Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (741)

Search Parameters:
Keywords = sustainable dyeing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3935 KiB  
Article
Highly Efficient Tribocatalysis of Superhard SiC for Water Purification
by Yuanfang Wang, Zheng Wu, Siqi Hong, Ziqi Zhu, Siqi Wu, Biao Chen and Yanmin Jia
Nanomaterials 2025, 15(15), 1206; https://doi.org/10.3390/nano15151206 - 6 Aug 2025
Abstract
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm [...] Read more.
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm that the SiC particles effectively trigger the tribocatalytic decomposition of Rhodamine B (RhB). During the tribocatalytic decomposition of dye, mechanical friction is generated at the contact surface between the tribocatalyst and a custom-fabricated polytetrafluoroethylene (PTFE) rotating disk, under varying conditions of stirring speed, temperature, and pH value. Hydroxyl radicals and superoxide radicals are confirmed as the dominant reactive species participating in tribocatalytic dye decomposition, as demonstrated by reactive species inhibition experiments. Furthermore, the SiC particles demonstrate remarkable reusability, even after being subjected to five consecutive recycling processes. The exceptional tribocatalytic performance of SiC particles makes them potentially applicable in water purification by harnessing environmental friction energy. Full article
29 pages, 3455 KiB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

22 pages, 11423 KiB  
Article
Adornments from the Sea: Fish Skins, Heads, Bones, Vertebras, and Otoliths Used by Alaska Natives and Greenlandic Inuit
by Elisa Palomino
Wild 2025, 2(3), 30; https://doi.org/10.3390/wild2030030 - 4 Aug 2025
Viewed by 20
Abstract
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some [...] Read more.
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some or all of their own social, economic, cultural, and political institutions. In this paper, I use the terms “Indigenous” and “Native” interchangeably. In some countries, one of these terms may be favoured over the other.) and Greenlandic Inuit women. It aims to uncover how fish remnants—skins, bones, bladders, vertebrae, and otoliths—were transformed through tanning, dyeing, and sewing into garments, containers, tools, oils, glues, and adornments, reflecting sustainable systems of knowledge production rooted in Arctic Indigenous lifeways. Drawing on interdisciplinary methods combining Indigenist research, ethnographic records, and sustainability studies, the research contextualises these practices within broader environmental, spiritual, and social frameworks. The findings demonstrate that fish-based technologies were not merely utilitarian but also carried symbolic meanings, linking wearers to ancestral spirits, animal kin, and the marine environment. These traditions persisted even after European contact and the introduction of glass trade beads, reflecting continuity and cultural adaptability. The paper contributes to academic discourse on Indigenous innovation and environmental humanities by offering a culturally grounded model of zero-waste practice and reciprocal ecology. It argues that such ancestral technologies are directly relevant to contemporary sustainability debates in fashion and material design. By documenting these underexamined histories, the study provides valuable insight into Indigenous resilience and offers a critical framework for integrating Indigenous knowledge systems into current sustainability practices. Full article
Show Figures

Figure 1

24 pages, 5000 KiB  
Article
A Study of Methylene Blue Adsorption by a Synergistic Adsorbent Algae (Nostoc sphaericum)/Activated Clay
by Yakov Felipe Carhuarupay-Molleda, Noemí Melisa Ccasa Barboza, Sofía Pastor-Mina, Carlos Eduardo Dueñas Valcarcel, Ybar G. Palomino-Malpartida, Rolando Licapa Redolfo, Antonieta Mojo-Quisani, Miriam Calla-Florez, Rolando F. Aguilar-Salazar, Yovana Flores-Ccorisapra, Arturo Rojas Benites, Edward Arostegui León, David Choque-Quispe and Frida E. Fuentes Bernedo
Polymers 2025, 17(15), 2134; https://doi.org/10.3390/polym17152134 - 4 Aug 2025
Viewed by 116
Abstract
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was [...] Read more.
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was obtained by acid treatment, followed by activation with 1 M NaCl and sonication, while ANS was obtained by microatomization in an aqueous medium. NC/ANS was mixed in a 4:1 weight ratio. The NC/ANS synergistic adsorbent was characterized by the point of zero charge (PZC), zeta potential (ζ), particle size, FTIR spectroscopy, and scanning electron microscopy (SEM). NC/ANS exhibited good colloidal stability, as determined by pHPZC, particle size in the nanometer range, and heterogeneous morphology with functional groups (hydroxyl, carboxyl, and amide), removing between 72.59 and 97.98% from an initial concentration of 10 ppm of MB, for doses of 20 to 30 mg/L of NC/ANS and pH of 5 to 8. Optimal adsorption conditions are achieved at pH 6.8 and 32.9 mg/L of adsorbent NC/ANS. It was observed that the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models best described the adsorption kinetics, indicating a predominance of the physisorption process, with adsorption capacity around 20 mg/g. Isotherm models and thermodynamic parameters of adsorption, ΔS, ΔH, and ΔG, revealed that the adsorption process is spontaneous, favorable, thermodynamically stable, and occurs at the monolayer level, with a regeneration capacity of 90.35 to 37.54% at the fifth cycle. The application of physical activation methods, such as sonication of the clay and microatomization of the algae, allows proposing a novel and alternative synergistic material from organic and inorganic sources that is environmentally friendly and promotes sustainability, with a high capacity to remove cationic dyes in wastewater. Full article
Show Figures

