Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Preparation of Natural Deep Eutectic Solvents (NDESs)
2.4. Procedures of the Optimized NADES-DLLME Method
2.5. Method Validation
2.6. Sample Collection and Preparation
3. Results and Discussion
3.1. FTIR Spectra
3.2. Optimization of the Developed NADES-DLLME Method
3.2.1. Selection of NADES Type, Molar Ratio and Volume
3.2.2. Selection of Sample Volume
3.2.3. Selection of Vortex Time and Centrifugation Time
3.2.4. Selection of pH
3.2.5. Selection of Salt Concentration
3.3. Method Validation
3.4. Analysis of Real Samples
3.5. A Comprehensive Assessment of the Method’s Greenness, Applicability, Performance and Innovation
3.5.1. Assessment of the Environmental Impact Associated with the Proposed Method and Compliance with the Principles of GAC
3.5.2. Evaluation of the Method’s Applicability and Practicality
3.5.3. Evaluation of the Method’s Analytical Performance
3.5.4. Evaluation of the Method’s Analytical Innovation
3.6. Comparison to Other Reported Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaaban, H.; Gorecki, T. Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta 2015, 132, 739–752. [Google Scholar] [CrossRef]
- Tay, K.S.J.; See, H.H. Recent advances in dispersive liquid-liquid microextraction for pharmaceutical analysis. Crit. Rev. Anal. Chem. 2025, 55, 559–580. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H. New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals. Anal. Bioanal. Chem. 2016, 408, 6929–6944. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H.; Górecki, T. High-efficiency liquid chromatography using Sub-2 μm columns at elevated temperature for the analysis of sulfonamides in wastewater. Chromatographia 2011, 74, 9–17. [Google Scholar] [CrossRef]
- Shaaban, H.; Gorecki, T. Fused core particles as an alternative to fully porous sub-2 μm particles in pharmaceutical analysis using coupled columns at elevated temperature. Anal. Methods 2012, 4, 2735–2743. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef]
- Notardonato, I.; Avino, P. Dispersive liquid–liquid micro extraction: An analytical technique undergoing continuous evolution and development—A review of the last 5 years. Separations 2024, 11, 203. [Google Scholar] [CrossRef]
- Alqarni, A.M.; Shaaban, H.; Mostafa, A.; Gomaa, M.S.; Albashrayi, D.; Hasheeshi, B.; Bakhashwain, N.; Aseeri, A.; Alqarni, A.; Alamri, A.A.; et al. Development and optimization of natural deep eutectic solvent-based dispersive liquid–liquid microextraction coupled with UPLC–UV for simultaneous determination of parabens in personal care products: Evaluation of the eco-friendliness level of the developed method. RSC Adv. 2023, 13, 13183–13194. [Google Scholar] [CrossRef]
- Mostafa, A.; Shaaban, H. Development and validation of a dispersive liquid–liquid microextraction method for the determination of phthalate esters in perfumes using gas chromatography–mass spectrometry. RSC Adv. 2018, 8, 26897–26905. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Elmansi, H.; Belal, F.; Magdy, G. Recent advances in dispersion strategies for dispersive liquid–liquid microextraction from green chemistry perspectives. Microchem. J. 2023, 191, 108807. [Google Scholar] [CrossRef]
- Sajid, M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. TrAC—Trends Anal. Chem. 2022, 152, 116636. [Google Scholar] [CrossRef]
- Shaaban, H. Sustainable dispersive liquid–liquid microextraction method utilizing a natural deep eutectic solvent for determination of chloramphenicol in honey: Assessment of the environmental impact of the developed method. RSC Adv. 2023, 13, 5058–5069. [Google Scholar] [CrossRef]
- Alqarni, A.M.; Shaaban, H.; Mostafa, A.; AlKahlah, S.; AlQahtani, S.S.; Almutairi, N.S.; Khalid, O.; Ahmed, Z. Anisaldehyde-based deep eutectic solvent dispersive liquid–liquid microextraction (DES-DLLME) followed by UPLC–MS/MS for simultaneous determination of selected parabens and bisphenols in food products: Method development and assessment of the ecological implications. Microchem. J. 2024, 204, 110981. [Google Scholar] [CrossRef]
- Alqarni, A.M.; Mostafa, A.; Shaaban, H.; Mokhtar, H.I.; Aseeri, A.; Alkarshami, B.; Alrofaidi, M.A. Air-agitated liquid–liquid microextraction method based on solidification of a floating organic droplet (AALLME-SFO) followed by UPLC-MS/MS for trace analysis of steroids in water samples: Assessment of the method environmental impact using Analytical Eco-Scale, green Analytical procedure Index and the Analytical GREEnness metric. Microchem. J. 2024, 200, 110244. [Google Scholar] [CrossRef]
- Shaaban, H.; Mostafa, A.; Alsubaie, N.A.; Alqarni, A.M.; Ali, T.E.; Dahlawi, O. A novel fenchone-based natural deep eutectic solvent for dispersive liquid-liquid microextraction of bisphenol A and bisphenol F from plastic baby products: Synthesis, characterization, method development, and greenness assessment. J. Mol. Liq. 2025, 439, 128750. [Google Scholar] [CrossRef]
- Myers, J. This is how many people antibiotic resistance could kill every year by 2050 if nothing is done. In Proceedings of the World Economic Forum, Geneva, Switzerland, 7 September 2016; Volume 23. Available online: https://www.weforum.org/stories/2016/09/this-is-how-many-people-will-die-from-antimicrobial-resistance-every-year-by-2050-if-nothing-is-done/ (accessed on 1 December 2025).
- Shaaban, H.; Mostafa, A. Simultaneous determination of antibiotics residues in edible fish muscle using eco-friendly SPE-UPLC-MS/MS: Occurrence, human dietary exposure and health risk assessment for consumer safety. Toxicol. Rep. 2023, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rinky, F.; Rahman, A.; Reza, S.; Nowar, A.; Alim, S.R. Residual antibiotics in milk samples: Assessing the risk and prevalence in Bangladesh. Heliyon 2024, 11, e41422. [Google Scholar] [CrossRef] [PubMed]
- WHO. Tackling Foodborne Antimicrobial Resistance Globally Through Integrated Surveillance. 2011. Available online: https://iris.who.int/server/api/core/bitstreams/9ab8affe-760a-4f4b-b166-52b0b9ace0ef/content (accessed on 10 September 2025).
- Guideline on Determination of Withdrawal Periods for Milk. Available online: https://www.scivp.lviv.ua/wp-content/uploads/2024/05/%D0%95MA_CVMP_SWP_735418_2012-Rev.1.pdf (accessed on 22 October 2025).
- Veloo, Y.; Thahir, S.S.A.; Zakaria, Z.; Rahman, S.A.; Mansor, R.; Rajendiran, S. A Scoping review unveiling antimicrobial resistance patterns in the environment of dairy farms across Asia. Asia Antibiot. 2025, 14, 436. [Google Scholar] [CrossRef]
- Shaaban, H. The ecological impact of liquid chromatographic methods reported for bioanalysis of COVID-19 drug, hydroxychloroquine: Insights on greenness assessment. Microchem. J. 2023, 184, 108145. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–analytical greenness metric for sample preparation. TrAC-Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Mansour, F.R.; Płotka-Wasylka, J.; Locatelli, M. Modified GAPI (MoGAPI) tool and software for the assessment of method greenness: Case studies and applications. Analytica 2024, 5, 451–457. [Google Scholar] [CrossRef]
- Mansour, F.R.; Bedair, A.; Belal, F.; Magdy, G.; Locatelli, M. Analytical Green Star Area (AGSA) as a new tool to assess greenness of analytical methods. Sustain. Chem. Pharm. 2025, 46, 102051. [Google Scholar] [CrossRef]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue applicability grade index (BAGI) and software: A new tool for the evaluation of method practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
- Mansour, F.R.; Bedair, A.; Locatelli, M. Click analytical chemistry index as a novel concept and framework, supported with open source software to assess analytical methods. Adv. Sample Prep. 2025, 14, 100164. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wojnowski, W.; Manousi, N.; Samanidou, V.; Płotka-Wasylka, J. Red analytical performance index (RAPI) and software: The missing tool for assessing methods in terms of analytical performance. Green Chem. 2025, 27, 5546–5553. [Google Scholar] [CrossRef]
- Fuente-Ballesteros, A.; Martínez-Martínez, V.; Ares, A.M.; Valverde, S.; Samanidou, V.; Bernal, J. Violet Innovation Grade Index (VIGI): A new survey-based metric for evaluating innovation in analytical methods. Anal. Chem. 2025, 97, 6946–6955. [Google Scholar] [CrossRef]
