Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Systems
2.2. Rearing and Water Management
2.3. FLOCponics and Hydroponics
2.4. Fish
2.5. Growth Performance and Production of Fish and Crops
2.6. Stress Parameters
2.7. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Fish Growth
3.3. Crop Growth
3.4. Stress Analysis
3.5. Rearing Water Content Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buhmann, A.K.; Waller, U.; Wecker, B.; Papenbrock, J. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manag. 2015, 149, 102–114. [Google Scholar] [CrossRef]
- van Rijn, J. The potential for integrated biological treatment systems in recirculating fish culture—A review. Aquaculture 1996, 139, 181–201. [Google Scholar] [CrossRef]
- Crab, R.; Kochva, M.; Verstraete, W.; Avnimelech, Y. Bio-flocs technology application in over-wintering of tilapia. Aquac. Eng. 2009, 40, 105–112. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology—A Practical Guide Book, 3rd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2012. [Google Scholar]
- Avnimelech, Y. Bio-filters: The need for a new comprehensive approach. Aquac. Eng. 2006, 34, 172–178. [Google Scholar] [CrossRef]
- Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng. 2006, 34, 344–363. [Google Scholar] [CrossRef]
- Kim, S.K.; Pang, Z.; Seo, H.C.; Cho, Y.R.; Samocha, T.; Jang, I.K. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquacul. Res. 2014, 45, 362–371. [Google Scholar] [CrossRef]
- Longo, S.B.; Clark, B.; York, R.; Jorgenson, A.K. Aquaculture and displacement of fisheries captures. Conserv. Biol. 2019, 33, 832–841. [Google Scholar] [CrossRef]
- Tong, R.; Chen, W.; Pan, L.; Zhang, K. Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of Litopenaeus vannamei in zero-water exchange bioflocs-based outdoor soil culture ponds. Fish Shellfish Immunol. 2020, 101, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture. 2012, 356, 351–356. [Google Scholar] [CrossRef]
- Bossier, P.; Ekasari, J. Biofloc technology application in aquaculture to support sustainable development goals. Microb. Biotechnol. 2017, 10, 1012–1016. [Google Scholar] [CrossRef]
- Knaus, U.; Pribbernow, M.; Xu, L.; Appelbaum, S.; Palm, H.W. Basil (Ocimum basilicum) Cultivation in Decoupled Aquaponics with Three Hydro-Components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) Production in Northern Germany. Sustainability 2020, 12, 8745. [Google Scholar] [CrossRef]
- Pinho, S.M.; de Lima, J.P.; David, L.H.; Emerenciano, M.G.C.; Goddek, S.; Verdegem, M.C.J.; Keesman, K.J.; Portella, M.C. FLOCponics: The integration of biofloc technology with plant production. Rev. Aquac. 2021, 14, 647–675. [Google Scholar] [CrossRef]
- Rakocy, J.E. Ten guidelines for aquaponics systems. Aquaponics J. 2007, 46, 14–17. [Google Scholar]
- Knaus, U.; Palm, H.W. Effects of the fish species choice on vegetables in aquaponics under spring summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 473, 62–73. [Google Scholar] [CrossRef]
- Farrant, D.N.; Frank, K.L.; Larsen, A.E. Reuse and recycle: Integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution. Sci. Total Envrion. 2021, 785, 146859. [Google Scholar] [CrossRef]
- David, L.H.; Pinho, S.M.; Agostinho, F.; Costa, J.I.; Portella, M.C.; Keesman, K.J.; Garcia, F. Sustainability of urban aquaponics farms: An energy point of view. J. Clean. Prod. 2022, 331, 129896. [Google Scholar] [CrossRef]
