Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200)

Search Parameters:
Keywords = synchronous control equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13514 KiB  
Article
Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco
by Runze Song, Haoyu Liu, Yueyang Hu, Man Zhang and Wenyi Sheng
Appl. Sci. 2025, 15(15), 8612; https://doi.org/10.3390/app15158612 (registering DOI) - 4 Aug 2025
Abstract
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the [...] Read more.
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the synchronous acquisition of three types of crop data: visible light images, thermal infrared images, and laser point clouds. The paper innovatively proposed the Difference Structural Similarity Index Measure (DSSIM) index, combined with statistical indicators (average point number difference, average coordinate error), distribution characteristic indicators (Charm distance), and Hausdorff distance to characterize the stability of the system. After 72 consecutive hours of synchronization testing on the timing boards, it was verified that the root mean square error of the synchronization time for each timing board reached the ns level. The synchronous trigger acquisition time for crop parameters under time synchronization was controlled at the microsecond level. Using pepper as the crop sample, 133 consecutive acquisitions were conducted. The acquisition success rate for the three phenotypic data types of pepper samples was 100%, with a DSSIM of approximately 0.96. The average point number difference and average coordinate error were both about 3%, while the Charm distance and Hausdorff distance were only 1.14 mm and 5 mm. This system can provide hardware support for multi-parameter acquisition and data registration in the fast mobile crop phenotype platform, laying a reliable data foundation for crop growth monitoring, intelligent yield analysis, and prediction. Full article
(This article belongs to the Special Issue Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture)
Show Figures

Figure 1

23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 209
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 2495 KiB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 - 23 Jul 2025
Viewed by 229
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

34 pages, 5960 KiB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 220
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

15 pages, 4556 KiB  
Article
Vibration Suppression Algorithm for Electromechanical Equipment in Distributed Energy Supply Systems
by Huan Wang, Fangxu Han, Bo Zhang and Guilin Zhao
Energies 2025, 18(14), 3757; https://doi.org/10.3390/en18143757 - 16 Jul 2025
Viewed by 235
Abstract
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous [...] Read more.
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous motor (PMSM) systems, an electromagnetic (EM) vibration can cause problems such as energy loss and mechanical wear. Therefore, it is necessary to design control algorithms that can effectively suppress EM vibration. To this end, a vibration suppression algorithm for fractional-slot permanent magnet synchronous motors based on a d-axis current injection is proposed in this paper. Firstly, this paper analyzes the radial electromagnetic force of the fractional-slot PMSM to identify the main source of EM vibration in fractional-slot PMSMs. Based on this, the intrinsic relationship between the EM vibration of fractional-slot PMSMs and the d-axis and q-axis currents is explored, and a method for calculating the d-axis current to suppress the vibration is proposed. Experimental verification shows that the proposed algorithm can effectively suppress EM vibration. Full article
Show Figures

Figure 1

23 pages, 20707 KiB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 258
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

29 pages, 8004 KiB  
Article
The Development of an Air Suction Precision Seed-Metering Device for Rice Plot Breeding
by Wei Qin, Yuwu Li, Cheng Qian, Zhuorong Fan, Daoqing Yan, Guo Zou, Siqian Liu, Zaiman Wang, Ying Zang and Minghua Zhang
Agronomy 2025, 15(7), 1642; https://doi.org/10.3390/agronomy15071642 - 5 Jul 2025
Viewed by 397
Abstract
To address the lack of specialized seeding equipment and low manual seeding efficiency in rice plot breeding, this study developed an air suction precision seed-metering device for rice plot breeding, featuring automatic seed-switching and seed-clearing functions controlled by an STM32 microcontroller. Firstly, based [...] Read more.
To address the lack of specialized seeding equipment and low manual seeding efficiency in rice plot breeding, this study developed an air suction precision seed-metering device for rice plot breeding, featuring automatic seed-switching and seed-clearing functions controlled by an STM32 microcontroller. Firstly, based on morphological analysis and MATLAB image processing, an active contour method was used to construct a suction hole model. Secondly, to meet the non-contaminated switching requirements between rice varieties, an electrically controlled seed-switching and seed-clearing mechanism was developed based on QR code-based precise recognition and positioning. Using 10 rice varieties as experimental materials, performance tests were conducted. The results showed that the seed-switching mechanism had single and cumulative errors under 0.4°, and the seed-clearing rate reached 100% with an average clearing time below 0.88 s. At a rotational speed of 20 r·min−1 and negative pressure of 3200 Pa, seed-filling performance was optimal for all rice varieties. Among them, the rice variety Nayou 6388 exhibited the best seed-filling performance, with a 0.8% missing seed rate, 97.6% single and double seed rate, and 1.6% multiple seed rate. In double-row coordinated tests, each seed-metering device independently completed seed switching and maintained synchronized operation, meeting agronomic requirements for accurate seed switching/clearing and precision seed filling in rice plot breeding. Full article
(This article belongs to the Collection Advances of Agricultural Robotics in Sustainable Agriculture 4.0)
Show Figures

