Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,633)

Search Parameters:
Keywords = sustainable water production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 706 KiB  
Article
Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang
by Ruxiao Bai, Haixiu He, Xinjiang Zhang and Qifeng Wu
Agriculture 2025, 15(15), 1710; https://doi.org/10.3390/agriculture15151710 (registering DOI) - 7 Aug 2025
Abstract
Planting patterns and irrigation amounts are key factors affecting maize yield. This study adopted a two-factor experimental design, with planting pattern as the main plot and irrigation amount as the subplot, to investigate the effects of irrigation levels under different planting patterns (including [...] Read more.
Planting patterns and irrigation amounts are key factors affecting maize yield. This study adopted a two-factor experimental design, with planting pattern as the main plot and irrigation amount as the subplot, to investigate the effects of irrigation levels under different planting patterns (including uniform row spacing and alternating wide-narrow row spacing) on spring maize yield and water use efficiency in Xinjiang. Through this approach, the study examined the mechanisms by which planting pattern and irrigation amount influence maize growth, yield formation, and water use efficiency. Experiments conducted at the Agricultural Science Research Institute of the Ninth Division of Xinjiang Production and Construction Corps demonstrated that alternating wide-narrow row spacing combined with moderate irrigation (5400 m3/hm2) significantly optimized maize root distribution, improved water use efficiency, and increased leaf area index and net photosynthetic rate, thereby promoting dry matter accumulation and yield enhancement. In contrast, uniform row spacing under high irrigation levels increased yield but resulted in lower water use efficiency. The study also found that alternating wide-narrow row spacing enhanced maize nutrient absorption from the soil, particularly phosphorus utilization efficiency, by improving canopy structure and root expansion. This pattern exhibited comprehensive advantages in resource utilization, providing a theoretical basis and technical pathway for achieving water-saving and high-yield maize production in arid regions, which holds significant importance for promoting sustainable agricultural development. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

