Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,988)

Search Parameters:
Keywords = systemic risk scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2090 KiB  
Article
Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
by Le Yang, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia and Guangchun Lei
Animals 2025, 15(15), 2304; https://doi.org/10.3390/ani15152304 - 6 Aug 2025
Abstract
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals [...] Read more.
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals of a western subpopulation in the lake basin region of northern Tibet (2021–2024), focusing on migration patterns, stopover use, and habitat selection. This subpopulation exhibited short-distance (mean: 284.21 km), intra-Tibet migrations with low reliance on stopover sites. Autumn migration was shorter, more direct, higher in altitude, and slower in speed than spring migration. Juveniles used smaller, more fragmented habitats than subadults, and their spatial range expanded over time. Given these patterns, we infer that the short-distance migration strategy may reduce energetic demands and mortality risks while increasing route flexibility—characteristics that may benefit population growth. We refer to this as a low-energy, high-efficiency migration strategy, which we hypothesise could support faster population growth and enhance resilience to environmental change. We recommend prioritizing the conservation of short-distance migration corridors, such as the typical lake basin area in northern Tibet–Yarlung Tsangpo River system, which may help sustain plateau-endemic migratory populations under future climate scenarios. Full article
(This article belongs to the Section Ecology and Conservation)
30 pages, 20265 KiB  
Article
From Fields to Finance: Dynamic Connectedness and Optimal Portfolio Strategies Among Agricultural Commodities, Oil, and Stock Markets
by Xuan Tu and David Leatham
Int. J. Financial Stud. 2025, 13(3), 143; https://doi.org/10.3390/ijfs13030143 - 6 Aug 2025
Abstract
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and [...] Read more.
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and three common multiple assets portfolio optimization strategies. The empirical results show that, the total connectedness peaked during the 2008 global financial crisis, followed by the European debt crisis and the COVID-19 pandemic, while it remained relatively lower at the onset of the Russia-Ukraine conflict. In the transmission mechanism, commodities and S&P 500 index exhibit distinct and dynamic characteristics as transmitters or receivers. Portfolio analysis reveals that, with exception of the COVID-19 pandemic, all three dynamic portfolios outperform the S&P 500 benchmark across major global crises. Additionally, the minimum correlation and minimum connectedness strategies are superior than transitional minimum variance method in most scenarios. Our findings have implications for policymakers in preventing systemic risk, for investors in managing portfolio risk, and for farmers and agribusiness enterprises in enhancing economic benefits. Full article
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data
by Jian Zhao, Wenxu Li, Bing Zhu, Peixing Zhang, Zhaozheng Hu and Jie Meng
Smart Cities 2025, 8(4), 129; https://doi.org/10.3390/smartcities8040129 - 5 Aug 2025
Abstract
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined [...] Read more.
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined as combinations of driving task and scenario elements. These scenarios are characterized by low probability, high risk, and a tendency to reveal functional limitations inherent to autonomous driving systems, triggering anomalous behavior. This study constructs a novel corner case dataset using naturalistic driving data, specifically tailored for autonomous vehicle testing. A scenario marginality quantification method is designed to analyze multi-source naturalistic driving data, enabling efficient extraction of corner cases. Heterogeneous scenarios are systematically transformed, resulting in a dataset characterized by diverse interaction behaviors and standardized formatting. The results indicate that the scenario marginality of the dataset constructed in this study is 2.78 times that of mainstream naturalistic driving datasets, and the scenarios exhibit considerable diversity. The trajectory and velocity fluctuations, quantified at 0.013 m and 0.021 m/s, respectively, are consistent with the kinematic characteristics of real-world driving scenarios. These results collectively demonstrate the dataset’s high marginality, diversity, and applicability. Full article
Show Figures

Figure 1

22 pages, 1646 KiB  
Article
Stochastic Optimization Scheduling Method for Mine Electricity–Heat Energy Systems Considering Power-to-Gas and Conditional Value-at-Risk
by Chao Han, Yun Zhu, Xing Zhou and Xuejie Wang
Energies 2025, 18(15), 4146; https://doi.org/10.3390/en18154146 - 5 Aug 2025
Abstract
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both [...] Read more.
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both the supply and demand sides, a P2G unit is introduced, and a Latin hypercube sampling technique based on Cholesky decomposition is employed to generate wind–solar-load sample matrices that capture source–load correlations, which are subsequently used to construct representative scenarios. Second, a stochastic optimization scheduling model is developed for the mine electricity–heat energy system, aiming to minimize the total scheduling cost comprising day-ahead scheduling cost, expected reserve adjustment cost, and CVaR. Finally, a case study on a typical mine electricity–heat energy system is conducted to validate the effectiveness of the proposed method in terms of operational cost reduction and system reliability. The results demonstrate a 1.4% reduction in the total operating cost, achieving a balance between economic efficiency and system security. Full article
Show Figures

Figure 1

26 pages, 1697 KiB  
Review
Integrating Climate Risk in Cultural Heritage: A Critical Review of Assessment Frameworks
by Julius John Dimabayao, Javier L. Lara, Laro González Canoura and Steinar Solheim
Heritage 2025, 8(8), 312; https://doi.org/10.3390/heritage8080312 - 4 Aug 2025
Abstract
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art [...] Read more.
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art (SotA) review of 86 unique RAFMs using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic approach to assess their scope, methodological rigor, alignment with global climate and disaster risk reduction (DRR) frameworks, and consistency in conceptual definitions of hazard, exposure, and vulnerability. Results reveal a growing integration of Intergovernmental Panel on Climate Change (IPCC)-based climate projections and alignment with international policy instruments such as the Sendai Framework and United Nations Sustainable Development Goals (UN SDGs). However, notable gaps persist, including definitional inconsistencies, particularly in the misapplication of vulnerability concepts; fragmented and case-specific methodologies that challenge comparability; and limited integration of intangible heritage. Best practices include participatory stakeholder engagement, scenario-based modeling, and incorporation of multi-scale risk typologies. This review advocates for more standardized, interdisciplinary, and policy-aligned frameworks that enable scalable, culturally sensitive, and action-oriented risk assessments, ultimately strengthening the resilience of cultural heritage in a changing climate. Full article
Show Figures

Figure 1

26 pages, 20835 KiB  
Article
Reverse Mortgages and Pension Sustainability: An Agent-Based and Actuarial Approach
by Francesco Rania
Risks 2025, 13(8), 147; https://doi.org/10.3390/risks13080147 - 4 Aug 2025
Abstract
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree [...] Read more.
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree welfare and supporting pension system resilience under demographic and financial uncertainty. We explore Reverse Mortgage Loans (RMLs) as a potential financial instrument to support retirees while alleviating pressure on public pensions. Unlike prior research that treats individual decisions or policy outcomes in isolation, our hybrid model explicitly captures feedback loops between household-level behavior and system-wide financial stability. To test our hypothesis that RMLs can improve individual consumption outcomes and bolster systemic solvency, we develop a hybrid model combining actuarial techniques and agent-based simulations, incorporating stochastic housing prices, longevity risk, regulatory capital requirements, and demographic shifts. This dual-framework enables a structured investigation of how micro-level financial decisions propagate through market dynamics, influencing solvency, pricing, and adoption trends. Our central hypothesis is that reverse mortgages, when actuarially calibrated and macroprudentially regulated, enhance individual financial well-being while preserving long-run solvency at the system level. Simulation results indicate that RMLs can improve consumption smoothing, raise expected utility for retirees, and contribute to long-term fiscal sustainability. Moreover, we introduce a dynamic regulatory mechanism that adjusts capital buffers based on evolving market and demographic conditions, enhancing system resilience. Our simulation design supports multi-scenario testing of financial robustness and policy outcomes, providing a transparent tool for stress-testing RML adoption at scale. These findings suggest that, when well-regulated, RMLs can serve as a viable supplement to traditional retirement financing. Rather than offering prescriptive guidance, this framework provides insights to policymakers, financial institutions, and regulators seeking to integrate RMLs into broader pension strategies. Full article
Show Figures

Figure 1

25 pages, 4241 KiB  
Article
Deep Learning for Comprehensive Analysis of Retinal Fundus Images: Detection of Systemic and Ocular Conditions
by Mohammad Mahdi Aghabeigi Alooghareh, Mohammad Mohsen Sheikhey, Ali Sahafi, Habibollah Pirnejad and Amin Naemi
Bioengineering 2025, 12(8), 840; https://doi.org/10.3390/bioengineering12080840 (registering DOI) - 3 Aug 2025
Viewed by 256
Abstract
The retina offers a unique window into both ocular and systemic health, motivating the development of AI-based tools for disease screening and risk assessment. In this study, we present a comprehensive evaluation of six state-of-the-art deep neural networks, including convolutional neural networks and [...] Read more.
The retina offers a unique window into both ocular and systemic health, motivating the development of AI-based tools for disease screening and risk assessment. In this study, we present a comprehensive evaluation of six state-of-the-art deep neural networks, including convolutional neural networks and vision transformer architectures, on the Brazilian Multilabel Ophthalmological Dataset (BRSET), comprising 16,266 fundus images annotated for multiple clinical and demographic labels. We explored seven classification tasks: Diabetes, Diabetic Retinopathy (2-class), Diabetic Retinopathy (3-class), Hypertension, Hypertensive Retinopathy, Drusen, and Sex classification. Models were evaluated using precision, recall, F1-score, accuracy, and AUC. Among all models, the Swin-L generally delivered the best performance across scenarios for Diabetes (AUC = 0.88, weighted F1-score = 0.86), Diabetic Retinopathy (2-class) (AUC = 0.98, weighted F1-score = 0.95), Diabetic Retinopathy (3-class) (macro AUC = 0.98, weighted F1-score = 0.95), Hypertension (AUC = 0.85, weighted F1-score = 0.79), Hypertensive Retinopathy (AUC = 0.81, weighted F1-score = 0.97), Drusen detection (AUC = 0.93, weighted F1-score = 0.90), and Sex classification (AUC = 0.87, weighted F1-score = 0.80). These results reflect excellent to outstanding diagnostic performance. We also employed gradient-based saliency maps to enhance explainability and visualize decision-relevant retinal features. Our findings underscore the potential of deep learning, particularly vision transformer models, to deliver accurate, interpretable, and clinically meaningful screening tools for retinal and systemic disease detection. Full article
(This article belongs to the Special Issue Machine Learning in Chronic Diseases)
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 111
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

30 pages, 1142 KiB  
Review
Beyond the Backbone: A Quantitative Review of Deep-Learning Architectures for Tropical Cyclone Track Forecasting
by He Huang, Difei Deng, Liang Hu, Yawen Chen and Nan Sun
Remote Sens. 2025, 17(15), 2675; https://doi.org/10.3390/rs17152675 - 2 Aug 2025
Viewed by 151
Abstract
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In [...] Read more.
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In recent years, deep learning (DL) has emerged as a promising alternative, offering data-driven modeling capabilities for capturing nonlinear spatiotemporal patterns. This paper presents a comprehensive review of DL-based approaches for TC track forecasting. We categorize all DL-based TC tracking models according to the architecture, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), Transformers, graph neural networks (GNNs), generative models, and Fourier-based operators. To enable rigorous performance comparison, we introduce a Unified Geodesic Distance Error (UGDE) metric that standardizes evaluation across diverse studies and lead times. Based on this metric, we conduct a critical comparison of state-of-the-art models and identify key insights into their relative strengths, limitations, and suitable application scenarios. Building on this framework, we conduct a critical cross-model analysis that reveals key trends, performance disparities, and architectural tradeoffs. Our analysis also highlights several persistent challenges, such as long-term forecast degradation, limited physical integration, and generalization to extreme events, pointing toward future directions for developing more robust and operationally viable DL models for TC track forecasting. To support reproducibility and facilitate standardized evaluation, we release an open-source UGDE conversion tool on GitHub. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 - 2 Aug 2025
Viewed by 233
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 154
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
Show Figures

