Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = synchronous space vector modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 20276 KB  
Article
A Discrete Space Vector Modulation MPC-Based Artificial Neural Network Controller for PMSM Drives
by Jiawei Guo, Takahiro Kawaguchi and Seiji Hashimoto
Machines 2025, 13(11), 996; https://doi.org/10.3390/machines13110996 - 30 Oct 2025
Cited by 1 | Viewed by 655
Abstract
In addition to the basic voltage vector modulation technique, virtual vectors can be generated through the discrete space vector modulation (DSVM) technique. Consequently, DSVM-based model predictive control (MPC) can achieve the reduction in current harmonics and torque ripples in permanent magnet synchronous machine [...] Read more.
In addition to the basic voltage vector modulation technique, virtual vectors can be generated through the discrete space vector modulation (DSVM) technique. Consequently, DSVM-based model predictive control (MPC) can achieve the reduction in current harmonics and torque ripples in permanent magnet synchronous machine (PMSM) drives. However, as the number of virtual candidate voltage vectors becomes excessively large, the computational burden increases significantly. This paper proposes an artificial neural network (ANN) control algorithm, in which massive input and output datasets generated by an existing DSVM-MPC algorithm are utilized for ANN offline training. In this way, the ANN can efficiently select the optimal voltage vector without enumerating all candidate voltage vectors, thereby reducing the heavy online computation of the DSVM-MPC controller and significantly reducing the computational burden. Finally, the effectiveness of the proposed ANN controller is validated. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 862 KB  
Article
Comparison of Advanced Predictive Controllers for IPMSMs in BEV and PHEV Traction Applications
by Romain Cocogne, Sebastien Bilavarn, Mostafa El-Mokadem and Khaled Douzane
World Electr. Veh. J. 2025, 16(11), 592; https://doi.org/10.3390/wevj16110592 - 24 Oct 2025
Viewed by 726
Abstract
The adoption of Interior Permanent Magnet Synchronous Motor (IPMSM) in Battery Electric Vehicle (BEV) and Plug-in Hybrid Electric Vehicle (PHEV) drives the need for innovative approaches to improve control performance and power conversion efficiency. This paper aims at evaluating advanced Model Predictive Control [...] Read more.
The adoption of Interior Permanent Magnet Synchronous Motor (IPMSM) in Battery Electric Vehicle (BEV) and Plug-in Hybrid Electric Vehicle (PHEV) drives the need for innovative approaches to improve control performance and power conversion efficiency. This paper aims at evaluating advanced Model Predictive Control (MPC) strategies for IPMSM drives in a methodic comparison with the most widespread Field Oriented Control (FOC). Different extensions of direct Finite Control Set MPC (FCS-MPC) and indirect Continuous Control Set MPC (CCS-MPC) MPCs are considered and evaluated in terms of reference tracking performance, robustness, power efficiency, and complexity based on Matlab, Simulink™ simulations. Results confirm the inherent better control quality of MPCs over FOC in general and allow us to further identify some possible directions for improvement. Moreover, indirect MPCs perform better, but complexity may prevent them from supporting real-time implementation in some cases. On the other hand, direct MPCs are less complex and reduce inverter losses but at the cost of increased Total Harmonic Distortion (THD) and decreased robustness to parameters deviations. These results also highlight various trade-offs between different predictive control strategies and their feasibility for high-performance automotive applications. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