21 pages, 1609 KiB  
Article
Exploring Residual Clays for Low-Impact Ceramics: Insights from a Portuguese Ceramic Region
by Carla Candeias, Sónia Novo and Fernando Rocha
Appl. Sci. 2025, 15(15), 8761; https://doi.org/10.3390/app15158761 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A [...] Read more.
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A multidisciplinary approach was employed to characterize clays, integrating mineralogical (XRD), chemical (XRF), granulometric, and thermal analyses (TGA/DTA/TD), as well as technological tests on plasticity, extrusion moisture, shrinkage, and flexural strength. These assessments were designed to capture both the intrinsic properties of the clays and their behavior across key ceramic processing stages, such as shaping, drying, and firing. The results revealed a broad diversity in mineral composition, particularly in the proportions of kaolinite, smectite, and illite, which strongly influenced plasticity, water demand, and thermal stability. Clays with higher fine fractions and smectitic content exhibited excellent plasticity and workability, though with increased sensitivity to drying and firing conditions. Others, with coarser textures and illitic or feldspathic composition, demonstrated improved dimensional stability and lower shrinkage. Thermal analyses confirmed expected dehydroxylation and sintering behavior, with the formation of mullite and spinel-type phases contributing to densification and strength in fired bodies. This study highlights that residual clays from varied geological settings can offer distinct advantages when matched appropriately to ceramic product requirements. Some materials showed strong potential for direct application in structural ceramics, while others may serve as additives or tempering agents in formulations. These findings reinforce the value of integrated characterization for optimizing raw material use and support a more circular, resource-conscious approach to ceramic production. Full article
20 pages, 1149 KiB  
Article
Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
by Sartika Indah Amalia Sudiarto, Hong Lim Choi, Anriansyah Renggaman and Arumuganainar Suresh
AgriEngineering 2025, 7(8), 254; https://doi.org/10.3390/agriengineering7080254 (registering DOI) - 7 Aug 2025
Abstract
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) [...] Read more.
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) of WAS and its co-digestion with swine slurry (SS), water lily (Nymphaea spp.), and lotus (Nelumbo nucifera) shoot biomass to enhance methane yield. Batch BMP assays were conducted at substrate-to-inoculum (S/I) ratios of 1.0 and 0.5, with methane production kinetics analyzed using the modified Gompertz model. Mono-digestion of WAS yielded 259.35–460.88 NmL CH4/g VSadded, while co-digestion with SS, water lily, and lotus increased yields by 14.89%, 10.97%, and 16.89%, respectively, surpassing 500 NmL CH4/g VSadded. All co-digestion combinations exhibited synergistic effects (α > 1), enhancing methane production beyond individual substrate contributions. Lower S/I ratios improved methane yields and biodegradability, highlighting the role of inoculum availability. Co-digestion reduced the lag phase limitations of WAS and plant biomass, improving process efficiency. These findings demonstrate that co-digesting WAS with nutrient-rich co-substrates optimizes biogas production, supporting sustainable sludge management and renewable energy recovery in livestock wastewater treatment systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
22 pages, 4027 KiB  
Article
Parameter Sensitivity Analysis and Irrigation Regime Optimization for Jujube Trees in Arid Regions Using the WOFOST Model
by Shihao Sun, Yingjie Ma, Pengrui Ai, Ming Hong and Zhenghu Ma
Agriculture 2025, 15(15), 1705; https://doi.org/10.3390/agriculture15151705 (registering DOI) - 7 Aug 2025
Abstract
In arid regions, water scarcity and soil potassium destruction are major constraints on the sustainable development of the jujube industry. In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but [...] Read more.
In arid regions, water scarcity and soil potassium destruction are major constraints on the sustainable development of the jujube industry. In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but their predictive accuracy is often compromised by parameter uncertainty. To address this issue, we utilized data from a three-year (2022–2024) field trial (with irrigation at 50%, 75%, and 100% of evapotranspiration and potassium applications of 120, 180, and 240 kg/ha) to simulate the growth process of jujube trees in arid regions using the WOFOST model. In this study, parameter sensitivity analyses were conducted to determine that photosynthetic capacity maximization (Amax), the potassium nutrition index (Kstatus), the water stress factor (SWF), the water–potassium photosynthetic coefficient of synergy (α), and potassium partitioning weight coefficients (βi) were the important parameters affecting the simulated growth process of the crop. Path analysis using segmented structural equations also showed that water stress factor (SWF) and potassium nutrition index (Kstatus) indirectly controlled yield by significantly affecting photosynthesis (path coefficients: 0.72 and 0.75, respectively). The ability of the crop model to simulate the growth process and yield of jujube trees was improved by the introduction of water and potassium parameters (R2 = 0.94–0.96, NRMSE = 4.1–12.2%). The subsequent multi-objective optimization of yield and crop water productivity of dates under different combinations of water and potassium treatments under a bi-objective optimization model based on the NSGA-II algorithm showed that the optimal strategy was irrigation at 80% ETc combined with 300 kg/ha of potassium application. This management model ensures yield and maximizes crop water use efficiency (CWP), thus providing a scientific and efficient irrigation and fertilization regime for jujube trees in arid zones. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

44 pages, 4978 KiB  
Review
Performance of Continuous Electrocoagulation Processes (CEPs) as an Efficient Approach for the Treatment of Industrial Organic Pollutants: A Comprehensive Review
by Zakaria Al-Qodah, Maha Mohammad AL-Rajabi, Hiba H. Al Amayreh, Eman Assirey, Khalid Bani-Melhem and Mohammad Al-Shannag
Water 2025, 17(15), 2351; https://doi.org/10.3390/w17152351 (registering DOI) - 7 Aug 2025
Abstract
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single [...] Read more.
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single process or a step within a combined treatment system. If used in a combined system, this process could be employed as a pre-, a post-, or middle treatment step. Additionally, the EC process has been used in both continuous and batch modes. In most studies, EC has achieved significant improvements in the treated water quality and relatively low total energy consumption. This review presents a comprehensive evaluation and analysis of standalone and combined continuous EC processes. The influence of key operational parameters on continuous EC performance is thoroughly discussed. Furthermore, recent advancements in reactor design, modeling, and process optimization are addressed. The benefits of integrating other treatment processes with the EC process, such as advanced oxidation, membranes, chemical coagulation, and adsorption, are also evaluated. The performance of most standalone and combined EC processes used for organic pollutant treatment and published in the last 25 years is critically analyzed. This review is expected to give researchers many insights to improve their treatment scenario with recent and efficient environmental experiences, sustainability, and circular economy. The clearly presented information is expected to guide researchers in selecting efficient, cost-effective, and time-saving treatment alternatives. The findings ensure the considerable potential of continuous EC treatment processes for organic pollutants. However, more research is warranted to enhance process design, operational efficiency, scale-up, and economic viability. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 3139 KiB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