Figure 1

25 pages, 33747 KiB  
Article
System Design and Experimental Study of a Four-Roll Bending Machine
by Dongxu Guo, Qun Sun, Ying Zhao, Shangsheng Jiang and Yigang Jing
Appl. Sci. 2025, 15(13), 7383; https://doi.org/10.3390/app15137383 - 30 Jun 2025
Viewed by 284
Abstract
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, [...] Read more.
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, forming stability, and machining accuracy. The mechanical system underwent static simulation optimization using SolidWorks Simulation, ensuring maximum stress in the guiding mechanism was controlled below 7.118×103 N/m². ABAQUS-based roll-bending dynamic simulations validated the geometric adaptability and process feasibility of the proposed mechanical configuration. A master-slave dual-core control architecture was implemented in the control system, enabling synchronized error ≤ 0.05 mm, dynamic response time ≤ 10 ms, and positioning accuracy of ±0.01 mm through collaborative control of the master controller and servo drives. Experimental validation demonstrated that the machine achieves bending errors within 1%, with an average forming error of 0.798% across various radii profiles. The arc integrity significantly outperforms conventional equipment, while residual straight edge length was reduced by 86.67%. By adopting fully servo-electric cylinder actuation and integrating a C#-developed human–machine interface with real-time feedback control, this research effectively enhances roll-bending precision, minimizes residual straight edges, and exhibits broad industrial applicability. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 11925 KiB  
Article
Design and Field Experiment of Synchronous Hole Fertilization Device for Maize Sowing
by Feng Pan, Jincheng Chen, Baiwei Wang, Ziheng Fang, Jinxin Liang, Kangkang He and Chao Ji
Agriculture 2025, 15(13), 1400; https://doi.org/10.3390/agriculture15131400 - 29 Jun 2025
Viewed by 437
Abstract
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming [...] Read more.
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming to reduce fertilizer application and increase efficiency through the precise alignment technology of the seed and fertilizer. This device integrates an electric drive precision seeding unit, a slot wheel hole fertilization unit, and a multi-sensor coordinated closed-loop control system. An STM32 single-chip micro-computer is used to dynamically analyze the seed–fertilizer timing signal, and a double closed-loop control strategy (the position loop priority is higher than the speed loop) is used to correct the spatial phase difference between the seed and fertilizer in real time to ensure the precise control of the longitudinal distance (40~70 mm) and the lateral distance (50~80 mm) of the seed and fertilizer. Through the Box–Behnken response surface method, a field multi-factor test was carried out to analyze the mechanism of influence of the implemented forward speed (A), per-hole target fertilizing amount (B), and plant spacing (fertilizer hole interval) (C) on the seed–fertilizer alignment qualification rate (Y1) and the coefficient of variation in the hole fertilizing amount (Y2). The results showed that the order of primary and secondary factors affecting Y1 was A > C > B, and that the order affecting Y2 was C > B > A; the comprehensive performance of the device was best with the optimal parameter combination of A = 4.2 km/h, B = 4.4 g, and C = 30 cm, with Y1 as high as 94.024 ± 0.694% and Y2 as low as 3.147 ± 0.058%, which is significantly better than the traditional strip application method. The device realizes the precise regulation of 2~6 g/hole by optimizing the structural parameters of the outer groove wheel (arc center distance of 25 mm, cross-sectional area of 201.02 mm2, effective filling length of 2.73~8.19 mm), which can meet the differentiated agronomic needs of ordinary corn, silage corn, and popcorn. Field verification shows that the device significantly improves the spatial distribution of the concentration of fertilizer, effectively reduces the amount of fertilizer applied, and improves operational stability and reliability in multiple environments. This provides technical support for the regional application of precision agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 14919 KiB  
Article
A Super-Twisting Sliding-Mode Control Strategy for a Heaving Point Absorber Wave Energy Converter
by Zhongfeng Li, Lixian Wang, Lidong Wang, Xiaoping Liu, Zhongyi Wang and Lei Liu
J. Mar. Sci. Eng. 2025, 13(7), 1214; https://doi.org/10.3390/jmse13071214 - 23 Jun 2025
Viewed by 297
Abstract
This paper proposes a super-twisting sliding-mode control (STSMC) strategy to enhance the efficiency and stability of a heaving point absorber wave energy converter (PAWEC) system equipped with a permanent magnet synchronous generator (PMSG). In particular, the STSMC is designed to address both generator-side [...] Read more.
This paper proposes a super-twisting sliding-mode control (STSMC) strategy to enhance the efficiency and stability of a heaving point absorber wave energy converter (PAWEC) system equipped with a permanent magnet synchronous generator (PMSG). In particular, the STSMC is designed to address both generator-side and grid-side control challenges by ensuring precise regulation under varying wave conditions. A dynamical model of the PAWEC is developed to describe system responses, while the power take-off (PTO) mechanism is tailored to maintain consistent generator speed and efficient energy conversion. Lyapunov stability theory is employed to verify the stability of the proposed controller. Simulation studies and tests on a small-scale experimental setup with a 500 W PAWEC model under regular and irregular waves demonstrate that STSMC improves generator speed regulation and power output by more than 30% compared to field-oriented control (FOC), nonlinear adaptive backstepping (NAB), and first-order sliding-mode control (FOSMC). The proposed approach also manages grid-side total harmonic distortion (THD) effectively, keeping it below 5%. These results indicate that STSMC can substantially improve the dynamic performance and energy efficiency of wave energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 6573 KiB  
Article
Remote Real-Time Monitoring and Control of Small Wind Turbines Using Open-Source Hardware and Software
by Jesus Clavijo-Camacho, Gabriel Gomez-Ruiz, Reyes Sanchez-Herrera and Nicolas Magro
Appl. Sci. 2025, 15(12), 6887; https://doi.org/10.3390/app15126887 - 18 Jun 2025
Viewed by 435
Abstract
This paper presents a real-time remote-control platform for small wind turbines (SWTs) equipped with a permanent magnet synchronous generator (PMSG). The proposed system integrates a DC–DC boost converter controlled by an Arduino® microcontroller, a Raspberry Pi® hosting a WebSocket server, and [...] Read more.
This paper presents a real-time remote-control platform for small wind turbines (SWTs) equipped with a permanent magnet synchronous generator (PMSG). The proposed system integrates a DC–DC boost converter controlled by an Arduino® microcontroller, a Raspberry Pi® hosting a WebSocket server, and a desktop application developed using MATLAB® App Designer (version R2024b). The platform enables seamless remote monitoring and control by allowing upper layers to select the turbine’s operating mode—either Maximum Power Point Tracking (MPPT) or Power Curtailment—based on real-time wind speed data transmitted via the WebSocket protocol. The communication architecture follows the IEC 61400-25 standard for wind power system communication, ensuring reliable and standardized data exchange. Experimental results demonstrate high accuracy in controlling the turbine’s operating points. The platform offers a user-friendly interface for real-time decision-making while ensuring robust and efficient system performance. This study highlights the potential of combining open-source hardware and software technologies to optimize SWT operations and improve their integration into distributed renewable energy systems. The proposed solution addresses the growing demand for cost-effective, flexible, and remote-control technologies in small-scale renewable energy applications. Full article
Show Figures