Figure 1

40 pages, 1142 KiB  
Review
The Blurred Lines Between New Psychoactive Substances and Potential Chemical Weapons
by Loreto N. Valenzuela-Tapia, Cristóbal A. Quintul, Nataly D. Rubio-Concha, Luis Toledo-Ríos, Catalina Salas-Kuscevic, Andrea V. Leisewitz, Pamela Cámpora-Oñate and Javier Campanini-Salinas
Toxics 2025, 13(8), 659; https://doi.org/10.3390/toxics13080659 - 1 Aug 2025
Viewed by 179
Abstract
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose [...] Read more.
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose a growing risk of hostile use, particularly related to the rapid proliferation of new psychoactive substances (NPSs). A narrative literature review was conducted covering specialized databases (PubMed, ScienceDirect, SciELO, Google Scholar) and sources from international organizations (OPCW, UNODC, ONU), analyzing historical and recent cases of the use of nerve agents in conflicts and the use of NPSs for hostile purposes. The main families of conventional agents (G, V, A series, and Novichok) and NPSs (lysergamides, PCP, fentanyl derivatives) were identified, highlighting their ease of synthesis, high toxicity profiles, and the regulatory gaps that facilitate their illicit production. In this scenario, it is essential to strengthen regulatory frameworks, surveillance systems, and ethical protocols in chemical research, as well as to promote international cooperation to prevent these substances from becoming chemical threats. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 - 1 Aug 2025
Viewed by 171
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

13 pages, 733 KiB  
Proceeding Paper
AI-Based Assistant for SORA: Approach, Interaction Logic, and Perspectives for Cybersecurity Integration
by Anton Puliyski and Vladimir Serbezov
Eng. Proc. 2025, 100(1), 65; https://doi.org/10.3390/engproc2025100065 - 1 Aug 2025
Viewed by 151
Abstract
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level [...] Read more.
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level instructions with the goal of translating complex regulatory concepts into clear and actionable guidance. The approach combines structured definitions, contextualized examples, constrained response behavior, and references to authoritative sources such as JARUS and EASA. Rather than substituting expert or regulatory roles, the assistant provides process-oriented support, helping users understand and complete the various stages of risk assessment. The model’s effectiveness is illustrated through practical interaction scenarios, demonstrating its value across educational, operational, and advisory use cases, and its potential to contribute to the digital transformation of safety and compliance processes in the drone ecosystem. Full article
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Synthetic Data Generation for Machine Learning-Based Hazard Prediction in Area-Based Speed Control Systems
by Mariusz Rychlicki and Zbigniew Kasprzyk
Appl. Sci. 2025, 15(15), 8531; https://doi.org/10.3390/app15158531 (registering DOI) - 31 Jul 2025
Viewed by 243
Abstract
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a [...] Read more.
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a continuous vehicle speed monitoring system to minimize the risk of traffic accidents caused by speeding. The SUMO traffic simulator was used to model driver behavior in the analyzed area and within a given road network. Data from OpenStreetMap and field measurements from over a dozen speed detectors were integrated. Preliminary tests were carried out to record vehicle speeds. Based on these data, several simulation scenarios were run and compared to real-world observations using average speed, the percentage of speed limit violations, root mean square error (RMSE), and percentage compliance. A new metric, the Combined Speed Accuracy Score (CSAS), has been introduced to assess the consistency of simulation results with real-world data. For this study, a basic hazard prediction model was developed using LoRaWAN sensor network data and environmental contextual variables, including time, weather, location, and accident history. The research results in a method for evaluating and selecting the simulation scenario that best represents reality and drivers’ propensities to exceed speed limits. The results and findings demonstrate that it is possible to produce synthetic data with a level of agreement exceeding 90% with real data. Thus, it was shown that it is possible to generate synthetic data for machine learning in hazard prediction for area-based speed control systems using traffic simulators. Full article
Show Figures

Figure 1

Back to TopTop