22 pages, 6708 KB  
Article
Enhanced Model Predictive Speed Control of PMSMs Based on Duty Ratio Optimization with Integrated Load Torque Disturbance Compensation
by Tarek Yahia, Abdelsalam A. Ahmed, M. M. Ahmed, Amr El Zawawi, Z. M. S. Elbarbary, M. S. Arafath and Mosaad M. Ali
Machines 2025, 13(10), 891; https://doi.org/10.3390/machines13100891 - 30 Sep 2025
Cited by 1 | Viewed by 1151
Abstract
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a [...] Read more.
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a single voltage vector per sampling interval, often suffer from steady-state ripples, elevated total harmonic distortion (THD), and high computational complexity due to exhaustive switching evaluations. The proposed approach addresses these limitations through a novel dual-stage cost function structure: the first cost function optimizes dynamic response via predictive control of speed error, while the second adaptively minimizes torque ripple and harmonic distortion by adjusting the active–zero voltage vector duty ratio without the need for manual weight tuning. Robustness against time-varying disturbances is further enhanced by integrating a real-time load torque observer into the control loop. The scheme is validated through both MATLAB/Simulink R2020a simulations and real-time experimental testing on a dSPACE 1202 rapid control prototyping platform across small- and large-scale PMSM configurations. Experimental results confirm that the proposed controller achieves a transient speed deviation of just 0.004%, a steady-state ripple of 0.01 rpm, and torque ripple as low as 0.0124 Nm, with THD reduced to approximately 5.5%. The duty ratio-based predictive modulation ensures faster settling time, improved current quality, and greater immunity to load torque disturbances compared to recent duty-ratio MPC implementations. These findings highlight the proposed DR-MPDSC as a computationally efficient and experimentally validated solution for next-generation PMSM drive systems in automotive and industrial domains. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

19 pages, 9140 KB  
Article
Synchronized Carrier-Wave and High-Frequency Square-Wave Periodic Modulation Strategy for Acoustic Noise Reduction in Sensorless PMSM Drives
by Wentao Zhang, Sizhe Cheng, Pengcheng Zhu, Yiwei Liu and Jiming Zou
Energies 2025, 18(11), 2729; https://doi.org/10.3390/en18112729 - 24 May 2025
Cited by 2 | Viewed by 1201
Abstract
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency [...] Read more.
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency motor vibrations and noise. To mitigate this issue, this paper proposes a noise suppression strategy based on synchronized periodic frequency modulation (PFM) of both the carrier and high-frequency square-wave signals. By innovatively synchronizing the periodic modulation of the triangular carrier in space vector pulse width modulation (SVPWM) with the injected high-frequency square wave, harmonic energy dispersion and noise reduction are achieved, substantially lowering peak acoustic emissions. First, the harmonic characteristics of the voltage-source inverter output under symmetric triangular carrier SVPWM are analyzed within a sawtooth-wave PFM framework. Concurrently, a harmonic current model is developed for the high-frequency square-wave injection method, enabling the precise derivation of harmonic components. A frequency-synchronized modulation strategy between the carrier and injection signals is proposed, with a rigorous analysis of its harmonic suppression mechanism. The rotor position is then estimated via high-frequency signal extraction and a normalized phase-locked loop (PLL). Comparative simulations and experiments confirm significant noise peak attenuation compared to conventional methods, while position estimation accuracy remains unaffected. This work provides both theoretical and practical advancements for noise-sensitive sensorless motor control applications. Full article
(This article belongs to the Special Issue Advances in Control of Electrical Drives and Power Electronics)
Show Figures

Figure 1

19 pages, 6724 KB  
Article
Random PWM Technique Based Two-State Markov Chain for Permanent Magnet Synchronous Motor Control
by Zhiqiang Wang, Xinyuan Liu, Xuefeng Jin, Guozheng Zhang and Zhichen Lin
Appl. Sci. 2025, 15(9), 5027; https://doi.org/10.3390/app15095027 - 30 Apr 2025
Cited by 1 | Viewed by 941
Abstract
On the basis of the space voltage vector pulse width modulation (SVPWM) technique, the random pulse width modulation (RPWM) technique, which can reduce harmonics, is investigated based on the vector control system of permanent magnet synchronous motor (PMSM) to address the problem of [...] Read more.
On the basis of the space voltage vector pulse width modulation (SVPWM) technique, the random pulse width modulation (RPWM) technique, which can reduce harmonics, is investigated based on the vector control system of permanent magnet synchronous motor (PMSM) to address the problem of generating a large number of high-amplitude harmonics at the carrier frequency and its multiplier frequency. Firstly, the root causes of the large number of high-amplitude harmonics at the carrier frequency and its multiplier frequency are analyzed in depth, and the RPWM technique is explained in detail on how to reduce the amplitude of these harmonics effectively. Secondly, to address the problem of insufficient random performance in the traditional RPWM technique, an innovative optimization scheme is proposed, i.e., the introduction of a two-state Markov chain and, based on the immune algorithm for transition probability and random gain, the optimization of two key parameters. Ultimately, through experimental verification, the proposed method significantly improves the spectral distribution of the current waveform compared with the traditional RPWM, which makes the distribution more uniform and effectively reduces the high-amplitude harmonics concentrated near the carrier frequency and its octave frequency, thus enhancing the overall performance of the system. Full article
Show Figures

