Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,188)

Search Parameters:
Keywords = sustainable food alternatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 524 KB  
Review
Algae and Algal Protein in Human Nutrition: A Narrative Review of Health Outcomes from Clinical Studies
by Zixuan Wang, Marie Scherbinek and Thomas Skurk
Nutrients 2026, 18(2), 277; https://doi.org/10.3390/nu18020277 - 15 Jan 2026
Abstract
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have [...] Read more.
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have been demonstrated to provide a broad spectrum of physiologically active nutrients, encompassing a range of vitamins and minerals as well as polyunsaturated fatty acids, antioxidant molecules and various bioactive compounds including dietary fiber. These nutrients have been linked to improved cardiovascular and metabolic health, enhanced immune function, and anti-inflammatory effects. A particular emphasis is placed on algal proteins as a novel alternative to traditional dietary proteins. Genera such as Spirulina and Chlorella offer high-quality, complete proteins with amino acid profiles and digestibility scores comparable to those of animal and soy proteins, thereby supporting muscle maintenance and overall nutritional status. Recent clinical studies have demonstrated that the ingestion of microalgae can stimulate muscle protein synthesis and improve lipid profiles, blood pressure, and inflammation markers, indicating functional benefits beyond basic nutrition. Algal proteins also contain bioactive peptides with antioxidative properties that may contribute to positive outcomes. This review synthesizes current studies, which demonstrate that algae represent a potent, sustainable protein source capable of enhancing dietary quality and promoting health. The integration of algae-based products into plant-forward diets has the potential to contribute to global nutritional security and long-term public health. However, the available clinical evidence remains heterogeneous and is largely based on small, short-term intervention studies, with substantial variability in algae species, processing methods and dosages. Consequently, while the evidence suggests the possibility of functional effects, the strength of the evidence and its generalizability across populations remains limited. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

31 pages, 1774 KB  
Systematic Review
Systematic Literature Review on Forms of Communitization that Feature Alternative Nutritional Practices
by Tonia Ruppenthal and Jana Rückert-John
Sustainability 2026, 18(2), 879; https://doi.org/10.3390/su18020879 - 15 Jan 2026
Abstract
This article provides a systematic literature review of the scientific literature on forms of communitization that feature alternative nutritional practices to reveal their organizational structures, opportunities, challenges, and transformative potential. The forms studied are alternative food networks and are characterized by their sustainable [...] Read more.
This article provides a systematic literature review of the scientific literature on forms of communitization that feature alternative nutritional practices to reveal their organizational structures, opportunities, challenges, and transformative potential. The forms studied are alternative food networks and are characterized by their sustainable commitment in food production, distribution, and consumption practices. This review focused solely on articles investigating these forms of communitization in Germany. A systematic literature search was conducted using the databases Web of Science and Business Source Premier in accordance with the PRISMA statement guidelines. Forty-two articles were included in the final analysis, with the oldest article published in 2006 and the newest in 2025. The systematic literature review identifies five forms of communitization with alternative nutritional practices: community, urban and self-harvest gardens; food cooperatives or cooperative initiatives; food sharing and redistribution initiatives; community-supported agriculture and networks; and ecovillages, commune, food initiatives, and other partnerships. The review highlights key forms of communitization that feature alternative nutritional practices, the methods used, and the geographical areas involved. Using content analysis, the organizational structures, opportunities, and challenges of various forms of communitization that feature alternative nutritional practices are identified and their transformative potential discussed. Full article
Show Figures

Figure 1

14 pages, 263 KB  
Article
Omnivores and Vegetarians Think Alike About Taste, Familiarity, and Price of Meat and Meat Analogs
by Tommaso Querini and Marco Tagliabue
Nutrients 2026, 18(2), 264; https://doi.org/10.3390/nu18020264 - 14 Jan 2026
Viewed by 19
Abstract
Background/Objectives: The overconsumption of animal-derived proteins represents a threat to both the environment and our health. Although there is widespread agreement that reducing meat consumption represents a more sustainable alternative, few studies have explored the implicit relations guiding these food choices. This empirical [...] Read more.
Background/Objectives: The overconsumption of animal-derived proteins represents a threat to both the environment and our health. Although there is widespread agreement that reducing meat consumption represents a more sustainable alternative, few studies have explored the implicit relations guiding these food choices. This empirical study explores meat consumption and vegetarianism through the lens of Relational Frame Theory. It is hypothesized that people who eat meat have different relational responses to images of meat and plant-based alternatives than vegetarians. Methods: We used the Implicit Attribute Classification Task (IMPACT) to measure relational responses, testing whether omnivores find plant-based proteins (1) less tasty, (2) less familiar, and (3) more expensive than vegetarians do. We registered the response latencies and calculated D-scores from 110 participants who completed an online test. Results: The study failed to find any statistically significant differences in the IMPACT measures between omnivores and vegetarians, given our specific participants and stimuli. Conclusions: Relational responding measures offer a useful approach to understanding consumer choices. However, they are highly sensitive to the task parameters and could be enhanced by further integration with other consumer behavior models when explaining meat consumption. Full article
Show Figures

Graphical abstract

15 pages, 1102 KB  
Review
A Paradigm Shift in Microbial Protein Manufacturing
by Xinyu Zhuo, Yanzi Xie, Jiali Yu, Wandi Xue, Yijie Weng and Sheng Tong
Life 2026, 16(1), 129; https://doi.org/10.3390/life16010129 - 14 Jan 2026
Viewed by 185
Abstract
Against the backdrop of the global protein crisis and the textural limitations of alternative proteins, microorganisms are increasingly recognized as versatile structural materials to address these challenges. This review systematically analyzes three key microbial strategies: employing mycelial solid-state fermentation to engineer fibrous meat [...] Read more.
Against the backdrop of the global protein crisis and the textural limitations of alternative proteins, microorganisms are increasingly recognized as versatile structural materials to address these challenges. This review systematically analyzes three key microbial strategies: employing mycelial solid-state fermentation to engineer fibrous meat analogues; utilizing bacterial cellulose scaffolds to enhance the texture of both cultured meat and plant-based products; and applying synthetic biology to design tailored functional proteins. Existing studies confirm that mycelial fermentation significantly improves product texture and production sustainability. In parallel, bacterial cellulose provides highly biocompatible nanoscaffolds, while synthetic biology enables the efficient production and nutritional enhancement of complex animal proteins. Although challenges in scaling production and optimizing flavor persist, advanced bioprocess optimization and genetic engineering offer promising solutions. Future breakthroughs are expected to transition from structural mimicry to true functional creation, establish decentralized production networks, and advance dynamic 4D-printed foods, which will collectively contribute to a more sustainable and resilient global food system. Full article
(This article belongs to the Special Issue Microbial Biotechnology and Biomanufacturing)
Show Figures

Figure 1

41 pages, 3670 KB  
Review
Current Trends of Cellulosic Ethanol Technology from the Perspective of Industrial Development
by Gabrielly Karla Silva Santos, Carlos Eduardo de Farias Silva, Brígida Maria Villar da Gama, Josimayra Almeida Medeiros, Mathieu Brulé, Albanise Enide da Silva, Renata Maria Rosas Garcia Almeida, Daniele Vital Vich, Rafail Isemin, Xianhua Guo and Ana Karla de Souza Abud
Fermentation 2026, 12(1), 48; https://doi.org/10.3390/fermentation12010048 - 14 Jan 2026
Viewed by 70
Abstract
Driven by the energy transition within the framework of the United Nations Framework Convention on Climate Change, second-generation (2G) ethanol stands out as a technical and sustainable alternative to fossil fuels. Although first-generation ethanol, produced from saccharine and starchy feedstocks, represents an advance [...] Read more.
Driven by the energy transition within the framework of the United Nations Framework Convention on Climate Change, second-generation (2G) ethanol stands out as a technical and sustainable alternative to fossil fuels. Although first-generation ethanol, produced from saccharine and starchy feedstocks, represents an advance in mitigating emissions, its expansion is limited by competition with areas destined for food production. In this context, 2G ethanol, obtained from residual lignocellulosic biomass, emerges as a strategic route for diversifying and expanding the renewable energy matrix. Thus, this work discusses the current state of 2G ethanol technology based on the gradual growth in production and the consolidation of this route over the last few years. Industrial second-generation ethanol plants operating around the world demonstrate the high potential of agricultural waste as a raw material, particularly corn straw in the United States, which offers a lower cost and significant yield in the production of this biofuel. Similarly, in Brazil, sugarcane by-products, especially bagasse and straw, are consolidating as the main sources for 2G ethanol, integrated into the biorefinery concept and the valorization of by-products obtained during the 2G ethanol production process. However, despite the wide availability of lignocellulosic biomass and its high productive potential, the consolidation of 2G ethanol is still conditioned by technical and economic challenges, especially the high costs associated with pretreatment stages and enzymatic cocktails, as well as the formation of inhibitory compounds that compromise the efficiency of the process. Genetic engineering plays a particularly important role in the development of microorganisms to produce more efficient enzymatic cocktails and to ferment hexoses and pentoses (C6 and C5 sugars) into ethanol. In this scenario, not only are technological limitations important but also public policies and tax incentives, combined with the integration of the biorefinery concept and the valorization of (by)products, which prove fundamental to reducing costs, increasing process efficiency, and ensuring the economic viability and sustainability of second-generation ethanol. Full article
(This article belongs to the Special Issue Microbial Upcycling of Organic Waste to Biofuels and Biochemicals)
Show Figures

Figure 1

8 pages, 1721 KB  
Proceeding Paper
Experimental Study of Combined Fluidized Bed and Microwave Drying Applied to Soybeans and Pumpkin Seeds
by Patronelli Renzo, Goñi Sandro, Arballo Javier and Campañone Laura
Biol. Life Sci. Forum 2026, 56(1), 6; https://doi.org/10.3390/blsf2026056006 - 13 Jan 2026
Viewed by 19
Abstract
Microwave technology offers a sustainable alternative to fossil fuel-based drying of particulate materials. Its combination with fluidized bed systems enhances process efficiency and product quality. A pilot-scale dryer with two magnetrons was used to study soybean and pumpkin seed drying. Samples were dried [...] Read more.
Microwave technology offers a sustainable alternative to fossil fuel-based drying of particulate materials. Its combination with fluidized bed systems enhances process efficiency and product quality. A pilot-scale dryer with two magnetrons was used to study soybean and pumpkin seed drying. Samples were dried at 50 °C with air velocities twice the minimum fluidization value. Microwave power levels of 0, 350, and 750 W were applied. Weight loss after 30 min reached 32.2–42.5% for soybeans and 42.0–48.2% for pumpkin seeds. Moderate microwave power improved drying efficiency, highlighting the potential of microwave-assisted fluidized bed drying for food processing sustainability. Full article
Show Figures

Figure 1

17 pages, 301 KB  
Article
The Food Ethics, Sustainability and Alternatives Course: A Mixed Assessment of University Students’ Readiness for Change
by Charles Feldman and Stephanie Silvera
Sustainability 2026, 18(2), 815; https://doi.org/10.3390/su18020815 - 13 Jan 2026
Viewed by 74
Abstract
Growing interest in food sustainability education aims to increase awareness of food distribution systems, environmental degradation, and the connectivity of sustainable and ethical food practices. However, recent scholarship has questioned whether such pedagogical efforts are meaningfully internalized by students or lead to sustained [...] Read more.
Growing interest in food sustainability education aims to increase awareness of food distribution systems, environmental degradation, and the connectivity of sustainable and ethical food practices. However, recent scholarship has questioned whether such pedagogical efforts are meaningfully internalized by students or lead to sustained behavioral change. Prior studies document persistent gaps in students’ understanding of sustainability impacts and the limited effectiveness of existing instructional approaches in promoting transformative engagement. To address these concerns, the Food Ethics, Sustainability and Alternatives (FESA) course was implemented with 21 undergraduate and graduate students at Montclair State University (Montclair, NJ, USA). Course outcomes were evaluated using a mixed-methods design integrating qualitative analysis with quantitative measures informed by the Theory of Planned Behavior, to identify influences on students’ attitudes, and a Transtheoretical Model (TTM) panel survey to address progression from awareness to action, administered pre- and post-semester. Qualitative findings revealed five central themes: increased self-awareness of food system contexts, heightened attention to animal ethics, the importance of structured classroom dialogue, greater recognition of food waste, and increased openness to alternative food sources. TTM results indicated significant reductions in contemplation and preparation stages, suggesting greater readiness for change, though no significant gains were observed in action or maintenance scores. Overall, the findings suggest that while food sustainability education can positively shape student attitudes, the conversion of attitudinal shifts into sustained behavioral change remains limited by external constraints, including time pressures, economic factors, culturally embedded dietary practices, structural tensions within contemporary food systems, and perceptions of limited individual efficacy. Full article
(This article belongs to the Section Sustainable Education and Approaches)
29 pages, 1112 KB  
Review
Wild Seeds as Sustainable Sources of C18-Series Bioactive Fatty Acids: Metabolic Diversity, Nutritional Value, and Functional Applications
by Ana Minerva García-Cervantes, Mohamed Ezzaitouni, Tarik Chileh-Chelh, Salima Haddou, Ferdaous Al Ferjani and José Luis Guil-Guerrero
Seeds 2026, 5(1), 6; https://doi.org/10.3390/seeds5010006 - 13 Jan 2026
Viewed by 59
Abstract
Wild seeds constitute a taxonomically diverse and underexplored reservoir of C18-series bioactive fatty acids (BFAs) with significant nutritional, biomedical, and industrial relevance. This review integrates current knowledge on their lipid composition, metabolic architecture, and potential applications. Numerous wild taxa accumulate high levels of [...] Read more.
Wild seeds constitute a taxonomically diverse and underexplored reservoir of C18-series bioactive fatty acids (BFAs) with significant nutritional, biomedical, and industrial relevance. This review integrates current knowledge on their lipid composition, metabolic architecture, and potential applications. Numerous wild taxa accumulate high levels of oleic, linoleic, α-linolenic, γ-linolenic, and stearidonic acids, while others synthesise structurally specialised compounds such as punicic, petroselinic, and sciadonic acids. These FAs, together with tocopherols, phytosterols, and phenolics, underpin antioxidant, anti-inflammatory, immunomodulatory, and cardiometabolic effects supported by in vitro and in vivo evidence. The occurrence of these unusual lipids reflects lineage-specific modulation of plastidial and endoplasmic-reticulum pathways, including differential activities of SAD, FAD2/3, Δ6- and Δ5-desaturases, elongases, and acyl-editing enzymes that determine the final acyl-CoA and TAG pools. Wild seed oils show strong potential for translation into functional foods, targeted nutraceuticals, pharmacologically relevant lipid formulations, cosmetic ingredients, and bio-based materials. However, their exploitation is constrained by ecological sustainability, oxidative instability of PUFA-rich matrices, antinutritional constituents, and regulatory requirements for novel lipid sources. This review positions wild seeds as high-value, underused lipid resources with direct relevance to health and sustainability. It underscores their potential to enhance nutritional security and offer alternatives to conventional oil crops. Full article
Show Figures

Graphical abstract

22 pages, 1873 KB  
Review
Electron Transfer-Mediated Heavy Metal(loid) Bioavailability, Rice Accumulation, and Mitigation in Paddy Ecosystems: A Critical Review
by Zheng-Xian Cao, Zhuo-Qi Tian, Hui Guan, Yu-Wei Lv, Sheng-Nan Zhang, Tao Song, Guang-Yu Wu, Fu-Yuan Zhu and Hui Huang
Agriculture 2026, 16(2), 202; https://doi.org/10.3390/agriculture16020202 - 13 Jan 2026
Viewed by 85
Abstract
Electron transfer (ET) is a foundational biogeochemical process in paddy soils, distinctively molded by alternating anaerobic-aerobic conditions from flooding-drainage cycles. Despite extensive research on heavy metal(loid) (denoted as “HM”, e.g., As, Cd, Cr, Hg) dynamics in paddies, ET has not been systematically synthesized [...] Read more.
Electron transfer (ET) is a foundational biogeochemical process in paddy soils, distinctively molded by alternating anaerobic-aerobic conditions from flooding-drainage cycles. Despite extensive research on heavy metal(loid) (denoted as “HM”, e.g., As, Cd, Cr, Hg) dynamics in paddies, ET has not been systematically synthesized as a unifying regulatory mechanism, and the trade-offs of ET-based mitigation strategies remain unclear. These critical gaps have drastically controlled HMs’ mobility, which further modulates bioavailability and subsequent accumulation in rice (Oryza sativa L., a staple sustaining half the global population), posing substantial food safety risks. Alongside progress in electroactive microorganism (EAM) research, extracellular electron transfer (EET) mechanism delineation, and soil electrochemical monitoring, ET’s role in orchestrating paddy soil HM dynamics has garnered unparalleled attention. This review explicitly focuses on the linkage between ET processes and HM biogeochemistry in paddy ecosystems: (1) elucidates core ET mechanisms in paddy soils (microbial EET, Fe/Mn/S redox cycling, organic matter-mediated electron shuttling, rice root-associated electron exchange) and their acclimation to flooded conditions; (2) systematically unravels how ET drives HM valence transformation (e.g., As(V) to As(III), Cr(VI) to Cr(III)), speciation shifts (e.g., exchangeable Cd to oxide-bound Cd), and mobility changes; (3) expounds on ET-regulated HM bioavailability by modulating soil retention capacity and iron plaque formation; (4) synopsizes ET-modulated HM accumulation pathways in rice (root uptake, xylem/phloem translocation, grain sequestration); (5) evaluates key factors (water management, fertilization, straw return) impacting ET efficiency and associated HM risks. Ultimately, we put forward future avenues for ET-based mitigation strategies to uphold rice safety and paddy soil sustainability. Full article
Show Figures

Figure 1

19 pages, 2693 KB  
Article
Physicochemical Properties and Fatty Acid Profiling of Texturized Pea Protein Patties Partially Replaced with Chia Seed Powder During Refrigerated Storage
by Kartik Sharma, Aminee Saree, Ramida Jeenplangchat, Haymar Theinzan, Samart Sai-Ut, Passakorn Kingwascharapong, Supatra Karnjanapratum and Saroat Rawdkuen
Foods 2026, 15(2), 270; https://doi.org/10.3390/foods15020270 - 12 Jan 2026
Viewed by 199
Abstract
The increasing demand for sustainable, nutrient-dense plant-based foods has intensified interest in functional ingredients that enhance nutritional quality. This study developed plant-based patties by partially replacing texturized pea protein with chia seed powder (CSP; Salvia hispanica L.) and evaluated their quality during 20 [...] Read more.
The increasing demand for sustainable, nutrient-dense plant-based foods has intensified interest in functional ingredients that enhance nutritional quality. This study developed plant-based patties by partially replacing texturized pea protein with chia seed powder (CSP; Salvia hispanica L.) and evaluated their quality during 20 days of refrigerated storage (4 °C) under nitrogen-flushed packaging. Six formulations (F1–F6) containing 0–25% CSP were evaluated for physicochemical properties, lipid oxidation, and nutritional composition. Based on an optimal balance of texture, cooking yield, antioxidant capacity, and nutritional enhancement, the formulation containing 20% CSP was selected for further analyses. Proximate analysis revealed significant increases in protein (18–21%), fat (9–12%), and ash (2–3%) contents, accompanied by a slight reduction in moisture. All formulations maintained a stable pH throughout storage. Lipid oxidation increased gradually from 0.10–0.17 to 0.89–1.10 mg MDA/kg over 20 days but remained within acceptable limits. Fatty acid profiling indicated enhanced polyunsaturated fatty acids, particularly omega-3 and omega-6. Amino acid analysis showed elevated levels of key amino acids, including glutamic acid, aspartic acid, arginine, leucine, and lysine. Overall, patties containing 20% CSP exhibited improved nutritional quality and satisfactory oxidative stability, highlighting CSP as a promising functional ingredient for plant-based meat alternatives. Full article
Show Figures

Figure 1

20 pages, 5692 KB  
Article
Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation
by Heba Shaaban, Ahmed Mostafa, Abdulmalik M. Alqarni, Marwah Alsalman, Makarem A. Alkhalaf, Mohammad A. Alrofaidi, Abdulaziz H. Al Khzem and Mansour S. Alturki
Foods 2026, 15(2), 258; https://doi.org/10.3390/foods15020258 - 10 Jan 2026
Viewed by 215
Abstract
The widespread use of antibiotics in human medicine, veterinary care, and livestock production has resulted in their frequent detection in diverse environmental and food matrices, making continuous surveillance of antibiotic residues in food products essential for consumer protection. In this study, a sustainable [...] Read more.
The widespread use of antibiotics in human medicine, veterinary care, and livestock production has resulted in their frequent detection in diverse environmental and food matrices, making continuous surveillance of antibiotic residues in food products essential for consumer protection. In this study, a sustainable analytical method based on dispersive liquid–liquid microextraction (DLLME) coupled with UHPLC–MS/MS was developed for the trace determination of sulfamethoxazole, sulfadimethoxine, and enrofloxacin in commercial cow milk and chicken eggs. A natural deep eutectic solvent (NADES) composed of anisaldehyde and octanoic acid (2:1, molar ratio) was employed as a biodegradable extraction solvent, and key extraction parameters were systematically optimized. Under optimized conditions, the method demonstrated excellent linearity (R2 ≥ 0.9982), recoveries of 89.5–98.7%, and RSDs ≤ 6.04%. Application to 44 commercial samples from the Saudi market revealed sulfamethoxazole as the most frequently detected antibiotic, occurring in 90% of egg samples (2.17–13.76 µg kg−1) and 70.8% of milk samples (0.26–26.67 µg L−1). A comprehensive evaluation using ten metrics confirmed the method’s greenness, practicality, analytical performance, and innovation. Overall, the proposed NADES–DLLME–UHPLC–MS/MS approach offers a rapid, cost-effective, and environmentally friendly alternative for routine monitoring of antibiotic residues in food matrices. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

39 pages, 4702 KB  
Review
Biopolymer-Based Active and Intelligent Food Packaging: Recent Advances in Materials, Technologies, and Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Polymers 2026, 18(2), 196; https://doi.org/10.3390/polym18020196 - 10 Jan 2026
Viewed by 424
Abstract
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing [...] Read more.
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing natural biopolymers including polysaccharides, proteins, and their composites. The integration of antimicrobial agents, natural colorimetric indicators, nanofillers, and advanced fabrication techniques has enabled the creation of multifunctional packaging materials capable of extending shelf life, monitoring food quality in real-time, and reducing environmental impact. This review organizes the current research on starch, chitosan-, cellulose-, pectin-, bacterial cellulose-, pullulan-, gelatin-, zein-, and dextran-based packaging systems, with particular emphasis on their physicochemical properties, functional performance, and practical applications for preserving various food products, including meat, fish, fruits, and other perishables. The challenges associated with mechanical strength, water resistance, scalability, and commercial viability are critically evaluated alongside emerging solutions involving chemical modifications, nanocomposite formulations, and innovative processing technologies. Future perspectives highlight the need for standardization, life cycle assessments, regulatory frameworks, and consumer acceptance studies to facilitate the transition from laboratory innovations to industrial-scale implementation of sustainable biopolymer packaging solutions. Full article
Show Figures

Figure 1

15 pages, 5559 KB  
Article
Performance of Bio-Based Foam Packaging for Frozen Fried Chicken Storage
by HyeRyeong Choi, Anuja P. Rananavare and Youn Suk Lee
Foods 2026, 15(2), 242; https://doi.org/10.3390/foods15020242 - 9 Jan 2026
Viewed by 183
Abstract
Structural and physicochemical deterioration in frozen foods is largely driven by ice crystal formation and growth during storage. Although biofoams offer sustainable alternatives to plastic packaging, bio-based systems designed to mitigate ice crystal-induced quality loss remain limited. In this study, a sodium alginate-based [...] Read more.
Structural and physicochemical deterioration in frozen foods is largely driven by ice crystal formation and growth during storage. Although biofoams offer sustainable alternatives to plastic packaging, bio-based systems designed to mitigate ice crystal-induced quality loss remain limited. In this study, a sodium alginate-based biofoam was synthesized via a facile one-pot method and evaluated for frozen fried chicken packaging. Its moisture, mechanical, and optical properties were compared with those of conventional plastic and paper packaging. The quality of frozen fried chicken was assessed in terms of moisture absorption, color, texture, pH, lipid oxidation (TBARs), and the overall appearance under different freezing conditions. The alginate biofoam exhibited exceptionally high moisture absorption (>2400%) due to its porous and hydrophilic structure, enabling effective moisture management during frozen storage. Samples packaged with the biofoam showed reduced moisture loss, lower lipid oxidation, and improved color and surface texture stability compared with conventional packaging, particularly under freeze–thaw conditions. These findings demonstrate that sodium alginate-based biofoam is a promising eco-friendly packaging material for maintaining the physicochemical quality of frozen ready-to-eat foods. Full article
Show Figures

Figure 1

39 pages, 1790 KB  
Review
Lactic Acid Bacteria as the Green and Safe Food Preservatives: Their Mechanisms, Applications and Prospects
by Yuwei Zhang, Lianrui Li, Xiaoyang Pang, Shuwen Zhang, Yang Liu, Yunna Wang, Ning Xie and Xu Li
Foods 2026, 15(2), 241; https://doi.org/10.3390/foods15020241 - 9 Jan 2026
Viewed by 161
Abstract
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean [...] Read more.
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean label” products, have driven the search for natural alternatives. Lactic acid bacteria (LAB), recognized as the Generally Recognized as Safe (GRAS) microorganisms, have emerged as the promising bio-preservatives due to their safety, effectiveness, and multifunctionality. This review systematically summarized the core antimicrobial properties of LAB, including their inhibitory spectrum against foodborne pathogens, spoilage microorganisms, viruses, parasites, and their ability to degrade toxic substances such as mycotoxins, pesticides, and heavy metals. Key inhibitory mechanisms of LAB are highlighted, encompassing the production of antimicrobial metabolites, leading to metabolism disruption and cell membrane damage, nutrition and niche competition, quorum-sensing interference, and anti-biofilm formation. Furthermore, recent advances in LAB applications in preserving various food matrices (meat, dairy products, fruits and vegetables, cereals) are integrated, including their roles in enhancing food sensory quality, extending shelf life, and retaining nutritional value. The review also discusses critical factors influencing LAB’s inhibitory activity (medium composition, culture conditions, ionic components, pathway regulator, etc.) and the challenges associated with the application of LAB. Finally, future research directions are outlined, including the novel LAB and metabolites exploration, AI-driven cultural condition optimization, genetic engineering application, nano-encapsulation and active packaging development, and building up the LAB-based cellular factories. In conclusion, LAB and their antimicrobial metabolites hold great promise as green and safe food preservatives. This review is to provide comprehensive theoretical support for the rational improvement and efficient application of LAB-based natural food preservatives, contributing to the development of a safer and more sustainable food processing and preservation systems. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

22 pages, 997 KB  
Article
A Decentralized Bilevel Interactive Fuzzy Approach for Socially Sustainable Agri-Food Supply Chain Management
by César J. Vergara-Rodríguez, Jairo R. Montoya-Torres and José Ruiz-Meza
Mathematics 2026, 14(2), 250; https://doi.org/10.3390/math14020250 - 9 Jan 2026
Viewed by 144
Abstract
Agri-food supply chain management (ASCM) involves hierarchical structures in which actors make autonomous decisions and pursue objectives that may conflict with one another, thereby hindering coordination and limiting the understanding of how these decisions affect overall chain performance. This study proposes a decentralized [...] Read more.
Agri-food supply chain management (ASCM) involves hierarchical structures in which actors make autonomous decisions and pursue objectives that may conflict with one another, thereby hindering coordination and limiting the understanding of how these decisions affect overall chain performance. This study proposes a decentralized bilevel mixed-integer linear programming model (BLDPP) for ASCM, solved using an interactive fuzzy decision-making approach that integrates membership functions with multi-objective programming. The model was validated through a case study conducted on an agri-food supply chain in Colombia. The results show that the interactive fuzzy approach enabled the development of a planning scheme that achieved a 94% satisfaction level among all decision-makers, demonstrating its effectiveness in harmonizing potentially conflicting interests. Additionally, the resulting planning incorporated up to 99% of the total productive capacity of small producers into the purchasing plan, supporting their inclusion in the chain. These findings indicate that both the proposed management model and its solution approach offer a robust alternative for advancing toward socially sustainable management of agri-food supply chains. Full article
(This article belongs to the Topic Decision Science Applications and Models (DSAM))
Show Figures

Figure 1

Back to TopTop