21 pages, 3488 KiB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

35 pages, 1831 KiB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

20 pages, 1014 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

15 pages, 1805 KiB  
Article
Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor)
by Jun Seong Park, Hae Seung Jeong, Jeong-ho Lee and Ju-ae Hwang
Animals 2025, 15(15), 2305; https://doi.org/10.3390/ani15152305 - 6 Aug 2025
Abstract
In this study, we sought to improve the productivity of Far Eastern catfish (Silurus asotus) and tropical eel (Anguilla bicolor), which are high-value fish species in the Republic of Korea, as well as that of associated crops by applying [...] Read more.
In this study, we sought to improve the productivity of Far Eastern catfish (Silurus asotus) and tropical eel (Anguilla bicolor), which are high-value fish species in the Republic of Korea, as well as that of associated crops by applying biofloc technology (BFT)-based aquaponics systems. The following three systems were used: the flow-through system (FTS), BFT, and BFT aquaponics system (BAPs). Caipira lettuce (Lactuca sativa) was utilized and hydroponics (HP) was implemented to compare crop productivity. After 42 days of treatment, the BAPs and BFT systems improved fish productivity, with weight gain rates of 134.47 ± 1.80% in BAPs-cat, 130.38 ± 0.95% in BFT, and 114.21 ± 6.62% in FTS for S. asotus, and 70.61 ± 3.26% in BAPs-eel, 62.37 ± 7.04% in BFT, and 47.83 ± 1.09% in FTS for A. bicolor. During the experiment, the total ammonia nitrogen and NO2-N concentrations were stable in all plots. In the case of NO3-N, BFT showed an increasing tendency while both BAPs showed a decrease compared with that of the BFT. BAPs-cat (total weight: 224.1 ± 6.37 g) and HP (220.3 ± 7.17 g) resulted in similar growth. However, in BAPs-eel was 187.7 ± 3.46 g due to root degradation. Water content analysis showed that BAPs-cat and BAPs-eel contained sufficient K, Ca, P, and S, which are important for crop growth. Overall, the effect of BAPs on fish growth was higher than that of FTS. This study reveals that integrating BFT with aquaponics improves productivity for high-value fish and associated crops while maintaining stable water quality. This method offers sustainable, efficient production, reduces environmental impact, and provides insights for future research in sustainable aquaculture practices. Full article
Show Figures

Figure 1

22 pages, 3208 KiB  
Article
Upstream Microplastic Removal in Industrial Wastewater: A Pilot Study on Agglomeration-Fixation-Reaction Based Treatment for Water Reuse and Waste Recovery
by Anika Korzin, Michael Toni Sturm, Erika Myers, Dennis Schober, Pieter Ronsse and Katrin Schuhen
Clean Technol. 2025, 7(3), 67; https://doi.org/10.3390/cleantechnol7030067 - 6 Aug 2025
Abstract
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± [...] Read more.
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± 377 mg/L; 673 ± 183 million particles/L) and an average COD of 7570 ± 1339 mg/L. Over 25 continuous test runs, the system achieved consistent performance, removing an average of 97.4% of MPs by mass and 99.1% by particle count, while reducing the COD by 78.8%. Projected over a year, this equates to preventing 1.7 tons of MPs and 6 tons of COD from entering the sewage system. Turbidity and photometric TSS measurements proved useful for process control. The approach supports water reuse—with water savings up to 80%—and allows recovery of agglomerates for recycling and reuse. Targeting pollutant removal upstream at the source provides multiple financial and environmental benefits, including lower overall energy demands, higher removal efficiencies, and process water reuse. This provides financial and environmental incentives for industries to implement sustainable solutions for pollutants and microplastic removal. Full article
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

23 pages, 2767 KiB  
Article
Sustainable Cotton Production in Sicily: Yield Optimization Through Varietal Selection, Mycorrhizae, and Efficient Water Management
by Giuseppe Salvatore Vitale, Nicolò Iacuzzi, Noemi Tortorici, Giuseppe Indovino, Loris Franco, Carmelo Mosca, Antonio Giovino, Aurelio Scavo, Sara Lombardo, Teresa Tuttolomondo and Paolo Guarnaccia
Agronomy 2025, 15(8), 1892; https://doi.org/10.3390/agronomy15081892 - 6 Aug 2025
Abstract
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown [...] Read more.
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown Mediterranean cultivars (Armonia and ST-318) under three irrigation levels (I-100: 100% crop water requirement; I-70: 70%; I-30: 30%) across two Sicilian soil types (sandy loam vs. clay-rich). Under I-100, lint yields reached 0.99 t ha−1, while severe deficit (I-30) yielded only 0.40 t ha−1. However, moderate deficit (I-70) maintained 75–79% of full yields, proving a viable strategy. AMF inoculation significantly enhanced plant height (68.52 cm vs. 65.85 cm), boll number (+22.1%), and seed yield (+12.5%) (p < 0.001). Cultivar responses differed: Armonia performed better under water stress, while ST-318 thrived with full irrigation. Site 1, with higher organic matter, required 31–38% less water and achieved superior irrigation water productivity (1.43 kg m−3). Water stress also shortened phenological stages, allowing earlier harvests—important for avoiding autumn rains. These results highlight the potential of combining adaptive irrigation, resilient cultivars, and AMF to restore sustainable cotton production in the Mediterranean, emphasizing the importance of soil-specific management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

24 pages, 2540 KiB  
Article
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
by Mónica Álvarez-Manso, Gabriel Búrdalo-Salcedo and María Fernández-Raga
Hydrogen 2025, 6(3), 54; https://doi.org/10.3390/hydrogen6030054 - 6 Aug 2025
Abstract
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study [...] Read more.
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis, focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested, selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm), moderate (411–900 µS/cm), and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency, energy use, waste generation, and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants, recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment, stressing the need for clear environmental guidelines to ensure project sustainability. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

19 pages, 1494 KiB  
Article
Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops
by Evelyn F. Vásquez-Bacilio, Cesar I. Mejia-Llontop, Carlos E. Tirado-Rodríguez, María de Fátima Arévalo-Oliva, Beetthssy Z. Hurtado-Soria, Eudes Villanueva, Gilbert Rodriguez, Delia Rita Tapia-Blácido and Elza Aguirre
Polymers 2025, 17(15), 2146; https://doi.org/10.3390/polym17152146 - 6 Aug 2025
Abstract
In light of the environmental impact of disposable products made from petroleum-based plastics, this study focused on developing biodegradable foam trays made from a starch (PS) derived from potato waste and beer malt flour (BMBF). The objective of this study was to evaluate [...] Read more.
In light of the environmental impact of disposable products made from petroleum-based plastics, this study focused on developing biodegradable foam trays made from a starch (PS) derived from potato waste and beer malt flour (BMBF). The objective of this study was to evaluate the effect of the concentration of BMBF on the physical and mechanical properties of potato starch-based foam trays prepared by the thermoforming process at temperatures of 150 °C (upper plate) and 145 °C (lower plate) for 5 min and 40 s. The results showed that increasing the BMBF concentration from 0 to 40% reduced the moisture content from 4.68% to 3.42%, increased the thickness from 2.63 cm to 4.77 cm, and decreased the density from 0.28 g.cm−3 to 0.15 g.cm−3. Meanwhile, the water absorption capacity increased from 38.7% to 69.7%. In terms of mechanical properties, increasing the BMBF concentration in the PS foam tray resulted in a decrease in hardness from 5.61 N to 2.87 N, a decrease in tensile strength from 2.92 MPa to 0.85 MPa, and a decrease in elongation from 1.42% to 0.59%. Meanwhile, fracturability increased from 2.04 mm to 3.68 mm. FTIR analysis revealed interactions between BMBF and PS in the composite foam tray. Thermogravimetric analysis (TGA) showed two thermal events: one between 20.96 °C and 172.89 °C, and another between 189.14 °C and 517.69 °C, with weight losses of 5.53% and 74.23%, leaving an ash residue of 20.24%. Differential calorimetry analysis (DSC) showed a glass transition at 152.88 °C and a melting at 185.94 °C, with an enthalpy of fusion of 74.11 J.g−1. Higher concentrations of BMBF (>10%) decreased the water resistance, mechanical strength, and flexibility of the PS foam trays. Therefore, a formulation of 90% PS and 10% BMBF was better for producing a foam tray with improved mechanical properties and water resistance, which could be used as a sustainable alternative to conventional single-use plastic. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop