjustment period
before 5s, the p signal under ADP control keeps steady, while the p signal fluctuates under
INDIPI control, such as around 38 s and 44 s. From Figure 10, q chattered all the time under
the control of INDIPI, such chattering also can be found in effector deflection as shown
in Figure 16, and this can cause fatigue of the effector, which is very dangerous in reality,
while the effector deflection under ADP control is more fluent. From Figure 11, it can be
found that there is a sudden change in r signal under INDIPI control at 20 s, 29 s, 36 s,
and 44 s. It also could be seen that the r signal under ADP control also appears to fluctuate,
but, differently from the sudden change under INDIPI control exhibited all the time, it can
be found that the fluctuation under ADP control is becoming lighter.

According to the above description, the control performance of our method is better
compared to INDIPI. However, our method goes far beyond that. With the help of ADP,
our method shows intelligence, i.e., it could improve its policy according to its experience.

The specific manifestations of the ADP-based method’s intelligence are p signal under
ADP control only fluctuates once around 5 s. After that, it is always very smooth, and,
compared with the sudden change in r under INDIPI control exhibited all the time, the
fluctuation of r signal under ADP control becomes lighter as the control system runs.

A more extreme example is introduced to further illustrate the intelligence of ADP, as
shown in Figure 14, which shows the p signal under the proportional control that adopts
the initial weights of critical NN. Comparing Figures 9 and 14 it can be found that no
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matter whether under ADP control or proportional control, fluctuation occurred around 5 s.
However, such fluctuation only occurs once under ADP control; for proportional control,
such fluctuation occurs repeatedly and eventually leads to losing control. From Figure 17, it
can be seen that the critical NN weights undergo a large adjustment at 5 s, after which there
is no more fluctuation similar to at 5 s. ADP could learn from such fluctuation; therefore,
the subsequent policy is more suitable for flight control with a broader flight envelope.
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Figure 6. Angle of attack.
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Figure 13. Weighted quadratic sum of effector deflection.
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Figure 15. Effector deflection of ADP.
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Figure 16. Effector deflection of INDIPI.
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Figure 17. Convergence of the critical NN weights.

From Figures 15 and 16, the effector deflection generated by INDIPI and ADP shows
different patterns. In Figure 16, it can be seen that only three effectors participate in the
process under INDIPI control, even though some effectors appear to be saturated. However,
for the ADP, under the modulation of the performance function, more effectors participate
in the control process, and the effector deflection amplitude is significantly smaller than
that of the INDIPI. From Figure 13, it also can be seen that the weighted quadratic sum of
effector deflection given by ADP is much smaller than INDIPI.

Overall, integrated-design ADP’s performance is better than conventional INDIPI’s.
Compared with INDIPI, ADP allows for a trade-off between tracking performance and
effector deflection. The performance function dominates such a trade-off, so ADP would not
waste too many resources to pursue tiny improvements in tracking performance. Coupling
with its learning mechanism, ADP can achieve the same tracking performance as INDIPI in
an optimal manner.

5.2. Simulation 2

Simulation 2 discusses the robustness of the proposed method and the effect of δ̄.
The UAV suffers from aforementioned model uncertainties and external disturbances
d = [0.06 sin(20t), 0.04 cos(20t), 0.03 sin(20t)]T . The UAV is to follow the same attitude
command as Simulation 1 and set δ̄ as [17.8, 17.8, · · · , 17.8]T , the result is shown in
Figures 18–25.

With the help of ADP, the tracking performance of our method in the presence of
external disturbances is unaffected, as shown in Figures 18–20. However, some small
chattering can be observed in the angular rate signal, as depicted in Figures 21–23, which is
typical for a UAV subject to external disturbance. Nevertheless, this does not compromise
the stability of the closed-loop system. Figure 24 demonstrates that more effectors are
involved in controlling external disturbances. Most importantly, the convergence of critical
NN weights remains satisfactory, as demonstrated by Figure 25.

From the stability analysis, it can be found that our method’s robustness comes from
δ̄. In the following, the performance of different δ̄ is tested.

We begin by testing δ̄ = [5.6, 5.6, · · · , 5.6]T . Due to space limitations, we only present
the convergence of the critical NN weights in Figure 26. As shown in Figure 26, the
convergence of the critical NN in this result is initially similar to Simulation 1. However,
the critical NN weights do not ultimately converge due to external disturbances.

From a theoretical perspective, Lemma 1 can explain the non-convergence of the
algorithm, as the closed-loop system’s stability can only be guaranteed when δ̄ is of
sufficient magnitude.

From the other point of view, if the UAV experiences intense external disturbances, the
initial sampled data may not provide enough information for ADP to update critical NN
weights. This is particularly true when the UAV is required to track random commands, as
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the old critical neural network weights may not be equipped to handle new, unforeseen
scenarios. As a result, the NN weights may take longer to converge, making it difficult to
maintain control of the UAV. In this sense, δ̄

T Rδ̄ not only acts as a means of compensation
for external disturbances that may initially affect performance but can also be seen as an
estimation of the potential impact of such disturbances on performance function. This
helps the ADP better understand the current situation, allowing the weights of the critical
NN to converge more quickly to a stable value.

Unlike the affine systems, where the upper bound on the effect of external disturbances
on the performance function is easily ascertained [29], for the nonaffine system, the design
of δ̄ is more rely on the experience. Still, considering that δ̄ has the actual physical definition,
it would not be too hard to find a proper δ̄.

The above result shows that δ̄ must exceed the upper limit of external disturbance
effects so that ADP can show robustness.

However, δ̄ should not exceed a reasonable value either. To illustrate this point, we
conducted a convergence test of the critical neural network with δ̄ = [56.4, 56.4, · · · , 56.4]T ,
which is very large. The result is depicted in Figure 27. It can be observed that the system
experiences a significant shift in critical NN weights, leading to a collapse within 3 s. From
the analysis of Equation (34), having a too large δ̄ can result in P not being positively
definite. More bluntly, too large δ̄ could dominate the dynamics of critical neural network
weights, causing the ignored of sampled data that aid in policy improvement.

In conclusion, Simulation 2 demonstrates that our method can effectively withstand
model uncertainties and external disturbances, given the appropriate selection of δ̄.
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Figure 18. Angle of attack.
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Figure 20. Bank angle.
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Figure 21. Body-axis roll rate.
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Figure 25. Convergence of the critical NN weights when δ̄ = [17.8, 17.8, · · · , 17.8]T .
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Figure 26. Convergence of the critical NN weights when δ̄ = [5.6, 5.6, · · · , 5.6]T .
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6. Conclusions and Outlook

The proposed method uses ADP to integrate control and control allocation, resulting in
superior performance compared to conventional methods. Without using any model iden-
tification techniques, the ADP-based method exhibits strong convergence and robustness
in the face of external disturbance and model uncertainty. Additionally, it presents a novel
approach to flight control for over-actuated UAVs with nonaffine control inputs. From
a control-theory perspective, the paper presents a straightforward yet efficient optimal
tracking method for nonaffine systems, with theoretical evidence verifying its robustness.
Specifically, this study has two key advantages in comparison to existing research. First,
our method achieves better performance than traditional control architectures that separate
control and control allocation by using a more optimized approach. Second, unlike many
current optimal controllers for nonaffine systems, our method remains robust and does not
depend on any model identifiers.

The proposed method has certain limitations that require attention. First, this method
is only aimed at the cruise stage, as the nonlinear characteristics of the aircraft during this
phase are not as prominent, and the optimal value function is relatively simple and can
be well-fitted by a polynomial network. However, if large maneuvering flight is required,
a more complex network structure needs to be introduced. This inevitably requires an
improvement in the weight update rate to ensure system stability. Second, selecting the
initial value for the critical network can be challenging when a complex network is used
since the convergence of this method relies on the proper choice of the network’s initial
value. Thirdly, the design of the δ̄ is still heavily reliant on empirical knowledge. As
demonstrated in the simulation section, a δ̄ that is too small may weaken robustness,
while too large δ̄ may harm the closed-loop stability. Lastly, there is a dearth of real-world
validation of this method. The external perturbations applied in the simulation offer only a
limited exhibition of robustness and stability since the external interferences experienced
by a UAV, in reality, are much more complex.

The next-step studies should focus on the following aspects: First, more complex
neural networks can be introduced to further approximate the value function and handle
more complex situations. Second, it would be very worthy work to introduce some
intelligent algorithms to help design the performance function. Thirdly, only linear filters,
as shown in Equation (34), are used in this paper, making our method better when facing
high-frequency disturbances. In future studies, more advanced filters could be introduced
to improve the performance of the ADP-based method when facing various disturbances.
More importantly, it would be very expected that the performance of our method can be
validated in real flight experiments.
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