- dos Santos, M.J.P.L. Smart cities and urban areas-Aquaponics as innovative urban agriculture. Urban For. Urban Green. 2016, 20, 402–406. [Google Scholar] [CrossRef]
- Greenfeld, A.; Becker, N.; McIlwain, J.; Fotedar, R.; Bornman, J. Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Rev. Aquac. 2019, 11, 848–862. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Evaluation of productivity and efficiency of a large-scale coupled or decoupled aquaponic system. Sci. Hortic. 2024, 337, 113552. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Gaxiola, G.; Cuzon, G. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. Biomass Now-Cultiv. Util. 2013, 12, 301–328. [Google Scholar]
- Vyas, A. Chapter 3—Biofloc systems in aquaculture: Global status and trends. In New and Future Developments in Microbial Biotechnology and Bioengineering Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 31–42. [Google Scholar]
- Pinho, S.M.; de Lima, J.P.; Tarigan, N.B.; David, L.H.; Portella, M.C.; Keesman, K.J. Modelling FLOCponics systems: Towards improved water and nitrogen use efficiency in biofloc-based fish culture. Biosyst. Eng. 2023, 229, 96–115. [Google Scholar] [CrossRef]
- Kafkafi, U. Root Temperature, Concentration and the Ratio NO3−/NH4+ Effect on Plant Development. J. Plant Nutr. 1990, 13, 1291–1306. [Google Scholar] [CrossRef]
- Macduff, J.H.; Jarvis, S.C.; Larsson, C.M.; Oscarson, P. Plant Growth in Relation to the Supply and Uptake of NO3−: A Comparison Between Relative Addition Rate and External Concentration as Driving Variables. J. Exp. Biol. 1993, 44, 1475–1484. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Status and Trends; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2012; pp. 1–100. [Google Scholar]
- Pinho, S.M.; Molinari, D.; de Mello, G.L.; Fitzsimmons, K.M.; Emerenciano, M.G.C. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng. 2017, 103, 146–153. [Google Scholar] [CrossRef]
- Hwang, J.A.; Lee, J.H.; Park, J.S.; Choe, J.R.; Lee, D.; Kim, H. Effect on Eel Anguilla japonica and Crop Growth by the Development of a Biofloc Technology (BFT) Aquaponics System. Kor. J. Fish. Aquat. Sci. 2021, 54, 418–425. [Google Scholar]
- Saseendran, S.; Dube, K.; Chandrakant, M.H.; Rani, A.M.B. Enhanced growth response and stress mitigation of genetically improved farmed Tilapia in a biofloc integrated aquaponic system with bell pepper. Aquaculture 2021, 533, 736200. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Strauch, S.M.; Kotzen, B. Coupled Aquaponic Systems. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Park, J.S.; Hwang, J.A.; Choe, J.R.; Lee, D.; Kim, H. Enhancing Indoor Culture of Weather Loach (Misgurnus anguillicaudatus) and Caipira Lettuce (Lactuca sativa) in a Decoupled FLOCponics System. Fishes 2024, 9, 150. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Comparisons of nitrogen and phosphorus mass balance for tomato-basil-, and lettuce-based aquaponic and hydroponic systems. J. Clean. Prod. 2020, 274, 122619. [Google Scholar] [CrossRef]
- Blaxhall, P.C. The haematological assessment of the health of freshwater fish. A review of selected literature. J. Fish Biol. 1972, 4, 593–604. [Google Scholar] [CrossRef]
- Sadoul, B.; Vijayan, M.M. Stress and growth. In Biology of Stress in Fish; Fish Physiology; Academic Press: Cambridge, MA, USA, 2016; Volume 35, pp. 167–205. [Google Scholar]
- Jones, B.J., Jr. Complete Guide for Growing Plants Hydroponically, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wei, Y.; Li, W.; Daoliang, L.; Jiao, Y.; Wei, Q. Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access 2019, 7, 169306–1693267. [Google Scholar] [CrossRef]
- Padeniya, U.; Davis, D.A.; Wells, D.E.; Bruce, T.J. Microbial Interactions, Growth and Health of Aquatic Species in Biofloc Systems. Water 2022, 14, 4019. [Google Scholar] [CrossRef]
- Suttle, C.A.; Fuhrman, J.A.; Capone, D.G. Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: Implications for carbon transfer in plankton communities. Limnol. Oceanogr. 1990, 35, 424–433. [Google Scholar] [CrossRef]
- Strock, J.S. Ammonification. In Encyclopedia of Ecology; Academic Press: Cambridge, MA, USA, 2008; pp. 162–165. [Google Scholar]
- Ward, B.B.; Bouskill, N.J. The Utility of Functional Gene Arrays for Assessing Community Composition, Relative Abundance, and Distribution of Ammonia-Oxidizing Bacteria and Archaea. Methods Enzymol. 2011, 496, 373–396. [Google Scholar]
- Kirchman, D.L. The Uptake of Inorganic Nutrients by Heterotrophic Bacteria. Microb. Ecol. 1994, 28, 255–271. [Google Scholar] [CrossRef]
- Jana, B.B.; Sarkar, D. Water quality in aquaculture-Impact and Management: A Review. Indian J. Anim. Sci. 2005, 75, 1354–1361. [Google Scholar]
- Gent, M.P. Solution electrical conductivity and ratio of nitrate to other nutrients affect accumulation of nitrate in hydroponic lettuce. HortScience 2003, 38, 222–227. [Google Scholar] [CrossRef]
- Gebrai, Y.; Ghebremichael, K.; Mihelcic, J.R. A Systems approach to analyzing food, energy and water uses of a multifunctional crop: A review. Sci. Total Environ. 2021, 791, 148254. [Google Scholar] [CrossRef] [PubMed]
- Alinsangao, A.M.; Igano, L.B.; Flores, P.A.M. Efficiency of biofloc system on the growth and survival of African catfish (Clarias gariepinus) fingerlings. J. Agric. Res. Dev. Extens. Technol. 2019, 1, 10–20. [Google Scholar]
- Vinatea, L.; Carbo, R.; Andree, K.B.; Gisbert, E.; Estevez, A. Rearing European Eel (Anguilla anguilla) Elvers in a Biofloc system. Animals 2023, 13, 3234. [Google Scholar] [CrossRef]
- Yu, Y.B.; Lee, J.H.; Choi, J.H.; Choi, Y.J.; Jo, A.H.; Choi, C.Y.; Kang, J.C.; Kim, J.H. The application and future of biofloc technology (BFT) in aquaculture industry: A review. J. Environ. Manag. 2023, 342, 118237. [Google Scholar] [CrossRef]
- Browdy, C.L.; Ray, A.J.; Leffler, J.W.; Avnimelech, Y. Biofloc-based aquaculture systems. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Ames, IA, USA; Oxford, UK, 2012; pp. 278–307. [Google Scholar]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Shao, Y.; An, P.; Yamamoto, S.; Ibraki, Y. Effect of Nutrient Solution Flow-Rate on Hydroponic Plant Growth and Root Morphology. Plants 2021, 10, 1840. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. The Stress of Life; Longmans Green and Co.: Toronto, ON, Canada, 1958; pp. 1–50. [Google Scholar]
- Ramesh, M.; Anitha, S.; Poolpal, R.K.; Shobana, C. Evaluation of acute and sublethal effects of chloroquine (C18H26CIN3) on certain enzymological and histophathological biomarker responses of a freshwater fish Cyprinus carpio. Toxicol. Rep. 2018, 5, 18–27. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.D.; Bradshaw, D. Hormonal control of salt and water balance in vertebrates. Gen. Comp. Endocrinol. 2006, 147, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Jerez-Cepa, I.; Gorissen, M.; Mancera, J.M.; Ruiz-Jarabo, I. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 231, 1–10. [Google Scholar] [CrossRef]