Figure 1

19 pages, 5997 KB  
Article
Dual-Random Space Vector Pulse Width Modulation Strategy Based on Optimized Beta Distribution
by Xin Gu, Kunyang Wu, Xuefeng Jin, Guozheng Zhang, Wei Chen and Chen Li
Electronics 2025, 14(9), 1779; https://doi.org/10.3390/electronics14091779 - 27 Apr 2025
Cited by 1 | Viewed by 1062
Abstract
In the control system of a permanent magnet synchronous motor (PMSM) driven by an inverter, the conventional space vector pulse width modulation (SVPWM) strategy introduces high-frequency current harmonics at the switching frequency and its multiples, resulting in significant high-frequency vibrations during motor operation. [...] Read more.
In the control system of a permanent magnet synchronous motor (PMSM) driven by an inverter, the conventional space vector pulse width modulation (SVPWM) strategy introduces high-frequency current harmonics at the switching frequency and its multiples, resulting in significant high-frequency vibrations during motor operation. To address this issue, a dual-random SVPWM strategy is proposed in this paper, which combines a random switching frequency and random zero-vector to spread the spectrum of high-frequency current harmonics. This approach effectively disperses the high-frequency harmonics concentrated at the switching frequency and its multiples, thereby significantly reducing the motor’s high-frequency vibrations. Furthermore, to overcome the limitations of the traditional linear congruential method in generating random numbers, the Beta distribution is introduced and improved in this study. The particle swarm optimization (PSO) algorithm is employed to optimize the shape parameters of the Beta distribution, to achieve the optimal random number performance. Finally, experimental validation is conducted under various speed conditions. Compared with the conventional SVPWM strategy, the results demonstrate that the proposed dual-random SVPWM strategy exhibits superior suppression of both high-frequency harmonics and high-frequency vibrations. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

23 pages, 14773 KB  
Article
Reduction in DC-Link Capacitor Current by Phase Shifting Method for a Dual Three-Phase Voltage Source Inverters Dual Permanent Magnet Synchronous Motors System
by Deniz Şahin and Bülent Dağ
World Electr. Veh. J. 2025, 16(1), 39; https://doi.org/10.3390/wevj16010039 - 14 Jan 2025
Viewed by 2556
Abstract
This paper presents a carrier waves phase shifting method to reduce the dc-link capacitor current for a dual three-phase permanent magnet synchronous motor drive system. Dc-link capacitors absorb the ripple current generated at the input due to the harmonics of the pulse width [...] Read more.
This paper presents a carrier waves phase shifting method to reduce the dc-link capacitor current for a dual three-phase permanent magnet synchronous motor drive system. Dc-link capacitors absorb the ripple current generated at the input due to the harmonics of the pulse width modulation (PWM). The size, cost, reliability, and lifetime of the dc-link capacitor are negatively affected by this ripple current flowing through it. The proposed method is especially appropriate for common dc-link capacitors for a dual inverter system driving two PMSMs. In this paper, the input current of each inverter is analyzed using Double Fourier Analysis, and the harmonic components of the dc-link capacitor current are determined. The carrier wave phase shifting method is proposed to reduce the magnitude of the harmonics and thus reduce the dc-link capacitor current. Furthermore, the optimum angle between the carrier waves for the maximum reduction in the dc-link capacitor current is analyzed and simulated for different scenarios considering the speed and load torque of the PMSMs. The proposed method is verified through experiments and PMSMs are driven by three-phase voltage source inverters (VSIs) modulated with Space Vector Pulse Width Modulation (SVPWM), which is the most common PWM strategy. The proposed method reduces the dc-link capacitor current by 60%, thereby significantly decreasing the required dc-link capacitance, the volume of the drive system, and its cost. Full article
Show Figures

Figure 1

20 pages, 11490 KB  
Article
Characteristic Analysis and Error Compensation Method of Space Vector Pulse Width Modulation-Based Driver for Permanent Magnet Synchronous Motors
by Qihang Chen, Wanzhen Wu and Qianen He
Sensors 2024, 24(24), 7945; https://doi.org/10.3390/s24247945 - 12 Dec 2024
Viewed by 1483
Abstract
Permanent magnet synchronous motors (PMSMs) are widely used in a variety of fields such as aviation, aerospace, marine, and industry due to their high angular position accuracy, energy conversion efficiency, and fast response. However, driving errors caused by the non-ideal characteristics of the [...] Read more.
Permanent magnet synchronous motors (PMSMs) are widely used in a variety of fields such as aviation, aerospace, marine, and industry due to their high angular position accuracy, energy conversion efficiency, and fast response. However, driving errors caused by the non-ideal characteristics of the driver negatively affect motor control accuracy. Compensating for the errors arising from the non-ideal characteristics of the driver demonstrates substantial practical value in enhancing control accuracy, improving dynamic performance, minimizing vibration and noise, optimizing energy efficiency, and bolstering system robustness. To address this, the mechanism behind these non-ideal characteristics is analyzed based on the principles of space vector pulse width modulation (SVPWM) and its circuit structure. Tests are then conducted to examine the actual driver characteristics and verify the analysis. Building on this, a real-time compensation method is proposed, physically matched to the driver. Using the volt–second equivalence principle, an input–output voltage model of the driver is derived, with model parameters estimated from test data. The driving error is then compensated with a voltage method based on the model. The results of simulations and experiments show that the proposed method effectively mitigates the influence of the driver’s non-ideal characteristics, improving the driving and speed control accuracies by 88.07% (reducing the voltage error from 0.7345 V to 0.0879 V for a drastic command voltage with a sinusoidal amplitude of 10 V and a frequency of 50 Hz) and 53.08% (reducing the speed error from 0.0130°/s to 0.0061°/s for a lower command speed with a sinusoidal amplitude of 20° and a frequency of 0.1 Hz), respectively, in terms of the root mean square errors. This method is cost-effective, practical, and significantly enhances the control performance of PMSMs. Full article
Show Figures

Figure 1

15 pages, 3897 KB  
Article
Proposal of Low-Speed Sensorless Control of IPMSM Using a Two-Interval Six-Segment High-Frequency Injection Method with DC-Link Current Sensing
by Daniel Konvicny, Pavol Makys and Alex Franko
Energies 2024, 17(22), 5789; https://doi.org/10.3390/en17225789 - 20 Nov 2024
Cited by 1 | Viewed by 1597
Abstract
This paper proposes a modification to existing saliency-based, sensorless control strategy for interior permanent magnet synchronous motors. The proposed approach leverages a two-interval, six-segment high-frequency voltage signal injection technique. It aims to improve rotor position and speed estimation accuracy when utilizing a single [...] Read more.
This paper proposes a modification to existing saliency-based, sensorless control strategy for interior permanent magnet synchronous motors. The proposed approach leverages a two-interval, six-segment high-frequency voltage signal injection technique. It aims to improve rotor position and speed estimation accuracy when utilizing a single current sensor positioned in the inverter’s DC-bus circuit. The key innovation lies in modifying both the high-frequency signal injection and demodulation processes to address challenges in accurate phase current reconstruction and rotor position estimation, at low and zero speeds. A significant modification to the traditional high-frequency voltage signal injection method is introduced, which involves splitting the signal injection and the field-oriented control algorithm into two distinct sampling and switching periods. This approach ensures that no portion of the injected voltage space vector falls into the immeasurable region of space vector modulation, which could otherwise compromise current measurements. The dual-period structure, termed the two-interval six-segment high-frequency injection, allows for more precise current measurement during the signal injection period while maintaining optimal motor control during the field-oriented control period. Furthermore, this paper explores a different demodulation technique that improves the estimation of rotor position and speed. By employing a synchronous filter in combination with a phase-locked loop, the proposed method enhances the robustness of the system against noise and inaccuracies typically encountered in phase current reconstruction. The effectiveness of the proposed modifications is demonstrated through comprehensive simulation results. These results confirm that the enhanced method offers more reliable rotor position and speed estimates compared to the existing sensorless technique, making it particularly suitable for applications requiring high precision in motor control. Full article
Show Figures

Figure 1

25 pages, 6995 KB  
Article
The Control Strategies for Charging and Discharging of Electric Vehicles in the Vehicle–Grid Interaction Modes
by Tao Wang, Jihui Zhang, Xin Li, Shenhui Chen, Jinhao Ma and Honglin Han
World Electr. Veh. J. 2024, 15(10), 468; https://doi.org/10.3390/wevj15100468 - 14 Oct 2024
Cited by 3 | Viewed by 2477
Abstract
In response to the challenges posed by large-scale, uncoordinated electric vehicle charging on the power grid, Vehicle-to-Grid (V2G) technology has been developed. This technology seeks to synchronize electric vehicles with the power grid, improving the stability of their connections and fostering positive energy [...] Read more.
In response to the challenges posed by large-scale, uncoordinated electric vehicle charging on the power grid, Vehicle-to-Grid (V2G) technology has been developed. This technology seeks to synchronize electric vehicles with the power grid, improving the stability of their connections and fostering positive energy exchanges between them. The key component for implementing V2G technology is the bidirectional AC/DC converter. This study concentrates on the non-isolated bidirectional AC/DC converter, providing a detailed analysis of its two-stage operation and creating a mathematical model. A dual closed-loop control structure for voltage and current is designed based on nonlinear control theory, along with a constant current charge–discharge control strategy. Furthermore, midpoint potential balance is achieved through zero-sequence voltage injection control, and power signals for the switching devices are generated using Space Vector Pulse Width Modulation (SVPWM) technology. A simulation model of the V2G system is then constructed in MATLAB/Simulink for analysis and validation. The findings demonstrate that the control strategy proposed in this paper improves the system’s robustness, dynamic performance, and resistance to interference, thus reducing the effects of large-scale, uncoordinated electric vehicle charging on the power grid. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
Show Figures

Figure 1

22 pages, 13437 KB  
Article
A Novel Approach to Ripple Cancellation for Low-Speed Direct-Drive Servo in Aerospace Applications
by Xin Zhang, Ziting Wang, Chaoping Bai and Shuai Zhang
Aerospace 2024, 11(10), 834; https://doi.org/10.3390/aerospace11100834 - 10 Oct 2024
Cited by 3 | Viewed by 1579
Abstract
Low-frequency harmonic interference is an important factor that affects the performance of low-speed direct-drive servo systems. In order to improve the low-speed smoothness of direct-drive servo, firstly, the causes of the first and second harmonics of electromagnetic torque and tooth harmonics are analyzed [...] Read more.
Low-frequency harmonic interference is an important factor that affects the performance of low-speed direct-drive servo systems. In order to improve the low-speed smoothness of direct-drive servo, firstly, the causes of the first and second harmonics of electromagnetic torque and tooth harmonics are analyzed based on the mathematical model of PMSM (permanent magnet synchronous motor) and the principle of vector control. Accordingly, the CC-EUMA (Electrical angle Update and Mechanical angle Assignment algorithm for Center Current) and SL-DQPR (Double Quasi-Proportional Resonant control algorithm for Speed Loop) algorithm are proposed. Second, to confirm the algorithm’s efficacy, the harmonic environment is simulated using Matlab/Simulink, and the built harmonic suppression module is simulated and analyzed. Then, a miniaturized, fully digital drive control system is built based on the architecture of the Zynq-7000 series chips. Finally, the proposed suppression algorithm is verified at the board level. According to the experimental results, the speed ripple decreases to roughly one-third of its initial value after the algorithm is included. This effectively delays the speed ripple’s low-speed deterioration and provides a new idea for the low-speed control of the space direct-drive servo system. Full article
(This article belongs to the Special Issue Aircraft Electric Power System: Design, Control, and Maintenance)
Show Figures

Figure 1

10 pages, 4839 KB  
Article
Variable Delayed Time Control for Dual Three-Phase Permanent Magnet Synchronous Motor with Double Central Symmetry Space Vector Pulse Width Modulation
by Tao Tao and Sen Liu
Energies 2024, 17(17), 4347; https://doi.org/10.3390/en17174347 - 30 Aug 2024
Viewed by 1597
Abstract
To address the harmonic issues associated with the pulse width modulation (PWM) method, this article introduces variable delayed time (VDT) space vector pulse width modulation (SVPWM) with double central symmetry for dual three-phase permanent magnet synchronous machines (DTP-PMSMs). Firstly, the switching sequence of [...] Read more.
To address the harmonic issues associated with the pulse width modulation (PWM) method, this article introduces variable delayed time (VDT) space vector pulse width modulation (SVPWM) with double central symmetry for dual three-phase permanent magnet synchronous machines (DTP-PMSMs). Firstly, the switching sequence of four traditional vectors undergoes double central symmetry, resulting in the doubling of the frequency of the phase voltage. This alteration eliminates harmonics occurring at odd multiples of carrier frequency. Additionally, the adopting of a single null vector minimizes the additional switching times introduced by the double central symmetry. Subsequently, VDT-SVPWM is employed to further suppress the harmonics at the even multiples of carrier frequency. The implementation of the proposed double central symmetry method involves directly utilizing the calculated duty cycle of the traditional four vectors. Moreover, integrating VDT-SVPWM with the double central symmetry method is straightforward. Simulation and experimental results validate the efficacy of the proposed method in suppressing harmonics and mitigating vibrations in the DTP-PMSM. Full article
Show Figures

Figure 1

19 pages, 3260 KB  
Article
Basic Circuit Model of Voltage Source Converters: Methodology and Modeling
by Christian Bipongo Ndeke, Marco Adonis and Ali Almaktoof
AppliedMath 2024, 4(3), 889-907; https://doi.org/10.3390/appliedmath4030048 - 29 Jul 2024
Cited by 1 | Viewed by 3277
Abstract
Voltage source converters (VSCs) have emerged as the key components in modern power systems, facilitating efficient energy conversion and flexible power flow control. Understanding the fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power system studies. A [...] Read more.
Voltage source converters (VSCs) have emerged as the key components in modern power systems, facilitating efficient energy conversion and flexible power flow control. Understanding the fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power system studies. A basic voltage source converter circuit model connected to an LC filter is essential because it lowers the harmonic distortions and enhances the overall power quality of the micro-grid. This guarantees a clean and steady power supply, which is necessary for the integration of multiple renewable energy sources and sensitive loads. A comprehensive methodology for developing a basic circuit model of VSCs, focusing on the key components and principals involved, is presented in this paper. The methodology includes the modeling of space vector pulse-width modulation (SVPWM) as well as the direct quadrature zero synchronous reference frame. Different design controls, including the design of current control loop in the S-domain, the design of the direct current (DC) bus voltage control loop in the S-domain, and the design of the alternating current (AC) voltage control loop in the S-domain, are explored to capture the dynamic behavior and control strategies of VSCs accurately. The proposed methodology provides a systematic framework for modeling VSCs, enabling engineers and researchers to analyze their performance and assess their impact on power system stability and operation. Future studies can be conducted by using case studies and simulation scenarios to show the efficiency and applicability of the developed models in analyzing VSC-based power electronics applications, including high-voltage direct current (HVDC) transmission systems and flexible alternating current transmission systems (FACTS). The significance of this work lies in its potential to advance the understanding and application of VSCs, contributing to more resilient and efficient power systems. By providing a solid foundation for future research and development, this study supports the ongoing integration of renewable energy sources and the advancement of modern electrical infrastructure. Full article
Show Figures

Figure 1

26 pages, 27856 KB  
Article
Novel Space-Vector PWM Schemes for Enhancing Efficiency and Decoupled Control in Quasi-Z-Source Inverters
by Ivan Grgić, Mateo Bašić, Dinko Vukadinović and Ivan Marinović
Energies 2024, 17(6), 1387; https://doi.org/10.3390/en17061387 - 13 Mar 2024
Cited by 5 | Viewed by 2237
Abstract
This paper investigates the development of pulse width modulation (PWM) schemes for three-phase quasi-Z-source inverters (qZSIs). These inverters are notable for their voltage boost capability, built-in short-circuit protection, and continuous input current, making them suitable for low-voltage-fed applications like photovoltaic or fuel cell-based [...] Read more.
This paper investigates the development of pulse width modulation (PWM) schemes for three-phase quasi-Z-source inverters (qZSIs). These inverters are notable for their voltage boost capability, built-in short-circuit protection, and continuous input current, making them suitable for low-voltage-fed applications like photovoltaic or fuel cell-based systems. Despite their advantages, qZSIs confront challenges such as increased control complexity and a larger number of passive components compared to traditional voltage source inverters (VSIs). In addition, most existing PWM schemes for qZSIs lack the capability for independent control of the amplitude modulation index and duty cycle, which is essential in closed-loop applications. This study introduces innovative space-vector PWM (SVPWM) schemes, addressing issues of independent control, synchronization, and unintentional short-circuiting in qZSIs. It evaluates several established continuous and discontinuous PWM schemes, and proposes two novel decoupled SVPWM-based schemes that integrate dead time and in which the shoot-through occurrence is synchronized with the beginning of the zero switching state. These novel schemes are designed to reduce switching losses and improve qZSI controllability. Experimental validation is conducted using a custom-developed electronic circuit board that enables the implementation of a range of PWM schemes, including the newly proposed ones. The obtained results indicate that the proposed PWM schemes can offer up to 6.8% greater efficiency and up to 7.5% reduced voltage stress compared to the closest competing PWM scheme from the literature. In addition, they contribute to reducing the electromagnetic interference and thermal stress of the related semiconductor switches. Full article
Show Figures

Figure 1

16 pages, 4889 KB  
Article
Model-Free Predictive Current Control of Five-Phase PMSM Drives
by Wentao Huang, Yijia Huang and Dezhi Xu
Electronics 2023, 12(23), 4848; https://doi.org/10.3390/electronics12234848 - 30 Nov 2023
Cited by 18 | Viewed by 3102
Abstract
Model predictive control is highly dependent on accurate models and the parameters of electric motor drives. Multiphase permanent magnet synchronous motors (PMSMs) contain nonlinear parameters and mutual cross-coupling dynamics, resulting in challenges in modeling and parameter acquisition. To lessen the parameter dependence of [...] Read more.
Model predictive control is highly dependent on accurate models and the parameters of electric motor drives. Multiphase permanent magnet synchronous motors (PMSMs) contain nonlinear parameters and mutual cross-coupling dynamics, resulting in challenges in modeling and parameter acquisition. To lessen the parameter dependence of current predictions, a model-free predictive current control (MFPCC) strategy based on an ultra-local model and motor outputs is proposed for five-phase PMSM drives. The ultra-local model is constructed according to the differential equation of current. The inherent relation between the parameters in the predictive current model and the ultra-local model is analyzed in detail. The unknowns of the ultra-local model are estimated using the motor current and voltage at different time instants without requiring motor parameters or observers. Moreover, space vector modulation technology is employed to minimize the voltage tracking error. Finally, simulations and experiments are conducted to verify the effectiveness of the MFPCC with space vector modulation. The results confirm that the proposed method can effectively eliminate the impact of motor parameters and improve steady-state performance. Moreover, this control strategy demonstrates good robustness against load variations. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

Back to TopTop