energies-logo

Journal Browser

Journal Browser

Recent Advances in Biofuels Production and Usage: Challenges and Solutions—2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A4: Bio-Energy".

Deadline for manuscript submissions: 10 March 2026 | Viewed by 1194

Special Issue Editor

National Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu, 061126 Bucharest, Romania
Interests: carbon-based materials; catalysts; biodiesel production; biofuels burning and gaseous emissions impact assessment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The 21st century is dealing with some extraordinary challenges, namely, increased energy demands and consumption, decreased fuel reserves and climate changes. The latest report on fossil fuels contribution to the global energy consumed in 2021 declares the following contributions to energy consumed: 29% crude oil, 27% coal, and 24% natural gas. Thus, 80% of consumed energy was assured by means of fossil fuels. On the other hand, from the total of 20% ensured by renewable sources (RES), 10% was biomass.

Biofuels are liquid or gaseous transport fuels, such as biodiesel and bioethanol, made from biomass. They serve as a renewable alternative to fossil fuels in the transport sector, helping to reduce greenhouse gas emissions and improve the quality of life and security of supply. Liquid biofuels are of particular interest because of the vast infrastructure already in place to use them, especially for transportation. The liquid biofuel in greatest production is ethanol (ethyl alcohol). The second most common liquid biofuel is biodiesel, which is made primarily from oily plants (such as the soybean or oil palm) and to a lesser extent from other oily sources (such as waste cooking fat from restaurant deep-frying). Biodiesel, which has found greatest acceptance in Europe, is used in diesel engines and usually blended with petroleum diesel fuel in various percentages. The use of algae and cyanobacteria as a source of “third-generation” biodiesel holds promise but has been difficult to develop economically.

We are looking for contributions in the following areas:

  • Technologies: novel/emerging technologies for biofuels production including but not limited to thermochemical, biochemical and (photo)electrochemical conversion.
  • Tools/methods: multi-/interdisciplinary approaches are particularly welcome. Both computational modelling and experimental studies are welcome and should demonstrate a holistic assessment in terms of technical, economic and environmental dimensions. We also encourage research that demonstrates resource efficiency enhancement through process integration and intensification strategies. Studies based on purely experimental research without a holistic assessment are not within the scope of this Special Issue.
  • Sustainability analysis: techno-economic analysis, life cycle assessment (LCA) and any other assessments of the novel/emerging production technologies will be considered.
  • Case studies: local/regional/national/international case studies; small/large-scale systems; and policy recommendations are also welcome.

Dr. Radu Mirea
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biofuels
  • production technology solutions
  • gaseous emission
  • biodiesel use
  • catalysts for biofuels production
  • biofuels burning assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2143 KB  
Article
Biofuels Production Using Structured Catalyst in Fischer–Tropsch Synthesis
by Yira Hurtado, Iván D. Mora-Vergara and Jean-Michel Lavoie
Energies 2025, 18(14), 3846; https://doi.org/10.3390/en18143846 - 19 Jul 2025
Viewed by 601
Abstract
The biomass-to-liquid process is a promising alternative for sustainably meeting the growing demand for liquid fuels. This study focuses on the fabrication, characterization, and performance of a structured iron catalyst for producing hydrocarbons through Fischer–Tropsch synthesis (FTS). The catalyst was designed to address [...] Read more.
The biomass-to-liquid process is a promising alternative for sustainably meeting the growing demand for liquid fuels. This study focuses on the fabrication, characterization, and performance of a structured iron catalyst for producing hydrocarbons through Fischer–Tropsch synthesis (FTS). The catalyst was designed to address some drawbacks of conventional supported catalysts, such as low utilization, poor activity, and instability. The experimental investigation involved the manufacturing and characterization of both promoted and unpromoted iron-based catalysts. The performance of the structured iron catalyst was assessed in a fixed-bed reactor under relevant industrial conditions. Notably, the best results were achieved with a syngas ratio typical of the gasification of lignocellulosic biomass, where the catalyst exhibited superior catalytic activity and selectivity toward desired hydrocarbon products, including light olefins and long-chain paraffins. The resulting structured catalyst achieved up to 95% CO conversion in a single pass with 5% selectivity for CH4. The results indicate that the developed structured iron catalyst has considerable potential for efficient and sustainable hydrocarbon production via the Fischer–Tropsch synthesis. The catalyst’s performance, enhanced stability, and selectivity present promising opportunities for its application in large-scale hydrocarbon synthesis processes. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 1196 KB  
Review
Microbial Electrosynthesis: The Future of Next-Generation Biofuel Production—A Review
by Radu Mirea, Elisa Popescu and Traian Zaharescu
Energies 2025, 18(19), 5187; https://doi.org/10.3390/en18195187 - 30 Sep 2025
Abstract
Microbial electrosynthesis (MES) has emerged as a promising bio-electrochemical technology for sustainable CO2 conversion into valuable organic compounds since it uses living electroactive microbes to directly convert CO2 into value-added products. This review synthesizes advancements in MES from 2010 to 2025, [...] Read more.
Microbial electrosynthesis (MES) has emerged as a promising bio-electrochemical technology for sustainable CO2 conversion into valuable organic compounds since it uses living electroactive microbes to directly convert CO2 into value-added products. This review synthesizes advancements in MES from 2010 to 2025, focusing on the electrode materials, microbial communities, reactor engineering, performance trends, techno-economic evaluations, and future challenges, especially on the results reported between 2020 and 2025, thus highlighting that MES technology is now a technology to be reckoned with in the spectrum of biofuel technology production. While the current productivity and scalability of microbial electrochemical systems (MESs) remain limited compared to conventional CO2 conversion technologies, MES offers distinct advantages, including process simplicity, as it operates under ambient conditions without the need for high pressures or temperatures; modularity, allowing reactors to be stacked or scaled incrementally to match varying throughput requirements; and seamless integration with circular economy strategies, enabling the direct valorization of waste streams, wastewater, or renewable electricity into valuable multi-carbon products. These features position MES as a promising platform for sustainable and adaptable CO2 utilization, particularly in decentralized or resource-constrained settings. Recent innovations in electrode materials, such as conductive polymers and metal–organic frameworks, have enhanced electron transfer efficiency and microbial attachment, leading to improved MES performance. The development of diverse microbial consortia has expanded the range of products achievable through MES, with studies highlighting the importance of microbial interactions and metabolic pathways in product formation. Advancements in reactor design, including continuous-flow systems and membrane-less configurations, have addressed scalability issues, enhancing mass transfer and system stability. Performance metrics, such as the current densities and product yields, have improved due to exceptionally high product selectivity and surface-area-normalized production compared to abiotic systems, demonstrating the potential of MES for industrial applications. Techno-economic analyses indicate that while MES offers promising economic prospects, challenges related to cost-effective electrode materials and system integration remain. Future research should focus on optimizing microbial communities, developing advanced electrode materials, and designing scalable reactors to overcome the existing limitations. Addressing these challenges will be crucial for the commercialization of MES as a viable technology for sustainable chemical production. Microbial electrosynthesis (MES) offers a novel route to biofuels by directly converting CO2 and renewable electricity into energy carriers, bypassing the costly biomass feedstocks required in conventional pathways. With advances in electrode materials, reactor engineering, and microbial performance, MES could achieve cost-competitive, carbon-neutral fuels, positioning it as a critical complement to future biofuel technologies. Full article
Show Figures

Figure 1

Back to TopTop