Figure 1

18 pages, 2961 KiB  
Article
A Novel Isothermal Compressed Air Energy Storage System Based on Cooperative Operation of Two-Stage Liquid Piston Units
by Yan Cui, Tong Jiang and Hongfei Hou
Energies 2025, 18(12), 3184; https://doi.org/10.3390/en18123184 - 17 Jun 2025
Viewed by 375
Abstract
The transition toward a renewable-based energy structure has significantly accelerated the advancement of energy storage technologies. Compressed air energy storage (CAES) is regarded as a highly promising long-duration energy storage solution due to the advantages of its large scale and long service life. [...] Read more.
The transition toward a renewable-based energy structure has significantly accelerated the advancement of energy storage technologies. Compressed air energy storage (CAES) is regarded as a highly promising long-duration energy storage solution due to the advantages of its large scale and long service life. However, the efficiency of conventional compressed air energy storage (CAES) systems remains limited due to the inadequate utilization of thermal energy. Isothermal compressed CAES (ICAES) technology, based on liquid pistons, can overcome the efficiency bottleneck by enabling temperature control during air compression. However, the operation of liquid pistons under high-pressure storage conditions remains a challenge because of the high compression ratio. To enhance the utilization rate of the two-stage liquid piston unit by using the synchronous operations of compression and discharge processes, this paper proposes a coordinated operation scheme. Then, a multi-stage ICAES system under constant-pressure air storage is proposed. Mathematical models and energy efficiency analysis methods of the multi-stage ICAES system are also established. Finally, the operational characteristics are analyzed in combination with the ICAES at 200 kWh. The results show that the proposed system can achieve an overall efficiency of 68.0%, under 85% and 90% efficiencies for low-pressure and linear equipment, respectively. The coordinated operation of the two-stage liquid piston unit can be further extended to multi-stage operations, demonstrating broad application prospects in ICAES systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 2568 KiB  
Article
Reinforcement Learning-Driven Digital Twin for Zero-Delay Communication in Smart Greenhouse Robotics
by Cristian Bua, Luca Borgianni, Davide Adami and Stefano Giordano
Agriculture 2025, 15(12), 1290; https://doi.org/10.3390/agriculture15121290 - 15 Jun 2025
Viewed by 873
Abstract
This study presents a networked cyber-physical architecture that integrates a Reinforcement Learning-based Digital Twin (DT) to enable zero-delay interaction between physical and digital components in smart agriculture. The proposed system allows real-time remote control of a robotic arm inside a hydroponic greenhouse, using [...] Read more.
This study presents a networked cyber-physical architecture that integrates a Reinforcement Learning-based Digital Twin (DT) to enable zero-delay interaction between physical and digital components in smart agriculture. The proposed system allows real-time remote control of a robotic arm inside a hydroponic greenhouse, using a sensor-equipped Wearable Glove (SWG) for hand motion capture. The DT operates in three coordinated modes: Real2Digital, Digital2Real, and Digital2Digital, supporting bidirectional synchronization and predictive simulation. A core innovation lies in the use of a Reinforcement Learning model to anticipate hand motions, thereby compensating for network latency and enhancing the responsiveness of the virtual–physical interaction. The architecture was experimentally validated through a detailed communication delay analysis, covering sensing, data processing, network transmission, and 3D rendering. While results confirm the system’s effectiveness under typical conditions, performance may vary under unstable network scenarios. This work represents a promising step toward real-time adaptive DTs in complex smart greenhouse environments. Full article
Show Figures