Figure 1

11 pages, 919 KiB  
Article
Dye-Sensitized Solar Cells Application of TiO2 Using Spirulina and Chlorella Algae Extract
by Maria Vitória França Corrêa, Gideã Taques Tractz, Guilherme Arielo Rodrigues Maia, Hagata Emmanuely Slusarski Fonseca, Larissa Oliveira Berbel, Lucas José de Almeida and Everson do Prado Banczek
Colorants 2025, 4(3), 25; https://doi.org/10.3390/colorants4030025 - 4 Aug 2025
Viewed by 72
Abstract
The present study investigates dye-sensitized solar cells (DSSCs) incorporating natural extracts from the microalgae Spirulina and Chlorella as photosensitizers. TiO2-based electrodes were prepared and immersed in methanolic algae extracts for 24 and 48 h. UV–Vis spectroscopy revealed absorption peaks near 400 [...] Read more.
The present study investigates dye-sensitized solar cells (DSSCs) incorporating natural extracts from the microalgae Spirulina and Chlorella as photosensitizers. TiO2-based electrodes were prepared and immersed in methanolic algae extracts for 24 and 48 h. UV–Vis spectroscopy revealed absorption peaks near 400 nm and 650 nm, characteristic of chlorophyll. Electrochemical analyses, including photochronoamperometry and open-circuit potential, confirmed the photosensitivity and charge transfer capabilities of all systems. The cell sensitized with Chlorella after 48 h of immersion exhibited the highest energy conversion efficiency (0.0184% ± 0.0015), while Spirulina achieved 0.0105% ± 0.0349 after 24 h. Chlorella’s superior performance is attributed to its higher chlorophyll content and enhanced light absorption, facilitating more efficient electron injection and interaction with the TiO2 surface. Although the efficiency remains lower than that of conventional silicon-based solar cells, the results highlight the potential of natural colorants as sustainable and low-cost alternatives for photovoltaic applications. Nonetheless, further, improvements are required, particularly in dye stability and anchorage, to improve device performance. This research reinforces the viability of natural photosensitizers in DSSC technology and supports continued efforts to optimize their application. Full article
Show Figures

Figure 1

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 167
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

20 pages, 2027 KiB  
Article
Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal
by Dojin Kim, Dong Han Kim, Jeong Eun Cha, Saerom Park and Sang Hyun Lee
Gels 2025, 11(8), 596; https://doi.org/10.3390/gels11080596 - 1 Aug 2025
Viewed by 133
Abstract
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for [...] Read more.
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for metal-ion crosslinkers, which typically neutralize anionic sulfate groups in κ-carrageenan, thereby preserving a high density of accessible binding sites. The resulting beads formed robust interpenetrating polymer networks. The initial swelling ratio reached up to 28.3 g/g, and even after drying, the adsorption capacity remained over 50% of the original. The maximum adsorption capacity for crystal violet was 241 mg/g, increasing proportionally with κ-carrageenan content due to the higher surface concentration of anionic sulfate groups. Kinetic and isotherm analyses revealed pseudo-second-order and Langmuir-type monolayer adsorption, respectively, while thermodynamic parameters indicated that the process was spontaneous and exothermic. The beads retained structural integrity and adsorption performance across pH 3–9 and maintained over 90% of their capacity after five reuse cycles. These findings demonstrate that κ-carrageenan/cellulose hydrogel beads prepared via a metal-ion-free strategy offer a sustainable and effective platform for cationic dye removal from wastewater, with potential for heavy metal ion adsorption. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

36 pages, 9312 KiB  
Review
Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
by Carol D. Langa, Nonhlangabezo Mabuba and Nomso C. Hintsho-Mbita
Catalysts 2025, 15(8), 727; https://doi.org/10.3390/catal15080727 - 30 Jul 2025
Viewed by 284
Abstract
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted [...] Read more.
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted the potential of metal sulfide-based photocatalysts, particularly those synthesized through environmentally friendly, plant-mediated approaches, as promising alternatives for efficient and sustainable dye degradation. However, despite their promising potential, metal sulfide photocatalysts often suffer from limitations such as photocorrosion, low stability under irradiation, and rapid recombination of charge carriers, which restrict their long-term applicability. In light of these challenges, this review provides a comprehensive examination of the physicochemical characteristics, synthetic strategies, and photocatalytic applications of metal sulfides. Particular emphasis is placed on green synthesis routes employing plant-derived extracts, which offer environmentally benign and sustainable alternatives to conventional methods. Moreover, the review elucidates various modification approaches, most notably, the formation of heterostructures, as viable strategies to enhance photocatalytic efficiency and mitigate the aforementioned drawbacks. The green synthesis of metal sulfides, aligned with the principles of green chemistry, offers a promising route toward the development of sustainable and environmentally friendly water treatment technologies. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

24 pages, 5431 KiB  
Article
A Comparative Evaluation of Ulothrix sp. and Spirogyra sp. as Eco-Friendly Biosorbents for Methylene Blue Removal: Mechanistic Insights from Equilibrium, Kinetic, and Thermodynamic Analyses
by Meriem Dehbi, Hicham Zeghioud, Dalila Smail and Faouzia Dehbi
Processes 2025, 13(8), 2408; https://doi.org/10.3390/pr13082408 - 29 Jul 2025
Viewed by 452
Abstract
This study investigates two novel algal biosorbents (Ulothrix sp. and Spirogyra sp.) from Djelfa, Algeria, for methylene blue (MB) removal from aqueous solutions. A comprehensive characterization, including scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), Brunauer–Emmett–Teller (BET) analysis, porosity measurements, and Fourier-transform infrared [...] Read more.
This study investigates two novel algal biosorbents (Ulothrix sp. and Spirogyra sp.) from Djelfa, Algeria, for methylene blue (MB) removal from aqueous solutions. A comprehensive characterization, including scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), Brunauer–Emmett–Teller (BET) analysis, porosity measurements, and Fourier-transform infrared spectroscopy (FTIR), revealed distinct physicochemical properties. Ulothrix exhibited a surface area of 5.35 m2/g with an average pore diameter of 32.77 nm, whereas Spirogyra showed values of 3.47 m2/g and 20.97 nm for the surface area and average pore diameter, respectively. Despite their modest surface areas, both algae demonstrated effective adsorption capacities (6.94 mg/g for Spirogyra vs. 6.38 mg/g for Ulothrix), with optimal doses of 0.01 g and 0.08 g (for 50 mL of MB solution), respectively. Kinetic analysis confirmed pseudo-second-order adsorption (R2 > 0.97), indicating chemisorption dominance. Isotherm data best fit the Sips model (R2 = 0.94), suggesting heterogeneous monolayer formation. Thermodynamic studies revealed an endothermic (ΔH° > 0), spontaneous (ΔG° < 0), yet favorable adsorption process, highlighting the potential of these naturally abundant algae as sustainable biosorbents for dye wastewater treatment. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 3237 KiB  
Article
Development of a UV-LED Photoreactor for Colorant Degradation in Water
by Betsabé Ildefonso-Ojeda, Macaria Hernández-Chávez, José R. Contreras-Bárbara, Karen Roa-Tort, Josué D. Rivera-Fernández and Diego A. Fabila-Bustos
Crystals 2025, 15(8), 688; https://doi.org/10.3390/cryst15080688 - 29 Jul 2025
Viewed by 288
Abstract
This work analyzes the performance of a photoreactor built with UV-LED technology. For this task, a UV-LED wavelength of 365 nm was used as an irradiation source, and it was electrically and spectrally characterized to ensure correct operation. To evaluate the functionality, the [...] Read more.
This work analyzes the performance of a photoreactor built with UV-LED technology. For this task, a UV-LED wavelength of 365 nm was used as an irradiation source, and it was electrically and spectrally characterized to ensure correct operation. To evaluate the functionality, the photoreactor was tested on the degradation of Rhodamine B (Rh B), a dye commonly used in the textile industry. The experiment was conducted under optimal conditions, using a concentration of 17 ppm of Rh B and 100 mg of zinc oxide (ZnO) as a photocatalyst in a glass reactor. The mixture was continuously stirred for 120 min, achieving 99.42% efficiency. The results showed that the UV-LED photoreactor performs well in activating ZnO for the removal of Rh B from the solution, highlighting its potential for treating textile industry wastewater. The use of LEDs offers advantages such as energy efficiency and lower environmental impact compared to traditional UV lamps. ZnO, known for its reactivity under UV light, acted as a stable photocatalyst, ensuring complete degradation of the dye without producing harmful by-products. This method provides an efficient approach to dye removal in wastewater treatment, promoting cleaner and more sustainable industrial practices. Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