- Shaaban, H.; Górecki, T. Green ultra-fast high-performance liquid chromatographic method using a short narrow-bore column packed with fully porous sub-2 μm particles for the simultaneous determination of selected pharmaceuticals as surface water and wastewater pollutants. J. Sep. Sci. 2013, 36, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H. High speed hydrophilic interaction liquid chromatographic method for simultaneous determination of selected pharmaceuticals in wastewater using a cyano-bonded silica column. Liq. Chromatogr. Relat. Technol. 2018, 41, 180–187. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.X.; Li, Z.Y.; Zheng, Z.Y.; Xiang, Y.; Liu, Y.; Fang, J. Detection of fluoroquinolone and sulfonamide residues in poultry eggs in Kunming city, southwest China. Poult. Sci. J. 2022, 101, 101892. [Google Scholar] [CrossRef] [PubMed]
- Premarathne, J.M.K.J.K.; Satharasinghe, D.A.; Gunasena, A.R.C.; Munasinghe, D.M.S.; Abeynayake, P. Establishment of a method to detect sulfonamide residues in chicken meat and eggs by high-performance liquid chromatography. Food Control 2017, 72, 276–282. [Google Scholar] [CrossRef]
- de Brito, I.C.P.; da Silva Santos, H.L.; Santos, K.E.O.; de Albuquerque Fernandes, S.A. Modification and validation of miniaturized QuEChERS method for multi-residual determination of antibiotics in milk from a tropical region. Microchem. J. 2024, 207, 112025. [Google Scholar] [CrossRef]
- Huang, X.; Qiu, N.; Yuan, D. Simple and sensitive monitoring of sulfonamide veterinary residues in milk by stir bar sorptive extraction based on monolithic material and high performance liquid chromatography analysis. J. Chromatogr. A 2009, 1216, 8240–8245. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Gámiz-Gracia, L.; García-Campaña, A.M. Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection. Food Chem. 2014, 143, 459–464. [Google Scholar] [CrossRef]








| Analyte | Sulfamethoxazole | Sulfadimethoxine | Enrofloxacin | Sulfamethoxazole (Phenyl-13C6) | Ofloxacin-d3 |
|---|---|---|---|---|---|
| Retention Time (min) | 2.51 | 3.28 | 1.85 | 2.51 | 1.68 |
| Precursor ion m/z | 253.9 | 310.9 | 360 | 260 | 360 |
| Product ion 1 m/z | 92.1 | 156.2 | 316.2 | 114.3 | 316.2 |
| Collision energy (eV) | −27 | −21 | −19 | −26 | −19 |
| Pause Time (msec) | 3 | 3 | 3 | 3 | 3 |
| Dwell Time (msec) | 44 | 44 | 44 | 44 | 44 |
| Product ion 2 m/z | 156.1 | 92.1 | 342.2 | 162.2 | 342.2 |
| Collision energy (eV) | −15 | −32 | −22 | −16 | −22 |
| Q1 Pre Bias (V) | 12 | 12 | 10 | 13 | 10 |
| Q3 Pre Bias (V) | 16 | 17 | 23 | 11 | 23 |
| Sample | Chicken Egg (n = 20) | Cow Milk (n = 24) | ||||
|---|---|---|---|---|---|---|
| Analytes | Sulfamethoxazole | Sulfadimethoxine | Enrofloxacin | Sulfamethoxazole | Sulfadimethoxine | Enrofloxacin |
| Linearity range | 0.6–125 | 0.6–125 | 0.6–125 | 0.1–50 | 0.1–50 | 0.1–50 |
| Regression Equation | ||||||
| Slope | 5.34 × 10−2 | 17.6 × 10−2 | 5.57 × 10−2 | 5.06 × 10−1 | 18.3 × 10−1 | 7.38 × 10−1 |
| Intercept | 8.16 × 10−3 | 2.56 × 10−2 | 3.32 × 10−2 | 6.19 × 10−3 | 2.19 × 10−2 | 1.19 × 10−2 |
| Determination Coefficient (r2) | 0.9995 | 0.9997 | 0.9998 | 0.9983 | 0.9996 | 0.9982 |
| LOD | 0.13 | 0.07 | 0.06 | 0.02 | 0.01 | 0.01 |
| LOQ | 0.38 | 0.21 | 0.18 | 0.07 | 0.03 | 0.03 |
| Intra-day precision | R% ± RSD | R% ± RSD | ||||
| High level | 89.5 ± 4.80 | 89.8 ± 2.41 | 92.7± 5.08 | 90.9 ± 2.81 | 89.9 ± 3.69 | 93.9 ± 2.70 |
| Medium level | 98.5 ± 5.32 | 96.8 ± 2.61 | 90.7± 3.22 | 98.7 ± 5.65 | 95.6 ± 4.76 | 91.5 ± 2.24 |
| Low level | 90.7 ± 5.02 | 93.9 ± 4.70 | 94.8± 3.59 | 91.8 ± 2.79 | 98.4 ± 6.04 | 89.7 ± 4.06 |
| Inter-day precision | R% ± RSD | R% ± RSD | ||||
| High level | 92.9 ± 4.72 | 90.9 ± 3.71 | 93.5 ± 4.12 | 89.5 ± 3.09 | 90.34 ± 4.26 | 91.51 ± 2.55 |
| Medium level | 90.7 ± 5.59 | 97.3 ± 2.59 | 89.8 ± 4.27 | 92.24 ± 5.35 | 94.27 ± 6.01 | 90.9 ± 2.02 |
| Low level | 89.8 ± 5.07 | 91.4 ± 4.29 | 90.9 ± 2.97 | 95.32 ± 4.77 | 93.62 ±4.89 | 89.9 ± 3.75 |
| Analyte | Spiked Level (µg Kg−1) | Chicken Egg | Spiked Level (µg L−1) | Cow Milk | ||
|---|---|---|---|---|---|---|
| % R | RSD (%) | % R | RSD (%) | |||
| Sulfamethoxazole | 100 | 97.9 | 2.1 | 40 | 94.9 | 4.9 |
| 5 | 91.5 | 3.4 | 10 | 90.2 | 5.4 | |
| 1 | 90.5 | 5.3 | 0.5 | 97.3 | 4.7 | |
| Sulfadimethoxine | 100 | 95.9 | 4.6 | 40 | 89.8 | 3.2 |
| 5 | 90.1 | 5.2 | 10 | 91.5 | 2.8 | |
| 1 | 89.1 | 3.9 | 0.5 | 98.4 | 4.1 | |
| Enrofloxacin | 100 | 92.5 | 4.4 | 40 | 90.8 | 3.5 |
| 5 | 91.9 | 5.8 | 10 | 92.7 | 2.4 | |
| 1 | 93.2 | 3.2 | 0.5 | 99.1 | 4.9 | |
| Sample No. | Sample Type | Sulfamethoxazole | Sulfadimethoxine | Enrofloxacin |
|---|---|---|---|---|
| 1 | Chicken egg * (n = 20) | 6.12 | 0.32 | nd |
| 2 | 5.35 | 0.14 | nd | |
| 3 | 5.73 | nd | nd | |
| 4 | nd | nd | nd | |
| 5 | 6.97 | 10.53 | nd | |
| 6 | 11.16 | 12.65 | nd | |
| 7 | 9.07 | 11.59 | nd | |
| 8 | 5.74 | 4.42 | 13.46 | |
| 9 | 8.82 | 5.70 | 11.49 | |
| 10 | 5.74 | 5.74 | 12.48 | |
| 11 | 13.76 | 11.48 | nd | |
| 12 | 10.40 | 5.93 | nd | |
| 13 | 12.08 | 8.71 | nd | |
| 14 | 2.17 | 0.90 | 1.40 | |
| 15 | 3.25 | 2.17 | 5.48 | |
| 16 | nd | nd | nd | |
| 17 | 5.44 | 2.22 | 3.29 | |
| 18 | 3.27 | 0.85 | 10.25 | |
| 19 | 10.19 | 0.27 | 0.67 | |
| 20 | 4.29 | nd | 1.28 | |
| 21 | Cow milk ** (n = 24) | nd | nd | nd |
| 22 | nd | nd | nd | |
| 23 | nd | nd | nd | |
| 24 | nd | nd | nd | |
| 25 | nd | nd | nd | |
| 26 | 4.04 | 2.29 | 11.41 | |
| 27 | 3.51 | 1.48 | 17.99 | |
| 28 | 3.77 | 1.89 | 14.70 | |
| 29 | 0.37 | 0.57 | 4.65 | |
| 30 | nd | nd | nd | |
| 31 | nd | nd | nd | |
| 32 | 1.25 | nd | nd | |
| 33 | 1.62 | nd | 0.90 | |
| 34 | 1.43 | nd | 0.92 | |
| 35 | 0.26 | 0.53 | nd | |
| 36 | 1.87 | nd | 1.26 | |
| 37 | 1.38 | nd | 1.02 | |
| 38 | 1.62 | nd | 1.26 | |
| 39 | 1.60 | nd | 171.82 | |
| 40 | 14.41 | nd | nd | |
| 41 | 22.80 | nd | nd | |
| 42 | 26.67 | nd | nd | |
| 43 | 7.48 | nd | nd | |
| 44 | 6.90 | nd | nd |
| Applicability | |
| BAGI | CACI |
![]() | ![]() |
| Performance | Innovation |
| RAPI | VIGI |
![]() | ![]() |
| Matrix | Separation Technique | Extraction Method | Solvents and Reagents | Linearity Range | R2 | LOD | Recovery | RSD | Refs. |
|---|---|---|---|---|---|---|---|---|---|
| Egg | UPLC-MS/MS | Solvent extraction | Acetonitrile and formic acid | 10–2500 µg kg−1 | ≥0.990 | 2–10 µg kg−1 | 80.0–128.01% | ≤13.97% | [35] |
| Egg and chicken | HPLC-UV | water:ethyl acetate (1:3, v/v) liquid-liquid extraction. | Acetic acid, methanol and acetonitrile | 50–250 µg Kg−1 | ˃0.99 | 129–140 µg Kg−1 | 86–108% | ˂15% | [36] |
| Milk | HPLC-UV | QuEChERS | Acetic acid and acetonitrile | 12.5–200 µg L−1 | ≥0.995 | 0.2 µg L−1 | >90% | ≤12.79 | [37] |
| Milk | UPLC-UV | Stir bar sorptive extraction | 1-dodecanol, methanol and acetonitrile | 10–1000 µg L−1 | ˃0.996 | 1.30–7.90 µg L−1 | 54.8–126% | ≤10.9 | [38] |
| Milk | HPLC-Fluorescence | DLLME | Methanol, ethanol, acetonitrile, sodium chloride, dichloromethane, sodium hydroxide, acetic acid, chloroform and hydrochloric acid | 2.01–250 µg L−1 3.85–250 µg L−1 | ≥0.993 ≥0.992 | ˂1.21 µg L−1 ˂2.73 µg L−1 | 83.6–104.8% | ≤9.7% | [39] |
| QuEChERS | 90.8–104.7% | ≤9.2% | |||||||
| Milk & egg | UHPLC-MS/MS | NADES-DLLME | Ethanol, anisaldehyde and octanoic acid | 0.1–50 µg L−1 0.6–125 µg Kg−1 | ≥0.998 | 0.01–0.02 µg L−1 0.06–0.13 µg Kg−1 | 89.5–98.7% | ≤6.04% | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shaaban, H.; Mostafa, A.; Alqarni, A.M.; Alsalman, M.; Alkhalaf, M.A.; Alrofaidi, M.A.; Al Khzem, A.H.; Alturki, M.S. Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation. Foods 2026, 15, 258. https://doi.org/10.3390/foods15020258
Shaaban H, Mostafa A, Alqarni AM, Alsalman M, Alkhalaf MA, Alrofaidi MA, Al Khzem AH, Alturki MS. Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation. Foods. 2026; 15(2):258. https://doi.org/10.3390/foods15020258
Chicago/Turabian StyleShaaban, Heba, Ahmed Mostafa, Abdulmalik M. Alqarni, Marwah Alsalman, Makarem A. Alkhalaf, Mohammad A. Alrofaidi, Abdulaziz H. Al Khzem, and Mansour S. Alturki. 2026. "Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation" Foods 15, no. 2: 258. https://doi.org/10.3390/foods15020258
APA StyleShaaban, H., Mostafa, A., Alqarni, A. M., Alsalman, M., Alkhalaf, M. A., Alrofaidi, M. A., Al Khzem, A. H., & Alturki, M. S. (2026). Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation. Foods, 15(2), 258. https://doi.org/10.3390/foods15020258





