Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = switch station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3667 KB  
Article
Robust Low-Complexity WMMSE Precoding Under Imperfect CSI with Per-Antenna Power Constraints
by Zijiao Guo, Vaskar Sen and Honggui Deng
Sensors 2026, 26(1), 159; https://doi.org/10.3390/s26010159 - 25 Dec 2025
Viewed by 314
Abstract
Weighted sum-rate (WSR) maximization in downlink massive multi-user multiple-input (MU-MIMO) with per-antenna power constraints (PAPCs) and imperfect channel state information (CSI) is computationally challenging. Classical weighted minimum mean-square error (WMMSE) algorithms, in particular, have per-iteration costs that scale cubically with the number of [...] Read more.
Weighted sum-rate (WSR) maximization in downlink massive multi-user multiple-input (MU-MIMO) with per-antenna power constraints (PAPCs) and imperfect channel state information (CSI) is computationally challenging. Classical weighted minimum mean-square error (WMMSE) algorithms, in particular, have per-iteration costs that scale cubically with the number of base-station antennas. This article proposes a robust low-complexity WMMSE-based precoding framework (RLC-WMMSE) tailored for massive MU-MIMO downlink under PAPCs and stochastic CSI mismatch. The algorithm retains the standard WMMSE structure but incorporates three key enhancements: a diagonal dual-regularization scheme that enforces PAPCs via a lightweight projected dual ascent with row-wise safety projection; a Woodbury-based transmit update that replaces the dominant M×M inversion with an (NK)×(NK) symmetric positive-definite solve, greatly reducing the per-iteration complexity; and a hybrid switching mechanism with adaptive damping that blends classical and low-complexity updates to improve robustness and convergence under channel estimation errors. We also analyze computational complexity and signaling overhead for both TDD and FDD deployments. Simulation results over i.i.d. and spatially correlated channels show that the proposed RLC-WMMSE scheme achieves WSR performance close to benchmark WMMSE-PAPCs designs while providing substantial runtime savings and strictly satisfying the per-antenna power limits. These properties make RLC-WMMSE a practical and scalable precoding solution for large-scale MU-MIMO systems in future wireless sensor and communication networks. Full article
Show Figures

Figure 1

20 pages, 4527 KB  
Article
Magnetic Field Simulation and Verification for MMC-HVDC Submodules Under Double Pulse Test Including Dynamic Switching Behavior of 4.5 kV/5 kA IGBTs
by Hailin Li, Lulu Liu, Zhilei Si, Yongjie Hu, Kun Liu, Zhongting Chang, Yongrui Huang, Kepeng Xia, Shuhong Wang and Xiaofeng Zhou
Energies 2026, 19(1), 81; https://doi.org/10.3390/en19010081 - 23 Dec 2025
Viewed by 172
Abstract
An MMC is widely applied to the HVDC power transmission system. With a large number of insulated gate bipolar transistors (IGBTs) utilized in MMC-HVDC converter stations, an extremely complicated EM environment is generated due to the dv/dt and di/dt during the IGBT switching [...] Read more.
An MMC is widely applied to the HVDC power transmission system. With a large number of insulated gate bipolar transistors (IGBTs) utilized in MMC-HVDC converter stations, an extremely complicated EM environment is generated due to the dv/dt and di/dt during the IGBT switching process. A magnetic field simulation model is proposed to calculate the magnetic field generated by a 4.5 kV/5 kA IGBT-based MMC submodule under the DPT, with the dynamic switching behavior of IGBTs considered. Firstly, a behavior model of 4.5 kV/5 kA IGBTs is built with the help of commercial software. To validate its effectiveness, a DPT simulation model is built. A comparison between the simulation result and the measured data is performed. Finally, a quasi-static Maxwell model is utilized to approximate the near field caused by the current Ic of the DPT. The simulation result of the magnetic field strength at the point near the gate driver PCB is verified by the measurement data. The proposed magnetic field simulation model can help to analyze the EMI behavior and EMI design for MMC-HVDC submodules under DPT. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

22 pages, 8602 KB  
Article
Modeling Impacts of Climate Change and Adaptation Measures on Rice Growth in Hainan, China
by Rongchang Yang, Yahui Guo, Jiangwen Nie, Wei Zhou, Ruichen Ma, Bo Yang, Jinhe Shi, Jing Geng, Wenxiang Wu, Ji Liu, W. M. W. W. Kandegama and Mario Cunha
Sustainability 2026, 18(1), 115; https://doi.org/10.3390/su18010115 - 22 Dec 2025
Viewed by 352
Abstract
Rising temperatures, extreme precipitation events such as excessive or insufficient rainfall, increasing levels of carbon dioxide, and associated climatic factors will persistently impact crop growth and agricultural production. The warming temperatures have reduced the agricultural crop yields. Rice (Oryza sativa L.) is [...] Read more.
Rising temperatures, extreme precipitation events such as excessive or insufficient rainfall, increasing levels of carbon dioxide, and associated climatic factors will persistently impact crop growth and agricultural production. The warming temperatures have reduced the agricultural crop yields. Rice (Oryza sativa L.) is the major food crop, which is particularly susceptible to the effects of climate change. It is very important to accurately evaluate the impacts of climate change on rice growth and rice yield. In this study, the rice growth during 1981–2018 (baseline period) and 2041–2100 (future period) were separately simulated and compared within the CERES-Rice model (v4.6) using high-quality weather data, soil, and field experimental data at six agro-meteorological stations in Hainan Province. For the climate data of the future period, the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios were applied, with carbon dioxide (CO2) fertilization effects considered. The adaptation strategies such as adjusting planting dates and switching rice cultivars were also assessed. The simulation results indicated that the early rice yields in the 2050s, 2070s, and 2090s were projected to decrease by 6.2%, 11.8%, and 20.0% when the CO2 fertilization effect was not considered, compared with the results of the baseline period, respectively, while late rice yields would decline by 9.9%, 23.4%, and 36.3% correspondingly. When accounting for the CO2 fertilization effect, the yields of early rice and late rice in the 2090s increased 16.9% and 6.2%, respectively. Regarding adaptation measures, adjusting planting dates and switching rice cultivars could increase early rice yields by 22.7% and 43.3%, respectively, while increasing late rice yields by 20.2% and 34.2% correspondingly. This study holds substantial scientific importance for elucidating the mechanistic pathways through which climate change influences rice productivity in tropical agro-ecosystems, and provides a critical foundation for formulating evidence-based adaptation strategies to mitigate climate-related risks in a timely manner. Cultivar substitution and temporal shifts in planting dates constituted two adaptation strategies for attenuating the adverse impacts of anthropogenic climate change on rice. Full article
Show Figures

Graphical abstract

19 pages, 4240 KB  
Article
An Impedance Measurement Method for Renewable Energy Power Station
by Ze Wei, Tao Xu, Jianan Mu, Lin Cheng, Ning Chen, Luming Ge, Xiong Du and Guoning Wang
Electronics 2025, 14(24), 4793; https://doi.org/10.3390/electronics14244793 - 5 Dec 2025
Viewed by 381
Abstract
The large-scale integration of renewable energy grid-connected converters into the grid has given rise to many broadband oscillation accidents, primarily due to impedance mismatching with the grid. Consequently, accurate measurement of both the grid-connected converter and the grid impedance is a prerequisite for [...] Read more.
The large-scale integration of renewable energy grid-connected converters into the grid has given rise to many broadband oscillation accidents, primarily due to impedance mismatching with the grid. Consequently, accurate measurement of both the grid-connected converter and the grid impedance is a prerequisite for system stability assessment. However, conventional impedance measurement methods are constrained by the breakdown voltage of semiconductor switches, thus rendering them unsuitable for high-voltage, high-capacity applications. This paper aims to enable impedance measurement in large-capacity, high-voltage applications by presenting a newly developed method that overcomes the voltage limitations of conventional approaches. First, a cascaded H-bridge (CHB) topology is adopted to fulfill the impedance measurement requirements in large-capacity, high-voltage renewable energy station applications. Subsequently, a quasi-proportional-resonant (PR) controlled perturbation injection strategy is proposed to achieve rapid current injection across the 10–1000 Hz frequency range. Finally, the effectiveness and accuracy of the proposed impedance measurement method in capturing harmonic impedance are demonstrated through a hardware-in-the-loop (HIL) experiment conducted on an RTDS platform. Full article
(This article belongs to the Special Issue Wind and Renewable Energy Generation and Integration)
Show Figures

Figure 1

24 pages, 4286 KB  
Article
Concept of 3D Antenna Array for Sub-GHz Rotator-Less Small Satellite Ground Stations and Advanced IoT Gateways
by Maryam Jahanbakhshi and Ivo Vertat
Telecom 2025, 6(4), 92; https://doi.org/10.3390/telecom6040092 - 1 Dec 2025
Viewed by 393
Abstract
Phased antenna arrays have revolutionized modern wireless systems by enabling dynamic beamforming, multibeam synthesis, and user tracking to enhance data rates and reduce interferences, yet their reliance on expensive active components (e.g., phase shifters, amplifiers) embedded in antenna array elements limits adoption in [...] Read more.
Phased antenna arrays have revolutionized modern wireless systems by enabling dynamic beamforming, multibeam synthesis, and user tracking to enhance data rates and reduce interferences, yet their reliance on expensive active components (e.g., phase shifters, amplifiers) embedded in antenna array elements limits adoption in cost-sensitive sub-GHz applications. Therefore, the active phased antenna arrays are still considered as high-end technology and primarily designed only for high-frequency bands and demanding applications such as radars and mobile base stations in microwave bands. In contrast, various important radio communication services still operate in sub-GHz bands with no adequate solution for modern antenna systems with beamforming capability. This paper introduces a 3D antenna array with switched-beam or multibeam capability, designed to eliminate mechanical rotators and active circuitry while maintaining all-sky coverage. By integrating collinear radiating elements with a Butler matrix feed network, the proposed 3D array achieves transmit/receive multibeam operation in the 435 MHz amateur satellite band and adjacent 433 MHz ISM band. Simulations demonstrate a design that provides selectable eight beams, enabling horizontal 360° coverage with only one radio connected to the Butler matrix. If eight noncoherent radios are used simultaneously, the proposed antenna array acts as a multibeam all-sky coverage antenna. Innovations in our design include a 3D circular collinear topology combining the broad and adjustable elevation coverage of collinear antennas with azimuthal beam steering, a passive Butler matrix enabling bidirectional transmit/receive multibeam operation, and scalability across sub-GHz bands where collinear antennas dominate (e.g., Lora WAN, trunked radio). Results show sufficient gain, confirming feasibility for low-earth-orbit satellite tracking or long-range IoT backhaul, and maintenance-free beamforming solutions in sub-GHz bands. Given the absence of practical beamforming or multibeam-capable solutions in this frequency band, our novel concept—featuring non-coherent cooperation across multiple ground stations and/or beams—has the potential to fundamentally transform how the growing number of CubeSats in low Earth orbit can be efficiently supported from the ground segment perspective. Full article
Show Figures

Figure 1

22 pages, 7184 KB  
Article
Multimodal Optimal Base Station Selection Network for Intelligent Communications
by Haie Dou, Xinyu Zhan, Xinyu Zhang, Taojie Zhu and Lei Wang
Sensors 2025, 25(22), 6895; https://doi.org/10.3390/s25226895 - 12 Nov 2025
Viewed by 452
Abstract
With the rapid development of next-generation wireless communication systems, the increasing density of heterogeneous base stations and the dynamic nature of channel conditions have posed significant challenges to accurate and timely base station selection. Traditional single-modal approaches relying solely on partial channel or [...] Read more.
With the rapid development of next-generation wireless communication systems, the increasing density of heterogeneous base stations and the dynamic nature of channel conditions have posed significant challenges to accurate and timely base station selection. Traditional single-modal approaches relying solely on partial channel or location information often fail to capture the complex semantics of real communication scenarios, leading to suboptimal decision-making. To address these limitations, this paper proposes the Multimodal Optimal Base Station Selection Network (MOBS-Net), which integrates multimodal spatial and temporal information to achieve both optimal base station judgment and proactive prediction. The judgment module employs convolutional neural networks to extract image semantics and a Transformer-based fusion mechanism to combine image, location, and channel features for real-time decision-making. The prediction module leverages multimodal sequential data and a large-scale multimodal model to extract temporal semantics, enabling proactive base station switching under dynamic channel conditions. Extensive experiments demonstrate that MOBS-Net significantly outperforms single-modal baselines, achieving an accuracy of 92.20% for optimal base station judgment and 91.5% for prediction tasks. These results highlight the reliability and effectiveness of MOBS-Net for intelligent base station decision-making in dynamic wireless environments. Full article
Show Figures

Figure 1

16 pages, 4127 KB  
Article
Dynamic Topology Reconfiguration for Energy-Efficient Operation in 5G NR IAB Systems
by Vitalii Beschastnyi, Uliana Morozova, Egor Machnev, Darya Ostrikova, Yuliya Gaidamaka and Konstantin Samouylov
Future Internet 2025, 17(11), 514; https://doi.org/10.3390/fi17110514 - 10 Nov 2025
Viewed by 382
Abstract
The utilization of high millimeter wave (mmWave, 30–100 GHz) in 5G New Radio (NR) systems and sub-terahertz (sub-THz, 100–300 GHz) in future 6G requires dense deployments of base stations (BSs) to provide uninterrupted connectivity to the users. 3GPP Integrated Access and Backhaul (IAB) [...] Read more.
The utilization of high millimeter wave (mmWave, 30–100 GHz) in 5G New Radio (NR) systems and sub-terahertz (sub-THz, 100–300 GHz) in future 6G requires dense deployments of base stations (BSs) to provide uninterrupted connectivity to the users. 3GPP Integrated Access and Backhaul (IAB) deployments that utilize wireless relay nodes offer cost-efficient densification options for these systems. However, the infrastructure that is often scaled and deployed for busy-hour traffic conditions is not used efficiently during periods when traffic demands are lower, resulting in excessive power consumption. In this work, we consider the IAB roadside deployment option and demonstrate that the deployment designed to meet traffic demands during busy-hour traffic conditions can be efficiently controlled to provide large power savings during other times of the day. To demonstrate the feasibility of the solution, we will utilize the tools of stochastic geometry and queuing theory. Our numerical results show that the dynamic switching of IAB nodes may lead to power savings of up to 40% depending on the traffic and deployment specifics. The proposed methodology also allows us to maintain the specified upper bound on the transit delay and improve the utilization of active IAB nodes. Full article
(This article belongs to the Special Issue Intelligent Telecommunications Mobile Networks)
Show Figures

Figure 1

16 pages, 14330 KB  
Article
Photographic Method for Determining the Burning Time of an Electric Arc
by Michał Lech, Paweł Węgierek and Patrycja Tymińska-Wójcik
Energies 2025, 18(21), 5769; https://doi.org/10.3390/en18215769 - 31 Oct 2025
Viewed by 381
Abstract
The paper presents a comparison of two methods for determining the burning time of an electric arc in a vacuum chamber: the classic oscilloscope method and the author’s own photographic analysis using an ultra-high-speed camera. A specially designed laboratory station enabled precise recording [...] Read more.
The paper presents a comparison of two methods for determining the burning time of an electric arc in a vacuum chamber: the classic oscilloscope method and the author’s own photographic analysis using an ultra-high-speed camera. A specially designed laboratory station enabled precise recording of electrical and optical parameters during switching operations conducted at different pressures in the discharge chamber. The photographic method consisted of a time-lapse analysis of the ignition and extinction of the arc using dedicated software to precisely determine its duration based on the recorded images. In total, five repeated measurements were performed for each pressure value. All the results were subjected to a detailed statistical analysis, including the determination of standard deviations and confidence intervals. The reported mean relative error for the new photographic method did not exceed 1.12%. The developed photographic method proved to be a reliable tool for assessing the duration of the arc, while also enabling a detailed analysis of the dynamics of arc channel development. Possible applications include laboratory testing and diagnostics of switching devices, especially where traditional measurement methods are difficult to apply. Full article
Show Figures

Figure 1

15 pages, 2438 KB  
Article
A Three-Terminal Modular-Multilevel-Converter-Based Power Electronic Transformer with Reduced Voltage Stress for Meshed DC Systems
by Haiqing Cai, Jiajie Zang, Haohan Gu, Guohui Zeng, Wencong Wu, Wei Chen and Chunyang Zhai
Electronics 2025, 14(21), 4192; https://doi.org/10.3390/electronics14214192 - 27 Oct 2025
Viewed by 560
Abstract
The traditional DC distribution grid is evolving into a meshed structure to create additional energy exchange paths and integrate the rapidly growing renewable energy sources. However, existing converter stations lack sufficient power flow controllability, necessitating the development of multiport power electronic transformers to [...] Read more.
The traditional DC distribution grid is evolving into a meshed structure to create additional energy exchange paths and integrate the rapidly growing renewable energy sources. However, existing converter stations lack sufficient power flow controllability, necessitating the development of multiport power electronic transformers to address potential power flow congestion and high loss issues. This paper proposes a compact multi-terminal modular-multilevel-converter-based power electronic transformer (M3C-PET). This device enables flexible power flow regulation of the connected feeders through adopting two small-capacity power flow control modules (PFCMs). The simple structure and reduced switching count make the proposed PET more competitive and prominent and more cost-effective. Furthermore, this paper elaborates on the operational principle of the proposed device and presents a multilayer power balancing control strategy along with a power flow control scheme. These control strategies are designed based on the internal and external energy distribution mechanism of the proposed PET. The feasibility and effectiveness of the proposed topology and control schemes are rigorously validated through both a MATLAB/Simulink simulation model and a scaled-down experimental prototype. Full article
Show Figures

Figure 1

20 pages, 4152 KB  
Article
A Tie-Line Fault Ride-Through Strategy for PV Power Plants Based on Coordinated Energy Storage Control
by Bo Pan, Feng Xu, Xiangyi Bi, Dong Wan, Zhihua Huang, Jinsong Yang, An Wen and Penghui Shang
Energies 2025, 18(20), 5335; https://doi.org/10.3390/en18205335 - 10 Oct 2025
Viewed by 564
Abstract
Unplanned islanding and off-grid issues of photovoltaic (PV) power stations caused by tie-line faults have seriously undermined the power supply reliability and operational stability of PV plants. Furthermore, it takes a relatively long time to restore normal operation after an off-grid event, leading [...] Read more.
Unplanned islanding and off-grid issues of photovoltaic (PV) power stations caused by tie-line faults have seriously undermined the power supply reliability and operational stability of PV plants. Furthermore, it takes a relatively long time to restore normal operation after an off-grid event, leading to substantial power losses. To address this problem, this paper proposes a tie-line fault ride-through control strategy based on the coordinated control of on-site energy storage units. After a fault on the tie-line occurs, the control mode of PV inverters is switched to achieve source–load balance, and the control mode of energy storage inverters is switched to VF control mode, which supports the stability of voltage and frequency in the islanded system. Subsequently, the strategy coordinates with the tie-line recloser device to perform synchronous checking and grid reconnection. Simulation results show that, for transient tie-line faults, the proposed method can achieve stable control of the islanded system and grid reconnection within 2 s after a fault on the tie-line occurs. It successfully realizes fault ride-through within the operation time limit of anti-islanding protection, effectively preventing the PV plant from disconnecting from the grid. Finally, a connection scheme for the control strategy of a typical PV plant is presented, providing technical reference for on-site engineering. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 3850 KB  
Article
Controlling AGV While Docking Based on the Fuzzy Rule Inference System
by Damian Grzechca, Łukasz Gola, Michał Grzebinoga, Adam Ziębiński, Krzysztof Paszek and Lukas Chruszczyk
Sensors 2025, 25(19), 6108; https://doi.org/10.3390/s25196108 - 3 Oct 2025
Viewed by 560
Abstract
Accurate docking of Autonomous Guided Vehicles (AGVs) is a critical requirement for efficient automated production systems in Industry 4.0, particularly for collaborative tasks with robotic arms that have a limited working range. This paper introduces a cost-effective software-upgrade solution to enhance the precision [...] Read more.
Accurate docking of Autonomous Guided Vehicles (AGVs) is a critical requirement for efficient automated production systems in Industry 4.0, particularly for collaborative tasks with robotic arms that have a limited working range. This paper introduces a cost-effective software-upgrade solution to enhance the precision of the final docking phase without requiring new hardware. Our approach is based on a two-stage strategy: first, a switch from a global dead reckoning system to a local navigation scheme, is triggered near the docking station; second, a dedicated Takagi-Sugeno Fuzzy Logic Controller (FLC), guides the AGV to its final position with high accuracy. The core novelty of our FLC is its implementation as a gain-scheduling lookup table (LUT), which synthesizes critical state variables—heading error and distance error—from limited proximity sensor data, to robustly handle positional uncertainty and environmental variations. This method directly addresses the inadequacies of traditional odometry, whose cumulative errors become unacceptable at the critical docking point. For experimental validation, we assume the global navigation delivers the AGV to a general switching point, near the assembly station with an unknown true pose. We detail the design of the fuzzy controller and present experimental results that demonstrate a significant improvement, achieving repeatable docking accuracy within industrially acceptable tolerances. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 2088 KB  
Article
Study on the Mechanism and Influencing Factors of Sideband Harmonics in Flexible DC Transmission Projects
by Qing Huai, Yirun Ji, Wang Zhang and Fang Zhang
Appl. Sci. 2025, 15(19), 10585; https://doi.org/10.3390/app151910585 - 30 Sep 2025
Viewed by 473
Abstract
The bridge arms and DC voltage of China’s Four-Terminal Flexible DC Transmission Project exhibit persistent high-frequency harmonics over the medium to long term, causing issues such as overheating losses and electromagnetic interference within the converter stations. To address this issue, this paper first [...] Read more.
The bridge arms and DC voltage of China’s Four-Terminal Flexible DC Transmission Project exhibit persistent high-frequency harmonics over the medium to long term, causing issues such as overheating losses and electromagnetic interference within the converter stations. To address this issue, this paper first introduces the structure of the Four-Terminal Flexible DC Grid and the high-frequency harmonic characteristics on the DC side, clarifying the impact of control cycles on the harmonic distribution at converter stations. Through analysis of the modulating wave, it is demonstrated that the sideband harmonics originate from the coupling effect between the control cycle and the modulating wave, inducing high-frequency sideband harmonics on the bridge arm. A discrete switching equation for bridge arm voltage was established. Based on double Fourier decomposition, a mathematical model for sideband harmonics was derived, and the flow direction of these harmonics was analyzed. A four-terminal flexible DC system was constructed using PSCAD electromagnetic transient simulation, yielding harmonic distributions in the arm and DC-side sidebands. This validated the accuracy of theoretical analysis and ultimately identified the factors influencing sideband harmonics. Full article
Show Figures

Figure 1

19 pages, 1839 KB  
Article
A Multi-Stage Resilience Enhancement Method for Distribution Networks Employing Transportation and Hydrogen Energy Systems
by Xi Chen, Jiancun Liu, Pengfei Li, Junzhi Ren, Delong Zhang and Xuesong Zhou
Sustainability 2025, 17(19), 8691; https://doi.org/10.3390/su17198691 - 26 Sep 2025
Viewed by 683
Abstract
The resilience and sustainable development of modern power distribution systems faces escalating challenges due to increasing renewable integration and extreme events. Traditional single-system approaches often overlook the spatiotemporal coordination of cross-domain restoration resources. In this paper, we propose a multi-stage resilience enhancement method [...] Read more.
The resilience and sustainable development of modern power distribution systems faces escalating challenges due to increasing renewable integration and extreme events. Traditional single-system approaches often overlook the spatiotemporal coordination of cross-domain restoration resources. In this paper, we propose a multi-stage resilience enhancement method that employs transportation and hydrogen energy systems. This approach coordinates the pre-event preventive allocation and multi-stage collaborative scheduling of diverse restoration resources, including remote-controlled switches (RCSs), mobile hydrogen emergency resources (MHERs), and hydrogen production and refueling stations (HPRSs). The proposed framework supports cross-stage dynamic optimization scheduling, enabling the development of adaptive resource dispatch strategies tailored to the characteristics of different stages, including prevention, fault isolation, and service restoration. The model is applicable to complex scenarios involving dynamically changing network topologies and is formulated as a mixed-integer linear programming (MILP) problem. Case studies based on the IEEE 33-bus system show that the proposed method can restore a distribution system’s resilience to approximately 87% of its normal level following extreme events. Full article
Show Figures

Figure 1

20 pages, 3052 KB  
Article
Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
by Gerhard Fritscher, Christoph Steindl, Jasmin Helnwein and Julian Heger
Sustainability 2025, 17(19), 8664; https://doi.org/10.3390/su17198664 - 26 Sep 2025
Cited by 1 | Viewed by 947
Abstract
Switch-point heating systems are essential for railway reliability and safety in winter, but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at [...] Read more.
Switch-point heating systems are essential for railway reliability and safety in winter, but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station, offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV), optional wind energy, and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions, technical simplicity, and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates, storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage, with a PV-only configuration emerging as the most suitable option under current site conditions. Thus, it offers a replicable framework for decarbonising critical stationary railway infrastructure. Full article
Show Figures

Figure 1

18 pages, 5778 KB  
Article
Hierarchical Switching Control Strategy for Smart Power-Exchange Station in Honeycomb Distribution Network
by Xiangkun Meng, Wenyao Sun, Yi Zhao, Xiaoyi Qian and Yan Zhang
Sustainability 2025, 17(17), 7998; https://doi.org/10.3390/su17177998 - 5 Sep 2025
Viewed by 1102
Abstract
The Honeycomb Distribution Network is a new distribution network architecture that utilizes the Smart Power-Exchange Station (SPES) to enable power interconnection and mutual assistance among multiple microgrids/distribution units, thereby supporting high-proportion integration of distributed renewable energy and promoting a sustainable energy transition. To [...] Read more.
The Honeycomb Distribution Network is a new distribution network architecture that utilizes the Smart Power-Exchange Station (SPES) to enable power interconnection and mutual assistance among multiple microgrids/distribution units, thereby supporting high-proportion integration of distributed renewable energy and promoting a sustainable energy transition. To promote the continuous and reliable operation of the Honeycomb Distribution Network, this paper proposes a Hierarchical Switching Control Strategy to address the issues of DC bus voltage (Udc) fluctuation in the SPES of the Honeycomb Distribution Network, as well as the state of charge (SOC) and charging/discharging power limitation of the energy storage module (ESM). The strategy consists of the system decision-making layer and the converter control layer. The system decision-making layer selects the main converter through the importance degree of each distribution unit and determines the control strategy of each converter through the operation state of the ESM’s SOC. The converter control layer restricts the ESM’s input/output active power—this ensures the ESM’s SOC and input/output active power stay within the power boundary. Additionally, it combines the Flexible Virtual Inertia Adaptive (FVIA) control method to suppress Udc fluctuations and improve the response speed of the ESM converter’s input/output active power. A simulation model built in MATLAB/Simulink is used to verify the proposed control strategy, and the results demonstrate that the strategy can not only effectively reduce Udc deviation and make the ESM’s input/output power reach the stable value faster, but also effectively avoid the ESM entering the unstable operation area. Full article
Show Figures

Figure 1

Back to TopTop