- Amoah, Y.T.; Moniruzzaman, M.; Lee, S.; Bae, J.; Won, S.; Seong, M.; Bai, S.C. Evaluation of different dietary additives based on growth performance, innate immunity and disease resistance in juvenile Amur catfish, Silurus asotus. Int. Aquat. Res. 2017, 9, 351–360. [Google Scholar] [CrossRef]
- Jung, S.H.; Seo, J.S.; Kim, J.D.; Choi, H.S.; Park, M.A. Application of automatic dry chemistry analyzer (FUJI DRI-CHEM 3000) used to hematological analysis of cultured freshwater fish in low temperature season. J. Fish Pathol. 2011, 24, 247–254. [Google Scholar] [CrossRef]
- Mainston, C.P.; Parr, W. Phosphorus in rivers-ecology and management. Sci. Total Environ. 2002, 282–283, 25–47. [Google Scholar] [CrossRef] [PubMed]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Nutrients Use Efficiency in Coupled and Decoupled Aquaponic Systems. Horticulturae 2023, 9, 1077. [Google Scholar] [CrossRef]
- Peterhans, H. Aquaponic Nutrient Model. Master’s Thesis, Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands, 2015. [Google Scholar]
- Goddek, S.; Vermeulen, T. Comparison of Lactuca sativa growth performance in conventional RAS-based hydroponic systems. Aquac. Int. 2018, 26, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Vanacore, L.; El-Nakhel, C.; Modarelli, G.C.; Rouphael, Y.; Pannico, A.; Langellotti, A.L.; Masi, P.; Cirillo, C.; De Pascale, S. Growth, Ecophysiological responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems. Plants 2024, 13, 2852. [Google Scholar] [CrossRef] [PubMed]
- Bordignon, F.; Birolo, M.; Fanizza, C.; Trocino, A.; Zardinoni, G.; Stevanato, P.; Nicoletto, C.; Xiccato, G. Effects of water salinity in an aquaponic system with rainbow trout (Oncorhynchus mykiss), black bullhead catfish (Ameiurus melas), Swiss chard (Beta vulgaris), and cherry tomato (Solanum lycopersicum). Aquaculture 2024, 584, 740634. [Google Scholar] [CrossRef]
- Solh, M.; van Ginkel, M.; Ortiz, R. Innovative Agriculture for Food Security Be Smart, Be Systematic; International Center for Agricultural Research in the Dry Areas: Beirut, Lebanon, 2013; p. 13. [Google Scholar]
Systems | Parameters | ||||
---|---|---|---|---|---|
Temp (°C) | DO (mg/L) | pH | EC (dS/cm) | TDS (mg/L) | |
S. asotus | |||||
BAPs-cat | 25.19 ± 0.53 ns | 11.44 ± 1.51 ns | 7.15 ± 0.20 ns | 0.78 ± 0.05 b | 0.39 ± 0.02 b |
BFT-cat | 25.70 ± 0.42 | 11.16 ± 1.39 | 7.25 ± 0.30 | 1.30 ± 0.21 a | 0.66 ± 0.11 a |
FTS-cat | 25.76 ± 0.42 | 11.12 ± 0.64 | 7.09 ± 0.27 | 0.20 ± 0.04 c | 0.10 ± 0.01 c |
p-value | p ≥ 0.05 | p ≥ 0.05 | p ≥ 0.05 | p < 001 | p < 0.001 |
A. bicolor | |||||
BAPs-eel | 25.55 ± 0.45ns | 11.29 ± 1.86 ns | 7.04 ± 0.25 ns | 1.53 ± 0.02 a | 0.77 ± 0.01 a |
BFT-eel | 25.67 ± 0.43 | 11.36 ± 1.09 | 6.48 ± 0.84 | 1.86 ± 0.26 a | 0.94 ± 0.13 a |
FTS-eel | 25.21 ± 1.91 | 11.13 ± 0.85 | 7.19 ± 0.11 | 0.25 ± 0.02 b | 0.12 ± 0.02 b |
p-value | p ≥ 0.05 | p ≥ 0.05 | p ≥ 0.05 | p < 0.001 | p < 0.001 |
Parameters | S. asotus | A. bicolor | ||||||
---|---|---|---|---|---|---|---|---|
BAPs-Cat | BFT-Cat | FTS-Cat | p-Value | BAPs-Eel | BFT-Eel | FTS-Eel | p-Value | |
1 FBW (g) | 145.39 ± 20.34 a | 140.22 ± 15.82 a | 134.28 ± 15.49 b | p < 0.001 | 139.36 ± 10.97 a | 132.03 ± 6.42 ab | 125.93 ± 13.48 b | p < 0.001 |
2 FTW (kg) | 13.48 ± 0.10 a | 13.25 ± 0.05 a | 12.32 ± 0.38 b | p = 0.0018 | 9.81 ± 0.18 a | 9.34 ± 0.41 ab | 8.50 ± 0.06 b | p = 0.0084 |
3 WGR (%) | 134.47 ± 1.80 a | 130.38 ± 0.95 a | 114.21 ± 6.62 b | p = 0.0118 | 70.61 ± 3.26 a | 62.37 ± 7.04 ab | 47.83 ± 1.09 b | p = 0.0024 |
4 SGR (%/day) | 2.05 ± 0.03 a | 1.96 ± 0.01 a | 1.86 ± 0.03 b | p = 0.0136 | 1.21 ± 0.02 a | 1.08 ± 0.06 ab | 0.97± 0.07 b | p = 0.0025 |
5 FCR | 1.12 ± 0.02 a | 1.15 ± 0.01 a | 1.29 ± 0.03 ab | p = 0.0039 | 1.33 ± 0.06 a | 1.51 ± 0.18 ab | 1.96 ± 0.04 b | p = 0.0013 |
6 SR (%) | 95.4 ± 1.90 ns | 95.4 ± 3.72 | 92.6 ± 2.05 | p ≥ 0.05 | 100.0 ± 0.0 ns | 100.0 ± 0.0 | 100.0 ± 0.0 | p ≥ 0.05 |
Parameters | Systems | |||
---|---|---|---|---|
BAPs-Cat | BAPs-Eel | Hydroponics (Cont.) | p-Value | |
Total length (mm) | 594.07 ± 19.53 a | 557.03 ± 8.33 b | 596.15 ± 52.62 a | p < 0.001 |
Shoot length (mm) | 219.97 ± 6.20 ns | 219.48 ± 10.20 | 215.48 ± 11.33 | p ≥ 0.05 |
Total weight (g) | 224.11 ± 6.37 a | 187.73 ± 3.63 b | 220.28 ± 7.17 a | p < 0.001 |
Shoot weight (g) | 186.28 ± 6.02 ns | 182.12 ± 3.33 | 186.13 ± 7.24 | p ≥ 0.05 |
Leaf width (mm) | 211.88 ± 9.89 ns | 212.08 ± 6.44 | 209.22 ± 12.53 | p ≥ 0.05 |
Leaf length (mm | 157.45 ± 12.42 ns | 156.09 ± 15.27 | 155.01 ± 21.83 | p ≥ 0.05 |
No. leaves | 26 ± 1 ns | 27 ± 2 | 26 ± 1 | p ≥ 0.05 |
Systems | Parameters | |||
---|---|---|---|---|
AST/GOT (U/L) | ALT/GPT (U/L) | GLU (mg/dL) | Cortisol (ng/mL) | |
S. asotus | ||||
BAPs-cat | 62.27 ± 4.09 ns | 15.98 ± 1.19 ns | 62.03 ± 3.17 ns | 0.17 ± 0.11 ns |
BFT-cat | 63.64 ± 5.52 | 16.17 ± 1.38 | 62.93 ± 4.39 | 0.13 ± 0.05 |
FTS-cat | 62.97 ± 6.08 | 16.48 ± 1.48 | 62.31 ± 5.14 | 0.19 ± 0.11 |
p-value | p ≥ 0.05 | p ≥ 0.05 | p ≥ 0.05 | p ≥ 0.05 |
A. bicolor | ||||
BAPs-eel | 50.37 ± 6.33 ns | 8.67 ± 1.18 ns | 152.13 ± 13.81 ns | 0.81 ± 0.30 ns |
BFT-eel | 49.83 ± 8.23 | 8.97 ± 1.03 | 153.83 ± 15.10 | 0.79 ± 0.25 |
FTS-eel | 49.67 ± 5.36 | 8.97 ± 1.40 | 151.43 ± 21.33 | 0.81 ± 0.30 |
p-value | p ≥ 0.05 | p ≥ 0.05 | p ≥ 0.05 | p ≥ 0.05 |
Contents | Systems | ||||||
---|---|---|---|---|---|---|---|
BAPs-Cat | BFT-Cat | FTS-Cat | BAPs-Eel | BFT-Eel | FTS-Eel | HP | |
Total-N (mg/L) | 71.34 | 129.18 | 32.33 | 93.17 | 160.53 | 34.55 | 323.48 |
Total-P (mg/L) | 8.07 | 15.21 | 3.47 | 18.13 | 25.93 | 4.40 | 28.13 |
Na (mg/L) | 35.66 | 52.21 | 16.46 | 75.95 | 108.05 | 22.21 | 31.91 |
K (mg/L) | 13.43 | 20.48 | 2.43 | 14.11 | 30.75 | 2.32 | 61.01 |
Ca (mg/L) | 47.33 | 117.33 | 24.54 | 51.04 | 121.85 | 31.26 | 114.85 |
Mg (mg/L) | 8.83 | 10.24 | 5.14 | 8.47 | 20.78 | 6.51 | 31.71 |
Fe (mg/L) | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 |
Mn (mg/L) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Zn (mg/L) | 0.16 | 0.20 | 0 | 0.24 | 0.38 | 0.01 | 0.25 |
Cu (mg/L) | 0.03 | 0.03 | 0.01 | 0.10 | 0.08 | 0.05 | 0.02 |
S (mg/L) | 51.45 | 111.45 | 12.05 | 75.16 | 131.19 | 11.64 | 124.11 |
Cl (mg/L) | 30.35 | 32.52 | 18.41 | 31.37 | 32.04 | 20.12 | 29.00 |
Si (mg/L) | 13.42 | 13.69 | 13.26 | 15.09 | 32.04 | 13.28 | 22.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.S.; Jeong, H.S.; Lee, J.-h.; Hwang, J.-a. Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor). Animals 2025, 15, 2305. https://doi.org/10.3390/ani15152305
Park JS, Jeong HS, Lee J-h, Hwang J-a. Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor). Animals. 2025; 15(15):2305. https://doi.org/10.3390/ani15152305
Chicago/Turabian StylePark, Jun Seong, Hae Seung Jeong, Jeong-ho Lee, and Ju-ae Hwang. 2025. "Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor)" Animals 15, no. 15: 2305. https://doi.org/10.3390/ani15152305
APA StylePark, J. S., Jeong, H. S., Lee, J.-h., & Hwang, J.-a. (2025). Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor). Animals, 15(15), 2305. https://doi.org/10.3390/ani15152305