Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,012)

Search Parameters:
Keywords = syngas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 262
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 4077 KiB  
Article
The Impact of Sm Promoter on the Catalytic Performance of Ni/Al2O3-SiO2 in Methane Partial Oxidation for Enhanced H2 Production
by Salwa B. Alreshaidan, Rasha S. A. Alanazi, Omalsad H. Odhah, Ahmed A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Naif Alarifi, Khaled M. Banabdwin, Sivalingam Ramesh and Ahmed S. Al-Fatesh
Catalysts 2025, 15(8), 721; https://doi.org/10.3390/catal15080721 - 29 Jul 2025
Viewed by 352
Abstract
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% [...] Read more.
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% Ni-based catalysts supported on silica–alumina was used to test the POM at 600 °C. Sm additions ranged from 0 to 2 wt.%. Impregnation was used to create these catalysts, which were then calcined at 500 °C and examined using BET, H2-TPR, XRD, FTIR, TEM, Raman spectroscopy, and TGA methods. Methane conversion (57.85%) and hydrogen yield (56.89%) were greatly increased with an ideal Sm loading of 1 wt.%, indicating increased catalytic activity and stability. According to catalytic tests, 1 wt.% Sm produced high CH4 conversion and H2 production, as well as enhanced stability and resistance to carbon deposition. Nitrogen physisorption demonstrated a progressive decrease in pore volume and surface area with the addition of Sm, while maintaining mesoporosity. At moderate Sm loadings, H2-TPR and XRD analyses showed changes in crystallinity and increased NiO reducibility. Sm incorporation into the support and its impact on the ordering of carbon species were indicated by FTIR and Raman spectra. The optimal conditions to maximize H2 yield were successfully identified through optimization of the best catalyst, and there was good agreement between the theoretical predictions (87.563%) and actual results (88.39%). This displays how successfully the optimization approach achieves the intended outcome. Overall, this study demonstrates that the performance and durability of Ni-based catalysts for generating syngas through POM are greatly enhanced by the addition of a moderate amount of Sm, particularly 1 wt.%. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

23 pages, 1249 KiB  
Review
Guiding Microbial Crossroads: Syngas-Driven Valorisation of Anaerobic-Digestion Intermediates into Bio-Hydrogen and Volatile Fatty Acids
by Alvaro dos Santos Neto and Mohammad J. Taherzadeh
Bioengineering 2025, 12(8), 816; https://doi.org/10.3390/bioengineering12080816 - 29 Jul 2025
Viewed by 354
Abstract
Anaerobic digestion (AD) has long been valued for producing a biogas–digestate pair, yet its profitability is tightening. Next-generation AD biorefineries now position syngas both as a supplementary feedstock and as a springboard to capture high-value intermediates, hydrogen (H2) and volatile fatty [...] Read more.
Anaerobic digestion (AD) has long been valued for producing a biogas–digestate pair, yet its profitability is tightening. Next-generation AD biorefineries now position syngas both as a supplementary feedstock and as a springboard to capture high-value intermediates, hydrogen (H2) and volatile fatty acids (VFA). This review dissects how complex natural consortia “decide” between hydrogenogenesis and acetogenesis when CO, H2, and CO2 co-exist in the feedstocks, bridging molecular mechanisms with process-scale levers. The map of the bioenergetic contest between the biological water–gas shift reaction and Wood–Ljungdahl pathways is discussed, revealing how electron flow, thermodynamic thresholds, and enzyme inhibition dictate microbial “decision”. Kinetic evidence from pure and mixed cultures is integrated with practical operating factors (gas composition and pressure, pH–temperature spectrum, culture media composition, hydraulic retention time, and cell density), which can bias consortia toward the desired product. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

22 pages, 2129 KiB  
Article
Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production
by Julles Mitoura dos Santos Junior, Lucas Pinheiro dos Reis, Annamaria Dória Souza Vidotti, Antonio Carlos Daltro de Freitas, Adriano Pinto Mariano and Reginaldo Guirardello
Processes 2025, 13(8), 2373; https://doi.org/10.3390/pr13082373 - 26 Jul 2025
Viewed by 368
Abstract
Fischer–Tropsch synthesis (FTS) facilitates the conversion of syngas, derived from feedstocks such as biomass, coal, and natural gas, into valuable hydrocarbons (HCs). This investigation employed optimization methods, specifically Gibbs energy minimization, to perform a thermodynamic characterization of the low-temperature Fischer–Tropsch (LTFT) reaction for [...] Read more.
Fischer–Tropsch synthesis (FTS) facilitates the conversion of syngas, derived from feedstocks such as biomass, coal, and natural gas, into valuable hydrocarbons (HCs). This investigation employed optimization methods, specifically Gibbs energy minimization, to perform a thermodynamic characterization of the low-temperature Fischer–Tropsch (LTFT) reaction for HC generation. The CONOPT3 solver within GAMS 23.2.1 software was utilized for solving the developed model. To represent the complex FTS product spectrum, twenty-three compounds, encompassing C2–C20 aliphatic hydrocarbons, were considered using a stoichiometric framework. The study explored the impact of operational parameters, including temperature (350–550 K), pressure (5–30 bar), and H2/CO molar feed ratio (1.0–2.0/0.5–1.0), on hydrocarbon synthesis. Evaluation of the outcomes focused on HC yield and product characteristics. A significant sensitivity of the reaction to operating parameters was observed. Notably, lower temperatures, elevated pressures, and a H2/CO ratio of 2.0/1.0 were identified as optimal for fostering the formation of longer-chain HCs. The developed model demonstrated robustness and efficiency, with rapid computation times across all simulations. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 417
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

24 pages, 3016 KiB  
Article
Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy Transition
by Marta Pacheco, Adrien Brac de la Perrière, Patrícia Moura and Carla Silva
C 2025, 11(3), 54; https://doi.org/10.3390/c11030054 - 23 Jul 2025
Viewed by 482
Abstract
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and [...] Read more.
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

9 pages, 798 KiB  
Article
Mechanistic Behavior of Basicity of Bimetallic Ni/ZrO2 Mixed Oxides for Stable Oxythermal Reforming of CH4 with CO2
by Hyuk Jong Bong, Nagireddy Gari Subba Reddy and A. Geetha Bhavani
Catalysts 2025, 15(8), 700; https://doi.org/10.3390/catal15080700 - 22 Jul 2025
Viewed by 357
Abstract
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and [...] Read more.
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were characterized using x-ray diffraction XRD, Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), and metal dispersion for the screening of phase purity, surface area, and morphology. The mixed oxides are subjected to CO2-TPD to quantify the basicity of every composition. The mixed oxide catalysts of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were screened for oxythermal reforming of CH4 with CO2 in a fixed bed tubular reactor at 800 °C. Among all catalysts, the Ba- and Ca- loaded Ni-Ba-Ca/ZrO2 showed high conversion by the decomposition of methane and CO2 disproportionation throughout the time on stream of 29 h. The high activity with stability led to less coke formation over Ni-Ba-Ca/ZrO2 over the surface. The stable syngas production with an active catalyst bed contributed to the improved bimetallic synergy. The high surface basicity of Ni-Ba-Ca/ZrO2 may keep actively gasifying the formed soot and allow for further stable reforming reactions. Full article
Show Figures

Figure 1

2 pages, 126 KiB  
Correction
Correction: Esfandi et al. Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas. Energies 2020, 13, 6453
by Saeed Esfandi, Simin Baloochzadeh, Mohammad Asayesh, Mehdi Ali Ehyaei, Abolfazl Ahmadi, Amir Arsalan Rabanian, Biplab Das, Vitor A. F. Costa and Afshin Davarpanah
Energies 2025, 18(14), 3873; https://doi.org/10.3390/en18143873 - 21 Jul 2025
Viewed by 158
Abstract
There was an error in the original publication [...] Full article
19 pages, 2143 KiB  
Article
Biofuels Production Using Structured Catalyst in Fischer–Tropsch Synthesis
by Yira Hurtado, Iván D. Mora-Vergara and Jean-Michel Lavoie
Energies 2025, 18(14), 3846; https://doi.org/10.3390/en18143846 - 19 Jul 2025
Viewed by 390
Abstract
The biomass-to-liquid process is a promising alternative for sustainably meeting the growing demand for liquid fuels. This study focuses on the fabrication, characterization, and performance of a structured iron catalyst for producing hydrocarbons through Fischer–Tropsch synthesis (FTS). The catalyst was designed to address [...] Read more.
The biomass-to-liquid process is a promising alternative for sustainably meeting the growing demand for liquid fuels. This study focuses on the fabrication, characterization, and performance of a structured iron catalyst for producing hydrocarbons through Fischer–Tropsch synthesis (FTS). The catalyst was designed to address some drawbacks of conventional supported catalysts, such as low utilization, poor activity, and instability. The experimental investigation involved the manufacturing and characterization of both promoted and unpromoted iron-based catalysts. The performance of the structured iron catalyst was assessed in a fixed-bed reactor under relevant industrial conditions. Notably, the best results were achieved with a syngas ratio typical of the gasification of lignocellulosic biomass, where the catalyst exhibited superior catalytic activity and selectivity toward desired hydrocarbon products, including light olefins and long-chain paraffins. The resulting structured catalyst achieved up to 95% CO conversion in a single pass with 5% selectivity for CH4. The results indicate that the developed structured iron catalyst has considerable potential for efficient and sustainable hydrocarbon production via the Fischer–Tropsch synthesis. The catalyst’s performance, enhanced stability, and selectivity present promising opportunities for its application in large-scale hydrocarbon synthesis processes. Full article
Show Figures

Figure 1

24 pages, 4619 KiB  
Article
Modeling and Optimization of Natural Gas Non-Catalytic Partial Oxidation with Hierarchical-Integrated Mechanism
by Wanqiu Yu, Haotian Ye, Wei Liu, Qiyao Wang and Hongguang Dong
Processes 2025, 13(7), 2287; https://doi.org/10.3390/pr13072287 - 17 Jul 2025
Viewed by 424
Abstract
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed [...] Read more.
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed C0-C6, C5-C15 and C16 mechanisms, and then hierarchically simplifying C5-C15 subsystems, ultimately integrating them into a final mechanism with 397 species and 5135 reactions. The HI-Mechanism accurately predicted shock tube ignition delays and major species concentrations. Microkinetic analyses, including production rates and reaction sensitivity, revealed key pathways and enabled reliable product distribution prediction. The HI-Mechanism provides theoretical guidance for optimizing POX of natural gas processes and can be extended to complex systems like heavy oil cracking, supporting clean energy technology development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 450
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 4443 KiB  
Article
Comparative Study on Ni/MgO-Al2O3 Catalysts for Dry and Combined Steam–CO2 Reforming of Methane
by Tingting Zheng, Yuqi Zhou, Hongjie Cui and Zhiming Zhou
Catalysts 2025, 15(7), 659; https://doi.org/10.3390/catal15070659 - 6 Jul 2025
Viewed by 399
Abstract
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 [...] Read more.
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 catalysts with varying Mg/Al molar ratios (Ni/MgAl(x), x = 0.5–0.9), along with Ni/MgO and Ni/Al2O3, were synthesized, characterized, and evaluated in both the DRM and CSCRM. Ni/MgO and Ni/Al2O3 exhibited a lower activity due to fewer active sites and a poor CH4/CO2 activation balance. In contrast, Ni/MgAl(0.6), Ni/MgAl(0.7), and Ni/MgAl(0.8) showed an enhanced activity, attributed to more abundant active sites and a more balanced activation of CH4 and CO2. Ni/MgAl(0.7) delivered the best DRM performance, whereas Ni/MgAl(0.8) was optimal for the CSCRM, likely due to its greater number of strong basic sites promoting CO2 and H2O adsorption. At 750 °C and 0.1 MPa over 100 h, Ni/MgAl(0.7) maintained a stable DRM performance (77% CH4 and 86% CO2 conversion; H2/CO = 0.9) at 120 L/(gcat·h), while Ni/MgAl(0.8) achieved a stable CSCRM performance (80% CH4 and 62% CO2 conversion; H2/CO = 2.1) at 132 L/(gcat·h). This study provides valuable insights into designing efficient Ni/MgO-Al2O3 catalysts for targeted syngas production. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

24 pages, 1083 KiB  
Review
Membrane-Based CO2 Capture Across Industrial Sectors: Process Conditions, Case Studies, and Implementation Insights
by Jin Woo Park, Soyeon Heo, Jeong-Gu Yeo, Sunghoon Lee, Jin-Kuk Kim and Jung Hyun Lee
Membranes 2025, 15(7), 200; https://doi.org/10.3390/membranes15070200 - 2 Jul 2025
Viewed by 1338
Abstract
Membrane-based CO2 capture has emerged as a promising technology for industrial decarbonization, offering advantages in energy efficiency, modularity, and environmental performance. This review presents a comprehensive assessment of membrane processes applied across major emission-intensive sectors, including power generation, cement, steelmaking, and biogas [...] Read more.
Membrane-based CO2 capture has emerged as a promising technology for industrial decarbonization, offering advantages in energy efficiency, modularity, and environmental performance. This review presents a comprehensive assessment of membrane processes applied across major emission-intensive sectors, including power generation, cement, steelmaking, and biogas upgrading. Drawing from pilot-scale demonstrations and simulation-based studies, we evaluate how flue gas characteristics, such as CO2 concentration, pressure, temperature, and impurity composition, govern membrane selection, process design, and operational feasibility. Case studies highlight the technical viability of membrane systems under a wide range of industrial conditions, from low-CO2 NGCC flue gas to high-pressure syngas and CO2-rich cement emissions. Despite these advances, this review discusses the key remaining challenges for the commercialization of membrane-based CO2 capture and includes perspectives on process design and techno-economic evaluation. The insights compiled in this review are intended to support the design of application-specific membrane systems and guide future efforts toward scalable and economically viable CO2 capture across industrial sectors. Full article
(This article belongs to the Special Issue Novel Membranes for Carbon Capture and Conversion)
Show Figures

Figure 1

16 pages, 6370 KiB  
Article
The Role of Ga Promoter in Enhancing the Performance of Ni/ZrO2+SiO2 Catalysts for Dry Methane Reforming
by Salma A. Al-Zahrani, Ahmed A. Ibrahim, Ghzzai Almutairi, Anis Hamza Fakeeha, Najat Masood, Sahar Y. Rajeh, Ahmed Al Otaib, Hessah Difallah A. Al-Enazy and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 627; https://doi.org/10.3390/catal15070627 - 26 Jun 2025
Viewed by 455
Abstract
The potential of dry reforming methane (DRM) to convert two greenhouse gases concurrently is drawing interest from around the world. This research focused on developing supported nickel catalysts for the DRM, utilizing stabilized zirconia (SZ31107), which contains 5% SiO2, as the [...] Read more.
The potential of dry reforming methane (DRM) to convert two greenhouse gases concurrently is drawing interest from around the world. This research focused on developing supported nickel catalysts for the DRM, utilizing stabilized zirconia (SZ31107), which contains 5% SiO2, as the support material. To promote the catalysts with a 5 wt.% Ni concentration, we used varying gallium loadings, specifically 0.1, 0.25, 0.5, 0.75, and 1 wt.%. After a detailed analysis, characterization was performed using X-ray diffraction, N2-physorption, temperature-programmed reduction/desorption techniques, thermogravimetry, and Raman spectroscopy. The optimal DRM performance, achieved at 700 °C with a 1:1 CH4:CO2 feed, was recorded for the catalyst that has 0.25 wt.% Ga. The catalyst demonstrated remarkable average conversion rates of 56% for CH4 and 66% for CO2 after 300 min at 700 °C, with an H2:CO ratio of 0.84. Activity was further enhanced by raising the temperature to 800 °C, which resulted in an 87% CO2 conversion and an 80% CH4 conversion. Studies on the catalyst’s long-term stability revealed a slow deactivation. With computed activation energies of 28,009 J/mol for CH4 conversion and 21,875 J/mol for CO2 conversion, temperature-programmed reaction tests conducted over the best catalyst demonstrated the DRM reaction’s endothermic character. Small additions of Ga encouraged the creation of more graphitic carbon structures, according to Raman spectroscopy of spent catalysts; the ideal catalyst had the lowest ID/IG ratio. These results suggest that the 5Ni+0.25Ga/SZ31107 catalyst is a promising candidate for large-scale syngas and hydrogen production. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

25 pages, 1629 KiB  
Review
Biochemical Processes of Lignocellulosic Biomass Conversion
by Stanisław Ledakowicz
Energies 2025, 18(13), 3353; https://doi.org/10.3390/en18133353 - 26 Jun 2025
Viewed by 396
Abstract
After a brief characterisation of lignocellulosic biomass (LCB) in terms of its biochemical structure and the pretreatment techniques used to disrupt lignin structure and decrystallise and depolymerise cellulose, this review considers five main pathways for biochemical biomass conversion: starting with anaerobic digestion to [...] Read more.
After a brief characterisation of lignocellulosic biomass (LCB) in terms of its biochemical structure and the pretreatment techniques used to disrupt lignin structure and decrystallise and depolymerise cellulose, this review considers five main pathways for biochemical biomass conversion: starting with anaerobic digestion to convert various LCB feedstocks into bioproducts; considering the integration of biochemical and thermochemical processes, syngas fermentation, which has been recently developed for biofuel and chemical production, is reviewed; the production of 2G bioethanol and biobutanol from LCB waste is discussed; the literature on biohydrogen production by dark fermentation, photofermentation, and bioelectrochemical processes using microbial electrolysis cells as well as hybrid biological processes is reviewed. The conclusions and future prospects of integrating biochemical and thermochemical conversion processes of biomass are discussed and emphasised. Full article
Show Figures

Figure 1

Back to TopTop