15 pages, 2095 KiB  
Article
T-Lymphocyte Phenotypic and Mitochondrial Parameters as Markers of Incomplete Immune Restoration in People Living with HIV+ on Long-Term cART
by Damian Vangelov, Radoslava Emilova, Yana Todorova, Nina Yancheva, Reneta Dimitrova, Lyubomira Grigorova, Ivailo Alexiev and Maria Nikolova
Biomedicines 2025, 13(8), 1839; https://doi.org/10.3390/biomedicines13081839 - 28 Jul 2025
Viewed by 452
Abstract
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of [...] Read more.
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of people living with HIV (PLHIV). To delineate biomarkers of incomplete immune restoration in PLHIV on successful ART, we evaluated T-lymphocyte mitochondrial parameters in relation to phenotypic markers of immune exhaustion and senescence. Methods: PLHIV with sustained viral suppression, CD4AC > 500 and CD4/CD8 ratio >0.9 on ART (n = 39) were compared to age-matched ART-naïve donors (n = 27) and HIV(–) healthy controls (HC, n = 35). CD4 and CD8 differentiation and effector subsets (CCR7/CD45RA and CD27/CD28), activation, exhaustion, and senescence markers (CD38, CD39 Treg, CD57, TIGIT, and PD-1) were determined by flow cytometry. Mitochondrial mass (MM) and membrane potential (MMP) of CD8 and CD4 T cells were evaluated with MitoTracker Green and Red flow cytometry dyes. Results: ART+PLHIV differed from HC by increased CD4 TEMRA (5.3 (2.1–8.8) vs. 3.2 (1.6–4.4), p < 0.05), persistent TIGIT+CD57–CD27+CD28– CD8+ subset (53.9 (45.5–68.9) vs. 40.1 (26.7–58.5), p < 0.05), and expanding preapoptotic TIGIT–CD57+CD8+ effectors (9.2 (4.3–21.8) vs. 3.0 (1.5–7.3), p < 0.01) in correlation with increased CD8+ MMP (2527 (1675–4080) vs.1477 (1280–1691), p < 0.01). These aberrations were independent of age, time to ART, or ART duration, and were combined with increasing CD4 T cell MMP and MM. Conclusions: In spite of recovered CD4AC and CD4/CD8 ratio, the increased CD8+ MMP, combined with elevated markers of exhaustion and senescence in ART+PLHIV, signals a malfunction of the CD8 effector pool that may compromise viral reservoir latency. Full article
(This article belongs to the Special Issue Emerging Insights into HIV)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 275
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

