Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,361)

Search Parameters:
Keywords = symmetric points

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 875 KiB  
Article
Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring
by Ahmed T. Farhat, Dina A. Ramadan, Hanan Haj Ahmad and Beih S. El-Desouky
Mathematics 2025, 13(16), 2585; https://doi.org/10.3390/math13162585 - 12 Aug 2025
Viewed by 124
Abstract
Life testing of products often requires extended observation periods. To shorten the duration of these tests, products can be subjected to more extreme conditions than those encountered in normal use; an approach known as accelerated life testing (ALT) is considered. This study investigates [...] Read more.
Life testing of products often requires extended observation periods. To shorten the duration of these tests, products can be subjected to more extreme conditions than those encountered in normal use; an approach known as accelerated life testing (ALT) is considered. This study investigates the estimation of unknown parameters and the acceleration factor for the modified Fréchet-Lomax exponential distribution (MFLED), utilizing Type II progressively first-failure censored (PFFC) samples obtained under the framework of constant-stress partially accelerated life testing (CSPALT). Maximum likelihood (ML) estimation is employed to obtain point estimates for the model parameters and the acceleration factor, while the Fisher information matrix is used to construct asymptotic confidence intervals (ACIs) for these estimates. To improve the precision of inference, two parametric bootstrap methods are also implemented. In the Bayesian context, a method for eliciting prior hyperparameters is proposed, and Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) method. These estimates are evaluated under both symmetric and asymmetric loss functions, and the corresponding credible intervals (CRIs) are computed. A comprehensive simulation study is conducted to compare the performance of ML, bootstrap, and Bayesian estimators in terms of mean squared error and coverage probabilities of confidence intervals. Finally, real-world failure time data of light-emitting diodes (LEDs) are analyzed to demonstrate the applicability and efficiency of the proposed methods in practical reliability studies, highlighting their value in modeling the lifetime behavior of electronic components. Full article
(This article belongs to the Special Issue Statistical Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

20 pages, 5189 KiB  
Review
A Review of Vector Field-Based Tool Path Planning for CNC Machining of Complex Surfaces
by Shengchang Xie and Zhiping Liu
Symmetry 2025, 17(8), 1300; https://doi.org/10.3390/sym17081300 - 12 Aug 2025
Viewed by 208
Abstract
With the development of modern manufacturing industry, complex surface parts are more and more widely used in aerospace, automobile manufacturing, the shipbuilding industry, and many other fields; furthermore, their machining demand is growing explosively, and CNC machining technology has become the mainstream machining [...] Read more.
With the development of modern manufacturing industry, complex surface parts are more and more widely used in aerospace, automobile manufacturing, the shipbuilding industry, and many other fields; furthermore, their machining demand is growing explosively, and CNC machining technology has become the mainstream machining method of complex surface parts because of its high precision and high efficiency. However, CNC machining of complex surfaces faces many challenges, especially the generation and optimization of tool trajectories. Therefore, vector field-based tool path planning methods have emerged, aiming to improve the efficiency and accuracy of CNC machining of complex surfaces. This paper focuses on the tool trajectory optimization problem in CNC machining of complex surfaces and reviews the current research status of vector field-based tool path planning for surface machining. The study explores the concept of symmetry in the design of tool paths, highlighting the importance of symmetrical vector fields in achieving efficient and high-precision machining. By analyzing the symmetrical properties of complex surfaces and the corresponding vector fields, this paper discusses the current status, difficulties, and core problems of relevant methods, pointing out the direction of breakthroughs and the future development trend. The findings provide a reference and basis for the realization of efficient and high-precision CNC machining of complex surfaces. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 4404 KiB  
Article
Modeling of Flow-Difference Influences on Dynamic Phase Transition and Stability in Curved Road Traffic Systems
by Chuan Tian and Yirong Kang
Symmetry 2025, 17(8), 1299; https://doi.org/10.3390/sym17081299 - 12 Aug 2025
Viewed by 166
Abstract
The traffic flow difference factor is of great significance for traffic flow stability and congestion mitigation. However, its role has not been studied in existing curved-road traffic flow models. To fill this gap, this study proposes an improved lattice traffic flow model for [...] Read more.
The traffic flow difference factor is of great significance for traffic flow stability and congestion mitigation. However, its role has not been studied in existing curved-road traffic flow models. To fill this gap, this study proposes an improved lattice traffic flow model for curved roads based on lattice hydrodynamic theory, which comprehensively considers the synergistic influence of curve geometric characteristics and the flow difference factor on traffic dynamics. Meanwhile, the new model adopts a modified optimal speed function regarding the symmetric characteristics of density. Through linear stability analysis, the stability criterion of the new model is derived. Via nonlinear analysis, the mKdV equation describing the propagation mechanism of traffic congestion near the critical point, along with its density wave solution, is obtained. The results show that introducing the traffic flow difference factor can significantly suppress the propagation speed and fluctuation amplitude of density waves and reduce the driver’s critical sensitivity coefficient, thereby effectively enhancing the stability and robustness of traffic flow on curved roads. Moreover, the model’s stability gradually improves as the curve curvature increases. Under the same curve conditions, compared with the classical Zhou model, the critical sensitivity and density wave propagation speed of the new model are reduced by approximately 16.67% and 19.48%, respectively, with favorable traffic congestion suppression effects. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

15 pages, 2982 KiB  
Article
CFD-Based Lagrangian Multiphase Analysis of Particulate Matter Transport in an Operating Room Environment
by Ahmet Çoşgun and Onur Gündüztepe
Processes 2025, 13(8), 2507; https://doi.org/10.3390/pr13082507 - 8 Aug 2025
Viewed by 285
Abstract
Maintaining air quality in operating rooms is critical for infection control and patient safety. Particulate matter, originating from surgical instruments, personnel, and external sources, is influenced by airflow patterns and ventilation efficiency. This study employs Computational Fluid Dynamics (CFD) simulations using Simcenter STAR-CCM+ [...] Read more.
Maintaining air quality in operating rooms is critical for infection control and patient safety. Particulate matter, originating from surgical instruments, personnel, and external sources, is influenced by airflow patterns and ventilation efficiency. This study employs Computational Fluid Dynamics (CFD) simulations using Simcenter STAR-CCM+ 2410 to analyze airflow and particulate behavior in a surgical-grade operating room. A steady-state solver with the kε turbulence model was used to replicate airflow, while the Lagrangian multiphase method simulated particle trajectories (0.5 µm, 1 µm, and 5 µm). The simulation results demonstrated close agreement with the experimental data, with average errors of 17.3%, 17.7%, and 39.7% for 0.5 µm, 1 µm, and 5 µm particles, respectively. These error margins are considered acceptable given the device’s 10% measurement sensitivity and the observed experimental asymmetry—attributable to equipment placement—which resulted in variations of 17.2%, 18.0%, and 26.5% at corresponding symmetric points. Collectively, these findings support the validity of the simulation model in accurately predicting particulate transport and deposition within the operating room environment. Findings confirm that optimizing airflow can achieve ISO Class 7 cleanroom standards and highlight the potential for future studies incorporating dynamic elements, such as personnel movement and equipment placement, to further improve contamination control in critical environments. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

29 pages, 4460 KiB  
Article
Dimensional and Numerical Approach to Heat Transfer in Structural Elements with a Symmetrical Cross Section
by Betti Bolló, Ioan Száva, Ildikó-Renáta Száva, Teofil-Florin Gălățanu, Károly Jármai and Denisa-Elena Muntean
Symmetry 2025, 17(8), 1271; https://doi.org/10.3390/sym17081271 - 8 Aug 2025
Viewed by 244
Abstract
The structures of buildings employ elements with symmetrical cross sections (columns have two axes of symmetry, and connecting beams have at least one), leading to symmetrical states of stress and deformation under the action of mechanical and thermal loads. Thermal stresses, resulting from [...] Read more.
The structures of buildings employ elements with symmetrical cross sections (columns have two axes of symmetry, and connecting beams have at least one), leading to symmetrical states of stress and deformation under the action of mechanical and thermal loads. Thermal stresses, resulting from temperature variations and fires, must be taken into account during calculations. Thus, it is important to perform theoretical and experimental studies on the propagation of heat flux during fires. Experimental investigations on prototypes can be replaced by investigations into attached, reduced-scale models. With the help of the model law (ML), deduced by dimensional approaches, the results obtained by the model can be extrapolated to the prototype. In the present article, the Szirtes’ Modern Dimensional Analysis (MDA) method is proposed; this is a simple, reliable, and repeatable dimensional approach. By applying the MDA to both the structural elements and model of an entire industrial hall, in terms of thermal field propagation, the authors demonstrate the undeniable effectiveness of the method in these construction calculations. MDA enables the efficient and easy analysis of thermal states of the homologous points of the prototype, even for spatial structures. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

23 pages, 4350 KiB  
Article
Gardens Fire Detection Based on the Symmetrical SSS-YOLOv8 Network
by Bo Liu, Junhua Wang, Qing An, Yanglu Wan, Jianing Zhou and Xijiang Chen
Symmetry 2025, 17(8), 1269; https://doi.org/10.3390/sym17081269 - 8 Aug 2025
Viewed by 256
Abstract
Fire detection primarily relies on sensors such as smoke detectors, heat detectors, and flame detectors. However, due to cost constraints, it is impractical to deploy such a large number of sensors for fire detection in outdoor gardens and landscapes. To address this challenge [...] Read more.
Fire detection primarily relies on sensors such as smoke detectors, heat detectors, and flame detectors. However, due to cost constraints, it is impractical to deploy such a large number of sensors for fire detection in outdoor gardens and landscapes. To address this challenge and aiming to enhance fire detection accuracy in gardens while achieving lightweight design, this paper proposes an improved symmetry SSS-YOLOv8 model for lightweight fire detection in garden video surveillance. Firstly, the SPDConv layer from ShuffleNetV2 is used to preserve flame or smoke information, combined with the Conv_Maxpool layer to reduce computational complexity. Subsequently, the SE module is introduced into the backbone feature extraction network to enhance features specific to fire and smoke. ShuffleNetV2 and the SE module are configured into a symmetric local network structure to enhance the extraction of flame or smoke features. Finally, WIoU is introduced as the bounding box regression loss function to further ensure the detection performance of the symmetry SSS-YOLOv8 model. Experimental results demonstrate that the improved symmetry SSS-YOLOv8 model achieves precision and recall rates for garden flame and smoke detection both exceeding 0.70. Compared to the YOLOv8n model, it exhibits a 2.1 percentage point increase in mAP, while its parameter is only 1.99 M, reduced to 65.7% of the original model. The proposed model demonstrates superior detection accuracy for garden fires compared to other YOLO series models of the same type, as well as different types of SSD and Faster R-CNN models. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 462 KiB  
Article
Fingerprint-Based Secure Query Scheme for Databases over Symmetric Mirror Servers
by Yu Zhang, Rui Zhu, Yin Li and Wenjv Hu
Symmetry 2025, 17(8), 1227; https://doi.org/10.3390/sym17081227 - 4 Aug 2025
Viewed by 234
Abstract
The Karp and Rabin (KR) fingerprint is a special hash-like function widely utilized for efficient string matching. Recently, Sharma et al.leveraged its linear and symmetric properties to facilitate private database queries. However, their approach mainly protects encrypted or secret-shared databases rather than public [...] Read more.
The Karp and Rabin (KR) fingerprint is a special hash-like function widely utilized for efficient string matching. Recently, Sharma et al.leveraged its linear and symmetric properties to facilitate private database queries. However, their approach mainly protects encrypted or secret-shared databases rather than public databases, where only the query privacy is required. In this paper, we focus explicitly on privacy-preserving queries over public read-only databases. We propose a novel fingerprint-based keyword query scheme using the distributed point function (DPF), which effectively hides users’ data access patterns across two symmetric mirror servers. Moreover, we provide a rigorous analysis of the false positive probability inherent in fingerprinting and discuss strategies for its minimization. Our scheme achieves efficiency close to plaintext methods, significantly reducing deployment complexity. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