Figure 1

18 pages, 3661 KiB  
Article
Assessing Acoustic Conditions in Hybrid Classrooms for Chinese Speech Intelligibility at the Remote End
by Qian Li, Nan Li, Yan Wang, Zheng Li, Mengyun Tian and Yihan Zhang
Buildings 2025, 15(11), 1909; https://doi.org/10.3390/buildings15111909 - 1 Jun 2025
Viewed by 460
Abstract
Blended Synchronous Learning helps teachers and students communicate without geographical restrictions. The effect of communication between the face-to-face end and the remote end was not only affected by the performance of the equipment but also by the acoustic conditions in the classroom. This [...] Read more.
Blended Synchronous Learning helps teachers and students communicate without geographical restrictions. The effect of communication between the face-to-face end and the remote end was not only affected by the performance of the equipment but also by the acoustic conditions in the classroom. This paper measured the acoustic parameters in the hybrid classrooms and conducted subjective speech intelligibility tests. It was found that for the hybrid classroom with a decentralized sound reinforcement system, the background noise level was high because lots of equipment was needed for synchronous learning. The speech intelligibility scores of the remote end were lower than those at the face-to-face end. Acoustic parameters of reverberation time (RT) and excessive signal-to-noise ratio (SNR) showed a negative correlation with speech intelligibility scores in the remote end. It was recommended that the sound pressure level (SPL) of the sound reinforcement system should not be too high and that appropriate sound absorption treatment be performed. The size of the hybrid classroom should be controlled to prevent the sound that arrived 50 ms after the direct sound from arriving. When SNR was 33 dB(A) for hybrid classrooms, which had a good performance in the face-to-face end with the speech intelligibility scores, T20 should be within 0.8 s to achieve the target value of 83% for SI scores at the remote end. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 4660 KiB  
Article
An Adaptive Control Strategy for a Better Performance of the Paralleled PV-BES-VSG Power System
by Xian Gao, Dao Zhou, Amjad Anvari-Moghaddam and Frede Blaabjerg
Energies 2025, 18(10), 2505; https://doi.org/10.3390/en18102505 - 13 May 2025
Viewed by 420
Abstract
The growing integration of renewable energy sources has led to the development of virtual synchronous generator (VSG) control as a way to enhance system stability and offer primary frequency regulation. These functions of VSGs usually rely on the photovoltaic (PV) system or battery [...] Read more.
The growing integration of renewable energy sources has led to the development of virtual synchronous generator (VSG) control as a way to enhance system stability and offer primary frequency regulation. These functions of VSGs usually rely on the photovoltaic (PV) system or battery energy storage (BES), which is equipped at the DC side of the system. However, due to differences in the initial state of charges (SoCs) and uneven power distribution, the SoCs of battery energy storage systems (BESs) may become unbalanced, posing risks to the healthy operation of BESs and the overall system reliability. To realize SoC balancing, an adaptive control scheme for a paralleled PV-BES-VSG power system is presented. The adaptive SoC balancing term is applied to the active power references based on a simple segmented quadratic function. The proposed control strategy can realize optimal operation of paralleled VSGs and reduce SoC imbalance at the same time. The effectiveness of the proposed control scheme is evaluated via a case study system consisting of two paralleled PV-BES-VSG units using Matlab/Simulink R2021a. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop