You are currently viewing a new version of our website. To view the old version click .
Sensors
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

25 December 2025

Robust Low-Complexity WMMSE Precoding Under Imperfect CSI with Per-Antenna Power Constraints

,
and
School of Electronic Information, Central South University, Changsha 410004, China
*
Author to whom correspondence should be addressed.
Sensors2026, 26(1), 159;https://doi.org/10.3390/s26010159 
(registering DOI)
This article belongs to the Special Issue Advanced Massive MIMO Antenna Arrays, Metasurfaces and Reconfigurable Intelligent Surfaces for Sensing, Localization, and Wireless Communications: 2nd Edition

Abstract

Weighted sum-rate (WSR) maximization in downlink massive multi-user multiple-input (MU-MIMO) with per-antenna power constraints (PAPCs) and imperfect channel state information (CSI) is computationally challenging. Classical weighted minimum mean-square error (WMMSE) algorithms, in particular, have per-iteration costs that scale cubically with the number of base-station antennas. This article proposes a robust low-complexity WMMSE-based precoding framework (RLC-WMMSE) tailored for massive MU-MIMO downlink under PAPCs and stochastic CSI mismatch. The algorithm retains the standard WMMSE structure but incorporates three key enhancements: a diagonal dual-regularization scheme that enforces PAPCs via a lightweight projected dual ascent with row-wise safety projection; a Woodbury-based transmit update that replaces the dominant M×M inversion with an (NK)×(NK) symmetric positive-definite solve, greatly reducing the per-iteration complexity; and a hybrid switching mechanism with adaptive damping that blends classical and low-complexity updates to improve robustness and convergence under channel estimation errors. We also analyze computational complexity and signaling overhead for both TDD and FDD deployments. Simulation results over i.i.d. and spatially correlated channels show that the proposed RLC-WMMSE scheme achieves WSR performance close to benchmark WMMSE-PAPCs designs while providing substantial runtime savings and strictly satisfying the per-antenna power limits. These properties make RLC-WMMSE a practical and scalable precoding solution for large-scale MU-MIMO systems in future wireless sensor and communication networks.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.