41 pages, 3195 KiB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 319
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
Show Figures

Figure 1

34 pages, 12831 KiB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 294
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

21 pages, 3816 KiB  
Article
A K-Means Clustering Algorithm with Total Bregman Divergence for Point Cloud Denoising
by Xiaomin Duan, Anqi Mu, Xinyu Zhao and Yuqi Wu
Symmetry 2025, 17(8), 1186; https://doi.org/10.3390/sym17081186 - 24 Jul 2025
Viewed by 321
Abstract
Point cloud denoising is essential for improving 3D data quality, yet traditional K-means methods relying on Euclidean distance struggle with non-uniform noise. This paper proposes a K-means algorithm leveraging Total Bregman Divergence (TBD) to better model geometric structures on manifolds, enhancing robustness against [...] Read more.
Point cloud denoising is essential for improving 3D data quality, yet traditional K-means methods relying on Euclidean distance struggle with non-uniform noise. This paper proposes a K-means algorithm leveraging Total Bregman Divergence (TBD) to better model geometric structures on manifolds, enhancing robustness against noise. Specifically, TBDs—Total Logarithm, Exponential, and Inverse Divergences—are defined on symmetric positive-definite matrices, each tailored to capture distinct local geometries. Theoretical analysis demonstrates the bounded sensitivity of TBD-induced means to outliers via influence functions, while anisotropy indices quantify structural variations. Numerical experiments validate the method’s superiority over Euclidean-based approaches, showing effective noise separation and improved stability. This work bridges geometric insights with practical clustering, offering a robust framework for point cloud preprocessing in vision and robotics applications. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 5555 KiB  
Article
Optimization of a Navigation System for Autonomous Charging of Intelligent Vehicles Based on the Bidirectional A* Algorithm and YOLOv11n Model
by Shengkun Liao, Lei Zhang, Yunli He, Junhui Zhang and Jinxu Sun
Sensors 2025, 25(15), 4577; https://doi.org/10.3390/s25154577 - 24 Jul 2025
Viewed by 337
Abstract
Aiming to enable intelligent vehicles to achieve autonomous charging under low-battery conditions, this paper presents a navigation system for autonomous charging that integrates an improved bidirectional A* algorithm for path planning and an optimized YOLOv11n model for visual recognition. The system utilizes the [...] Read more.
Aiming to enable intelligent vehicles to achieve autonomous charging under low-battery conditions, this paper presents a navigation system for autonomous charging that integrates an improved bidirectional A* algorithm for path planning and an optimized YOLOv11n model for visual recognition. The system utilizes the improved bidirectional A* algorithm to generate collision-free paths from the starting point to the charging area, dynamically adjusting the heuristic function by combining node–target distance and search iterations to optimize bidirectional search weights, pruning expanded nodes via a greedy strategy and smoothing paths into cubic Bézier curves for practical vehicle motion. For precise localization of charging areas and piles, the YOLOv11n model is enhanced with a CAFMFusion mechanism to bridge semantic gaps between shallow and deep features, enabling effective local–global feature fusion and improving detection accuracy. Experimental evaluations in long corridors and complex indoor environments showed that the improved bidirectional A* algorithm outperforms the traditional improved A* algorithm in all metrics, particularly in that it reduces computation time significantly while maintaining robustness in symmetric/non-symmetric and dynamic/non-dynamic scenarios. The optimized YOLOv11n model achieves state-of-the-art precision (P) and mAP@0.5 compared to YOLOv5, YOLOv8n, and the baseline model, with a minor 0.9% recall (R) deficit compared to YOLOv5 but more balanced overall performance and superior capability for small-object detection. By fusing the two improved modules, the proposed system successfully realizes autonomous charging navigation, providing an efficient solution for energy management in intelligent vehicles in real-world environments. Full article
(This article belongs to the Special Issue Vision-Guided System in Intelligent Autonomous Robots)
Show Figures

Figure 1

19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 340
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 367
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

15 pages, 1669 KiB  
Article
Prospective Evaluation of a Thermogenic Topical Cream-Gel Containing Caffeine, Genistein, and Botanical Extracts for the Treatment of Moderate to Severe Cellulite
by Vittoria Giulia Bianchi, Matteo Riccardo Di Nicola, Anna Cerullo, Giovanni Paolino and Santo Raffaele Mercuri
Cosmetics 2025, 12(4), 155; https://doi.org/10.3390/cosmetics12040155 - 21 Jul 2025
Viewed by 1184
Abstract
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a [...] Read more.
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a high demand for effective, non-invasive, and well-tolerated treatment options. This single-centre, in vivo, prospective study evaluated the efficacy of a non-pharmacological, thermogenic topical cream-gel combined with manual massage in women with symmetrical grade II or III cellulite (Nürnberger–Müller scale). A total of 56 female participants (aged 18–55 years) were enrolled and instructed to apply the product twice daily for eight weeks to the thighs and buttocks. Efficacy was assessed using instrumental skin profilometry (ANTERA® 3D CS imaging system), dermatological clinical grading, and patient self-assessment questionnaires. Quantitative analysis showed a mean reduction of 23.5% in skin indentation volume (p < 0.01) and a mean decrease of 1.1 points on the cellulite severity scale by week 8. Patient-reported outcomes revealed 85.7% satisfaction with visible results and 91% satisfaction with product texture and ease of application. Dermatological evaluation confirmed no clinically significant adverse reactions, and only 3.5% of participants reported mild and transient skin sensitivity. These findings suggest that this topical cream-gel formulation, when used in conjunction with manual massage, represents a well-tolerated and non-invasive option for the cosmetic improvement of moderate to severe cellulite. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

24 pages, 1075 KiB  
Article
Reaction Forces and Apparent Thrust in Dual Oscillating Control Moment Gyroscopes
by Christopher Provatidis
Appl. Sci. 2025, 15(14), 8074; https://doi.org/10.3390/app15148074 - 20 Jul 2025
Viewed by 426
Abstract
This paper investigates a controversial phenomenon: the supposed generation of thrust from a symmetric system consisting of two contra-rotating gyroscopes whose spin axes form equal and opposite polar angles with respect to the axis connecting their supports. An elementary mechanical model demonstrates that, [...] Read more.
This paper investigates a controversial phenomenon: the supposed generation of thrust from a symmetric system consisting of two contra-rotating gyroscopes whose spin axes form equal and opposite polar angles with respect to the axis connecting their supports. An elementary mechanical model demonstrates that, for this configuration of gyroscopes, an internal moment arises within the system. This torque, although internally generated, is well known for playing a significant role in satellite attitude control using control moment gyroscopes (CMGs). The mechanical analysis considers the system of gyroscopes mounted on a platform or cart, which is supported at its front and rear ends. In this context, it was found that the resulting dynamic interaction causes unequal reaction forces at the support points, which do not obey the length-ratio rule predicted by static analysis. Such behavior can lead to misinterpretation of the net external thrust, despite the system being closed and momentum-conserving. In this context, the present paper clearly shows that no net force is allowed to develop. Full article
Show Figures

Figure 1

Back to TopTop