Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,094)

Search Parameters:
Keywords = syngas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4346 KB  
Article
Catalytic CO2 Utilization for Ethanol Reforming over Yttrium-Promoted Ni-Co/MCM-41 Catalyst: Optimizing Hydrogen Production Using Box–Behnken Experimental Design and Response Surface Methodology
by Bamidele Victor Ayodele, SK Safdar Hossain, Nur Diyan Mohd Ridzuan and Hayat Khan
Catalysts 2026, 16(1), 90; https://doi.org/10.3390/catal16010090 - 13 Jan 2026
Viewed by 8
Abstract
Catalytic dry reforming of ethanol offers a sustainable pathway for syngas and hydrogen production through CO2 utilization, though its efficiency depends heavily on the strategic synthesis of catalysts and the optimization of reaction parameters. This study employs Box–Behnken Design (BBD) and Response [...] Read more.
Catalytic dry reforming of ethanol offers a sustainable pathway for syngas and hydrogen production through CO2 utilization, though its efficiency depends heavily on the strategic synthesis of catalysts and the optimization of reaction parameters. This study employs Box–Behnken Design (BBD) and Response Surface Methodology (RSM) to optimize hydrogen yield from CO2 reforming of ethanol over a Yttrium-promoted Ni-Co/MCM-41 catalyst. The catalyst was synthesized using sequential wet impregnation method and characterized for its physicochemical properties. The catalyst was tested in fixed-bed reactor using experimental data obtained from BBD considering the effects of temperature (550–700 °C), ethanol flowrate (0.5–1 mL/min) and CO2 flowrate (15–30 mL/min) on the hydrogen yield. The experimental conditions were optimized using RSM quadratic model. The characterization revealed that the ordered mesoporous nature of the MCM-41 is maintained providing a high surface area of 597.75 m2/g for the catalyst. The addition of Yttrium as a promoter facilitates the formation of well crystallized nanoparticles. Maximum hydrogen yield of 85.09% was obtained at 700 °C, 20.393 mL/min and 0.877 mL/min for temperature, CO2 and ethanol flowrate, respectively. The predicted hydrogen yield obtained is strongly correlated with the actual values as indicated by R2 of 0.9570. Full article
Show Figures

Graphical abstract

20 pages, 9228 KB  
Article
Autotrophic and Mixotrophic Batch Processes with Clostridium autoethanogenum LAbrini in Stirred Tank Bioreactors with Continuous Gassing
by Anne Oppelt, Tran Yen Nhi Nguyen, Yaodan Zhang and Dirk Weuster-Botz
Microorganisms 2026, 14(1), 175; https://doi.org/10.3390/microorganisms14010175 - 13 Jan 2026
Viewed by 33
Abstract
Simultaneous conversion of syngas and sugars is a promising approach to overcome limitations of syngas fermentation. Clostridium autoethanogenum LAbrini, obtained by adaptive laboratory evolution, is known to show improved autotrophic process performance. Under purely autotrophic conditions, C. autoethanogenum LAbrini exhibits substantially faster growth [...] Read more.
Simultaneous conversion of syngas and sugars is a promising approach to overcome limitations of syngas fermentation. Clostridium autoethanogenum LAbrini, obtained by adaptive laboratory evolution, is known to show improved autotrophic process performance. Under purely autotrophic conditions, C. autoethanogenum LAbrini exhibits substantially faster growth and biomass formation compared to the wild-type in fully controlled, stirred-tank bioreactors with a continuous gas supply. In mixotrophic processes, the pre-culture strategy has a significant impact on the growth and metabolic activity of C. autoethanogenum LAbrini. C. autoethanogenum LAbrini can metabolize sugars (D-fructose, D-xylose, or L-arabinose) and CO simultaneously. All mixotrophic batch processes showed increased growth and product formation compared to the autotrophic process. The mixotrophic batch process with D-fructose enabled superior production of alcohols (10.7 g L−1 ethanol and 3.2 g L−1 D-2,3-butanediol) with a heterotrophic pre-culture. Using an autotrophic pre-culture and L-arabinose resulted in a total alcohol formation of more than 13 g L−1. The formation of meso-2,3-butanediol (>0.50 g L−1) occurred exclusively under mixotrophic conditions. Thus, C. autoethanogenum LAbrini, clearly representing notable improvements over the wild-type strain in mixotrophic batch processes, offers a good basis for further strain improvements to shift the product range even further towards more reduced products. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 1356 KB  
Article
Syngas Production and Heavy Metals Distribution During the Gasification of Biomass from Phytoremediation Poplar Prunings: A Case Study
by Enrico Paris, Debora Mignogna, Cristina Di Fiore, Pasquale Avino, Domenico Borello, Luigi Iannitti, Monica Carnevale and Francesco Gallucci
Appl. Sci. 2026, 16(2), 682; https://doi.org/10.3390/app16020682 - 8 Jan 2026
Viewed by 104
Abstract
The present study investigates the potential of poplar (Populus spp.) biomass from phytoremediation plantations as a feedstock for downdraft fixed bed gasification. The biomass was characterized in terms of moisture, ash content, elemental composition (C, H, N, O), and calorific values (HHV [...] Read more.
The present study investigates the potential of poplar (Populus spp.) biomass from phytoremediation plantations as a feedstock for downdraft fixed bed gasification. The biomass was characterized in terms of moisture, ash content, elemental composition (C, H, N, O), and calorific values (HHV and LHV), confirming its suitability for thermochemical conversion. Gasification tests yielded a volumetric syngas production of 1.79 Nm3 kg−1 biomass with an average composition of H2 14.58 vol%, CO 16.68 vol%, and CH4 4.74 vol%, demonstrating energy content appropriate for both thermal and chemical applications. Alkali and alkaline earth metals (AAEM), particularly Ca (273 mg kg−1) and Mg (731 mg kg−1), naturally present enhanced tar reforming and promoted reactive gas formation, whereas heavy metals such as Cd (0.27 mg kg−1), Pb (0.02 mg kg−1), and Bi (0.01 mg kg−1) were detected only in trace amounts, posing minimal environmental risk. The results indicate that poplar pruning residues from phytoremediation sites can be a renewable and sustainable energy resource, transforming a waste stream into a process input. In this perspective, the integration of soil remediation with syngas production constitutes a tangible model of circular economy, based on the efficient use of resources through the synergy between environmental remediation and the valorization and sustainable management of marginal biomass—i.e., pruning residues—generating environmental, energetic, and economic benefits along the entire value chain. Full article
Show Figures

Figure 1

20 pages, 6164 KB  
Article
Methane-Rich Syngas from Pyrolysis of Sewage Sludge with Sorbent/Catalyst
by Cesare Freda, Emanuele Fanelli, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Biomass 2026, 6(1), 7; https://doi.org/10.3390/biomass6010007 - 8 Jan 2026
Viewed by 115
Abstract
Sewage sludge was pyrolyzed at mass rate of 500 g/h in a bench-scale rotary kiln for methane-rich syngas production. The tested process variables were the pyrolysis temperature (600, 700 and 800 °C) and the CaO addition to the process (0 and 0.2 CaO/dried [...] Read more.
Sewage sludge was pyrolyzed at mass rate of 500 g/h in a bench-scale rotary kiln for methane-rich syngas production. The tested process variables were the pyrolysis temperature (600, 700 and 800 °C) and the CaO addition to the process (0 and 0.2 CaO/dried sewage sludge). Product distribution (char, condensable product, and gas) as well as their chemical composition were determined. At CaO/dried sewage sludge mass ratio equal to 0, with the increasing pyrolysis temperature from 600 to 800 °C, the gas yield increased from 31.4% to 45.6 wt.%, while the char yield decreased from 41.3 to 37.5 wt.%. At CaO/dried sewage sludge mass ratio equal to 0.2, significantly different product distribution and chemical composition were detected. In fact, syngas showed a net CO2 concentration reduction (under 10 mol %), while methane concentration increased at 600 and 700 °C up to 54 and 42 mol %, respectively. The total gas yield increased, probably because of the CaO behavior as catalyst of volatiles conversion reactions (cracking and reforming). In fact, the condensable product yield decreased up to 7 wt.% at 800 °C. At CaO/dried sewage sludge equal to 0.2 and pyrolysis temperature of 700 °C, the maximum methane yield of 150 g/kg SS was detected. Full article
Show Figures

Figure 1

17 pages, 1626 KB  
Article
Syngas Production from Liquid and Solid Fractions of Swine Manure in a 0.5 kWth Chemical Looping Gasification Unit
by Yldeney Domingos, Margarita de Las Obras Loscertales, María T. Izquierdo and Alberto Abad
Energies 2026, 19(2), 317; https://doi.org/10.3390/en19020317 - 8 Jan 2026
Viewed by 195
Abstract
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward [...] Read more.
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward net-negative carbon emissions. The experimental campaign was conducted at 900 °C in a continuously operated 0.5 kWth CLG unit consisting of two interconnected fluidized bed reactors (fuel and air). Ilmenite was employed as the oxygen carrier to provide the oxygen required for gasification. This study focuses on the gasification of raw swine manure, comprising both solid and liquid fractions. The solid fraction was introduced via a screw feeder, while the liquid fraction was simulated by injecting an ammonia–water solution as gasifying agents (water or ammonia + water). The effect of the liquid fraction on syngas composition, carbon conversion, and nitrogen species (N2, NH3, N2O, NO2, and NO) was evaluated at ammonia concentrations typical of swine manure (800–5600 mg/L). Results showed an average syngas composition for solid and liquid fraction feeding of ~31% CO2, 20% CO, 41% H2, 7% CH4, and 0.5% C2 hydrocarbons, with 91–96% carbon conversion. Benzene and naphthalene dominated the tar compounds. CO2 capture potential reached 60%, with nitrogen mainly converted to N2. Full article
Show Figures

Graphical abstract

15 pages, 2433 KB  
Article
Investigation of Biogas Dry Reforming over Ru/CeO2 Catalysts and Pd/YSZ Membrane Reactor
by Omid Jazani and Simona Liguori
Membranes 2026, 16(1), 34; https://doi.org/10.3390/membranes16010034 - 5 Jan 2026
Viewed by 275
Abstract
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced [...] Read more.
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced over conventional processes. In this study, a Pd/YSZ membrane integrated with a Ru/CeO2 catalyst was evaluated for biogas reaction under varying operating conditions. The selective removal of hydrogen through the palladium membrane improved reactant conversion and suppressed side reactions such as methanation and the reverse water–gas shift. Experiments were performed at temperatures ranging from 500 to 600 °C, pressures of 1–6 bar, and a gas hourly space velocity (GHSV) of 800 h−1. Maximum conversions of CH4 (43%) and CO2 (46.7%) were achieved at 600 °C and 2 bar, while the maximum hydrogen recovery of 78% was reached at 6 bar. The membrane reactor outperformed a conventional reactor, offering up to 10% higher CH4 conversion and improved hydrogen production and yield. Also, a comparative analysis between Ru/CeO2 and Ni/Al2O3 catalysts revealed that while the Ni-based catalyst provided higher CH4 conversion, it also promoted methane decomposition reaction and coke formation. In contrast, the Ru/CeO2 catalyst exhibited excellent resistance to coke formation, attributable to ceria’s redox properties and oxygen storage capacity. The combined system of Ru/CeO2 catalyst and Pd/YSZ membrane offers an effective and sustainable approach for hydrogen-rich syngas production from biogas, with improved performance and long-term stability. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

21 pages, 3047 KB  
Article
Chemical Looping Gasification with Microalgae: Intrinsic Gasification Kinetics of Char Derived from Fast Pyrolysis
by Daofeng Mei, Francisco García-Labiano, Alberto Abad and Tobias Mattisson
Energies 2026, 19(1), 276; https://doi.org/10.3390/en19010276 - 5 Jan 2026
Viewed by 310
Abstract
Chemical looping gasification (CLG) based on interconnected fluidized beds is a viable technology to produce a syngas stream for chemical and fuel production. In this work, microalgae are studied for use in the CLG process; more specifically, the intrinsic kinetics of char gasification [...] Read more.
Chemical looping gasification (CLG) based on interconnected fluidized beds is a viable technology to produce a syngas stream for chemical and fuel production. In this work, microalgae are studied for use in the CLG process; more specifically, the intrinsic kinetics of char gasification have been analyzed, as it is important for the fuel conversion and design of reactor systems. Char produced from fast pyrolysis was used in a thermogravimetric analyzer (TGA) for intrinsic kinetics analysis, and measures were made to eliminate the interparticle and external particle gas diffusion. The effect of typical operational variables, such as temperature, concentration of gasification agents (H2O and CO2), and concentration of gasification products (H2 and CO), were investigated. The TGA data is used to derive a suitable gasification model that can best fit the experimental data. The fitting with experiments then generates values of the model’s kinetics parameters. Based on the model and the kinetics values, the activation energies in the gasification with steam and CO2 were calculated to be 43.3 and 91.6 kJ/mol, respectively. The model has a good capability in the prediction of the gasification profile with H2O and CO2 under a complex reacting atmosphere. Full article
Show Figures

Figure 1

29 pages, 7273 KB  
Article
Experimental Test and Modeling Validation for CO2 Capture with Amine Solvents in a Pilot Plant
by Claudia Bassano, Mattia Micciancio, Paolo Deiana, Gabriele Calì, Enrico Maggio, Leonardo Colelli and Giorgio Vilardi
Clean Technol. 2026, 8(1), 6; https://doi.org/10.3390/cleantechnol8010006 - 5 Jan 2026
Viewed by 298
Abstract
The European Union’s enhanced greenhouse gas (GHG) reduction targets for 2030 make the large-scale deployment of carbon capture and storage (CCS) technologies essential to achieve deep decarbonization goals. Within this context, this study aims to advance CCS research by developing and testing a [...] Read more.
The European Union’s enhanced greenhouse gas (GHG) reduction targets for 2030 make the large-scale deployment of carbon capture and storage (CCS) technologies essential to achieve deep decarbonization goals. Within this context, this study aims to advance CCS research by developing and testing a pilot-scale system that integrates gasification for syngas and power production with CO2 absorption and solvent regeneration. The work focuses on improving and validating the operability of a pilot plant section designed for CO2 capture, capable of processing up to 40 kg CO2 per day through a 6 m absorber and stripper column. Experimental campaigns were carried out using different amine-based absorbents under varied operating conditions and liquid-to-gas (L/G) ratios to evaluate capture efficiency, stability, and regeneration performance. The physical properties of regenerated and CO2-saturated solvents (density, viscosity, pH, and CO2 loading) were analyzed as potential indicators for monitoring solvent absorption capacity. In parallel, a process simulation and optimization study was developed in Aspen Plus, implementing a split-flow configuration to enhance energy efficiency. The combined experimental and modeling results provide insights into the optimization of solvent-based CO2 capture processes at pilot scale, supporting the development of next-generation capture systems for low-carbon energy applications. Full article
(This article belongs to the Special Issue Green Solvents and Materials for CO2 Capture)
Show Figures

Figure 1

18 pages, 3394 KB  
Article
CO2 Valorization by CH4 Tri-Reforming on Al2O3-Supported NiCo Nanoparticles
by Daniela Pietrogiacomi, Chiara Caponera, Michele Leone, Maria Cristina Campa, Mariangela Bellusci and Francesca Varsano
Catalysts 2026, 16(1), 62; https://doi.org/10.3390/catal16010062 - 4 Jan 2026
Viewed by 313
Abstract
CO2 valorization from real feedstocks through CH4 tri-reforming (CH4-TR), combining steam reforming (SR), dry reforming (DR), and partial oxidation (CPO) of methane in a single process, is a desirable strategy for greenhouse gas mitigation and syngas (CO + H [...] Read more.
CO2 valorization from real feedstocks through CH4 tri-reforming (CH4-TR), combining steam reforming (SR), dry reforming (DR), and partial oxidation (CPO) of methane in a single process, is a desirable strategy for greenhouse gas mitigation and syngas (CO + H2) production. NiCo/γ−Al2O3 catalysts prepared by impregnation at different relative metal contents (Ni50Co50 and Ni30Co70) were investigated for CH4-TR in a fixed-bed reactor under conventional heating and characterized by XRD, FESEM, and Raman spectroscopy after catalytic runs. This study focused on the role of the Ni/Co ratio and feed composition on selectivity for CO2 valorization, syngas yield, and deactivation resistance. Both the catalysts showed high activity, with a superior performance of Ni50Co50 confirming Ni metal species as the active sites. While in DR, a slow deactivation occurred due to coke deposition, in CH4-TR, the addition of small O2 and/or H2O amounts stabilized activity and selectivity due to surface carbon removal. Large O2 and H2O amounts strongly inhibited CO2 conversion due to competition with CPO and SR, in the order CPO ≥ DR > SR. Interestingly, the stoichiometric CH4-to-oxidants ratio favored the DR pathway, giving very high CO2 conversion. Modulating CH4 addition into real flue mixtures renders CH4-TR on NiCo/γ-Al2O3 catalysts a favorable strategy for effective valorization of CO2 industrial or biomass-derived streams. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

16 pages, 1623 KB  
Article
Hydrothermal Carbonization of Fish Waste: A Sustainable Pathway for Valorization and Resource Recovery
by Carmen María Álvez-Medina, Sergio Nogales-Delgado, Beatriz Ledesma Cano, Vicente Montes-Jiménez and Silvia Román Suero
Clean Technol. 2026, 8(1), 4; https://doi.org/10.3390/cleantechnol8010004 - 4 Jan 2026
Viewed by 180
Abstract
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and [...] Read more.
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and environmental performance. In this study, fish processing residues were subjected to hydrothermal carbonization (HTC) under controlled subcritical conditions (180–220 °C), along with a high-severity catalytic run (325 °C) using sodium bicarbonate (NaHCO3) as an additive. The latter condition exceeded the typical HTC range and entered the subcritical hydrothermal liquefaction (HTL) regime. The resulting solid, liquid, and gaseous fractions were comprehensively characterized to assess their energy potential, chemical composition, and reactivity. Hydrochars achieved higher heating values (HHVs) ranging from 14.2 to 25.7 MJ/kg. These results underscore their suitability as renewable solid fuels. The gas products were dominated by CO2 under standard HTC conditions. In contrast, the catalytic run in the subcritical HTL regime achieved a hydrogen enrichment of up to 30 vol.%, demonstrating the efficacy of NaHCO3 in promoting the water-gas shift reaction. Subsequent air gasification confirmed the high reactivity of the hydrochars, producing syngas enriched in H2 and CO at elevated temperatures. Overall, this study demonstrates a scalable multiproduct valorization route for fishery residues, supporting circular bioeconomy strategies and contributing to the achievement of UN Sustainable Development Goals (SDGs 7, 12, and 13). Full article
Show Figures

Figure 1

29 pages, 4821 KB  
Article
Production of SNG from Biomass Using a Commercial-Scale Fluidized Bed Gasifier Integrated with Water Electrolysis
by Tomasz Marcin Chmielniak, Tadeusz Jan Chmielniak, Tomasz Iluk, Tomasz Billig and Leszek Stepien
Energies 2026, 19(1), 253; https://doi.org/10.3390/en19010253 - 2 Jan 2026
Viewed by 295
Abstract
Biomass gasification, as a thermochemical process, has attracted growing interest due to the increasing popularity of biofuel production based on syngas or pure hydrogen. Moreover, when integrated with CO2 capture, this method of producing gaseous fuels can achieve negative CO2 emissions, [...] Read more.
Biomass gasification, as a thermochemical process, has attracted growing interest due to the increasing popularity of biofuel production based on syngas or pure hydrogen. Moreover, when integrated with CO2 capture, this method of producing gaseous fuels can achieve negative CO2 emissions, making it competitive with other production systems based on either fossil or renewable sources. This paper presents the results of a process and economic analysis of synthetic natural gas (SNG) production systems integrated with a commercial fluidized-bed gasification reactor based on Synthesis Energy Systems (SES) technology. The study examines the potential integration of the system with a water electrolyzer at two levels of coupling: one providing oxygen for the gasification process, and the other eliminating the need for CO2 separation before the SNG synthesis stage. Using a single gasification unit with a raw biomass feed rate of 60 t/h, the system produces 188 t/d of SNG. Integration with a water electrolyzer increases SNG production to 259 and 621 t/d. For cases without electrolyzer integration and under the assumption of zero emissions from biomass processing, the application of CO2 separation enables the achievement of negative CO2 emissions. This creates an opportunity for additional revenue from the sale of CO2 emission allowances, which can significantly reduce SNG production costs. In this analysis, the break-even CO2 price, above which the SNG production cost becomes negative, is USD 251/t CO2. In systems integrated with water electrolysis, the cost and carbon footprint of the electricity consumed in the electrochemical water-splitting process have a decisive impact on both the overall SNG production cost and its carbon intensity. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Figure 1

28 pages, 1477 KB  
Review
Solar-Assisted Thermochemical Valorization of Agro-Waste to Biofuels: Performance Assessment and Artificial Intelligence Application Review
by Balakrishnan Varun Kumar, Sassi Rekik, Delmaria Richards and Helmut Yabar
Waste 2026, 4(1), 2; https://doi.org/10.3390/waste4010002 - 31 Dec 2025
Viewed by 248
Abstract
The rapid growth and seasonal availability of agricultural materials, such as straws, stalks, husks, shells, and processing wastes, present both a disposal challenge and an opportunity for renewable fuel production. Solar-assisted thermochemical conversion, such as solar-driven pyrolysis, gasification, and hydrothermal routes, provides a [...] Read more.
The rapid growth and seasonal availability of agricultural materials, such as straws, stalks, husks, shells, and processing wastes, present both a disposal challenge and an opportunity for renewable fuel production. Solar-assisted thermochemical conversion, such as solar-driven pyrolysis, gasification, and hydrothermal routes, provides a pathway to produce bio-oils, syngas, and upgraded chars with substantially reduced fossil energy inputs compared to conventional thermal systems. Recent experimental research and plant-level techno-economic studies suggest that integrating concentrated solar thermal (CSP) collectors, falling particle receivers, or solar microwave hybrid heating with thermochemical reactors can reduce fossil auxiliary energy demand and enhance life-cycle greenhouse gas (GHG) performance. The primary challenges are operational intermittency and the capital costs of solar collectors. Alongside, machine learning (ML) and AI tools (surrogate models, Bayesian optimization, physics-informed neural networks) are accelerating feedstock screening, process control, and multi-objective optimization, significantly reducing experimental burden and improving the predictability of yields and emissions. This review presents recent experimental, modeling, and techno-economic literature to propose a unified classification of feedstocks, solar-integration modes, and AI roles. It reveals urgent research needs for standardized AI-ready datasets, long-term field demonstrations with thermal storage (e.g., integrating PCM), hybrid physics-ML models for interpretability, and region-specific TEA/LCA frameworks, which are most strongly recommended. Data’s reporting metrics and a reproducible dataset template are provided to accelerate translation from laboratory research to farm-level deployment. Full article
Show Figures

Figure 1

18 pages, 1596 KB  
Article
Study on the Influencing Factors of Syngas Heating Value in Underground Coal Gasification
by Chaojie Li, Ying Zhang, Ruyue Guo, Siran Peng, Quan Hu, Shisong Li and Peng Pei
Energies 2026, 19(1), 214; https://doi.org/10.3390/en19010214 - 31 Dec 2025
Viewed by 144
Abstract
This study investigates the influence mechanism of key factors on the heating value of syngas during underground coal gasification (UCG) and proposes an optimization path for enhanced energy conversion efficiency based on typical global field test data. Integrating data review and pattern analysis, [...] Read more.
This study investigates the influence mechanism of key factors on the heating value of syngas during underground coal gasification (UCG) and proposes an optimization path for enhanced energy conversion efficiency based on typical global field test data. Integrating data review and pattern analysis, it systematically explores the influence of core factors, including coal seam characteristics, reactor structure, and gasification agent ratio. It is found that the relationship between syngas heating value and coal rank is not simply linear, with representative heating values ranging from 4.13 to 11.96 MJ/m3. Medium-rank coal, characterized by “medium volatile matter and low ash content”, yields high-heating-value syngas when paired with air/steam as the gasification agent. Shaftless reactor structures demonstrate superior overall performance compared to shaft-based designs, with the representative heating value improving from 3.83 MJ/m3 to 7.8 MJ/m3. The combination of U-shaped horizontal wells with the Controlled Retracting Injection Point (CRIP) technology improves the heating value. Effective control over the syngas heating value can be achieved by optimized composition and ratio of the gasification agent, with representative value of 9.10 MJ/m3 in oxygen-enriched steam gasification compared to 4.28 MJ/m3 in air gasification. Based on an evaluation of data fluctuation characteristics, the significance ranking of the factors is as follows: gasification agent, coal rank, and reactor structure. Consequently, an engineering optimization path for enhancing UCG syngas heating value is proposed: prioritize optimizing the composition and ratio of the gasification agent as the primary means of heating value control; on this basis, rationally select coal rank resources, focusing on process compatibility to mitigate performance fluctuations; and then incorporate advanced reactor structures to construct a synergistic and efficient gasification system. This research can provide theoretical support and data references for engineering site selection, process design, and operational control of UCG projects. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

37 pages, 431 KB  
Review
Underground Coal Gasification Technology: A Review of Advantages, Challenges, and Economics
by Yancheng Liu, Yan Li, Jihui Jiang, Feng Liu and Yang Liu
Energies 2026, 19(1), 199; https://doi.org/10.3390/en19010199 - 30 Dec 2025
Viewed by 237
Abstract
Against the background of global energy transformation and low-carbon development, numerous difficult-to-mine coal resources (e.g., deep, thin coal seams and low-quality coal) remain underdeveloped, leading to potential resource waste. This study systematically summarizes the feasibility of developing these resources via underground coal gasification [...] Read more.
Against the background of global energy transformation and low-carbon development, numerous difficult-to-mine coal resources (e.g., deep, thin coal seams and low-quality coal) remain underdeveloped, leading to potential resource waste. This study systematically summarizes the feasibility of developing these resources via underground coal gasification (UCG) technology, clarifies its basic chemical/physical processes and typical gas supply/gas withdrawal arrangements, and establishes an analytical framework covering resource utilization, gas production quality control, environmental impact, and cost efficiency. Comparative evaluations are conducted among UCG, surface coal gasification (SCG), natural gas conversion, and electrolysis-based hydrogen production. Results show that UCG exhibits significant advantages: wide resource adaptability (recovering over 60% of difficult-to-mine coal resources), better environmental performance than traditional coal mining and SCG (e.g., less surface disturbance, 50% solid waste reduction), and obvious economic benefits (total capital investment without CCS is 65–82% of SCG, and hydrogen production cost ranges from 0.1 to 0.14 USD/m3, significantly lower than SCG’s 0.23–0.27 USD/m3). However, UCG faces challenges, including environmental risks (groundwater pollution by heavy metals, syngas leakage), geological risks (ground subsidence, rock mass strength reduction), and technical bottlenecks (difficult ignition control, unstable large-scale production). Combined with carbon capture and storage (CCS) technology, UCG can reduce carbon emissions, but CCS only mitigates carbon impact rather than reversing it. UCG provides a large-scale, stable, and economical path for the efficient clean development of difficult-to-mine coal resources, contributing to global energy structure transformation and low-carbon development. Full article
13 pages, 1583 KB  
Article
Co-Gasification of Bio-Oil and Black Liquor as Renewable Gasification Feedstocks
by Jae Gyu Hwang, Seong Wan Hong, Myung Kyu Choi and Hang Seok Choi
Appl. Sci. 2026, 16(1), 359; https://doi.org/10.3390/app16010359 - 29 Dec 2025
Viewed by 129
Abstract
The co-gasification of bio-oil produced via fast pyrolysis and black liquor from the pulp industry may yield a valuable feedstock for renewable gasification. This study investigated the synergistic potential of this co-gasification process. Experiments were conducted in a miniature conical spouted-bed reactor at [...] Read more.
The co-gasification of bio-oil produced via fast pyrolysis and black liquor from the pulp industry may yield a valuable feedstock for renewable gasification. This study investigated the synergistic potential of this co-gasification process. Experiments were conducted in a miniature conical spouted-bed reactor at 800 °C using bio-oil/black liquor mixing ratios ranging from 1:9 to 9:1 under equivalence ratios (ER) of 0.1, 0.3, and 0.5. Syngas characteristics and gasification performance were assessed using the lower heating value (LHV), H2/CO ratio, cold gas efficiency (CGE), and carbon conversion ratio (CCR). Increasing the bio-oil fraction increased CO and CH4 concentrations due to its higher carbon content and lower moisture content, whereas black liquor promoted H2 formation through moisture-driven water–gas shift reactions. Higher ER values intensified combustion, increasing CO2 while reducing combustible gases. The most energy-rich syngas, with the highest LHV and CGE, was obtained using a 9:1 mixture at ER = 0.1. The CCR was greatest for pure bio-oil and the 5:5 ratio among mixtures, reflecting the catalytic effects of alkali species in black liquor. These results demonstrate that co-gasification can improve syngas quality and carbon utilization, with optimal performance depending on the intended application. Full article
Show Figures

Figure 1

Back to TopTop