13 pages, 1428 KiB  
Article
Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies
by Mei Xiong, Daolei Cui, Yiping Cheng, Ziya Ma, Chengxin Liu, Chang’an Yan, Lizhen Li and Ping Xiang
Toxics 2025, 13(8), 622; https://doi.org/10.3390/toxics13080622 - 25 Jul 2025
Viewed by 358
Abstract
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk [...] Read more.
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk assessment models to evaluate dermal exposure risks. Results reveal that 80% of samples exceeded OEKO-TEX Class I limits for As (mean 1.01 mg/kg), Cd (max 0.25 mg/kg), and Cr (max 4.32 mg/kg), with infant clothing showing unacceptable hazard indices (HI = 1.13) due to Cd (HQ = 1.12). Artificial sweat extraction demonstrated high bioaccessibility for Cr (37.8%) and Ni (28.5%), while keratinocyte exposure triggered oxidative stress (131% ROS increase) and dose-dependent cytotoxicity (22–59% viability reduction). Dark-colored synthetic fabrics exhibited elevated metal loads, linking industrial dye practices to health hazards. These findings underscore systemic gaps in textile safety regulations, particularly for low- and middle-income countries reliant on cost-effective apparel. We propose three policy levers: (1) tightening infant textile standards for Cd/Cr, (2) incentivizing non-toxic dye technologies, and (3) harmonizing global labeling requirements. By bridging toxicological evidence with circular economy principles, this work advances strategies to mitigate heavy metal exposure while supporting Sustainable Development Goals (SDGs) 3 (health), 12 (responsible consumption), and 12.4 (chemical safety). Full article
Show Figures

Figure 1

31 pages, 2080 KiB  
Review
Isatis tinctoria L.—From Botanical Description to Seed-Extracted Compounds and Their Applications: An Overview
by Justine Dupré, Nicolas Joly, Romain Vauquelin, Vincent Lequart, Élodie Choque, Nathalie Jullian and Patrick Martin
Plants 2025, 14(15), 2304; https://doi.org/10.3390/plants14152304 - 25 Jul 2025
Viewed by 462
Abstract
Isatis tinctoria L. (Brassicaceae), also known as woad or dyer’s woad, is an ancient plant with a rosy future ahead. Most of the knowledge about woad is related to indigo dye production and its medicinal applications, especially its leaves. The general interest in [...] Read more.
Isatis tinctoria L. (Brassicaceae), also known as woad or dyer’s woad, is an ancient plant with a rosy future ahead. Most of the knowledge about woad is related to indigo dye production and its medicinal applications, especially its leaves. The general interest in woad has decreased with the rise of petroleum-based products. However, nowadays this plant is attracting interest again with industries reintroducing natural dyes. To meet the market demand in a sustainable manner, recent studies have focused specifically on woad seeds, leading to a valorization of the whole woad plant. This review provides an overview of the botanical, phytochemical composition, and properties of woad seeds, primarily supporting their cosmetic and pharmaceutical potential. From a chemical point of view, woad seeds mainly contain fatty acids, amino acids, phytosterols and glucosinolates. These compounds have been investigated through their extraction and analytical methods, as well as their properties and industrial applications. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Figure 1

25 pages, 2545 KiB  
Article
Kinetic, Isotherm, and Thermodynamic Modeling of Methylene Blue Adsorption Using Natural Rice Husk: A Sustainable Approach
by Yu-Ting Huang and Ming-Cheng Shih
Separations 2025, 12(8), 189; https://doi.org/10.3390/separations12080189 - 22 Jul 2025
Viewed by 299
Abstract
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable [...] Read more.
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable and low-cost adsorbent for the removal of methylene blue (MB) from synthetic wastewater. This approach effectively avoids the energy-intensive grinding process by directly using whole unprocessed rice husk, highlighting its potential as a sustainable and cost-effective alternative to activated carbon. A series of batch adsorption experiments were conducted to evaluate the effects of key operating parameters such as initial dye concentration, contact time, pH, ionic strength, and temperature on the adsorption performance. Adsorption kinetics, isotherm models, and thermodynamic analysis were applied to elucidate the adsorption mechanism and behavior. The results showed that the maximum adsorption capacity of CRH for MB was 5.72 mg/g. The adsorption capacity was stable and efficient between pH 4 and 10, and reached the highest value at pH 12. The presence of sodium ions (Na+) and calcium ions (Ca2+) inhibited the adsorption efficiency, with calcium ions having a more significant effect. Kinetic analysis confirmed that the adsorption process mainly followed a pseudo-second-order model, suggesting the involvement of a chemisorption mechanism; notably, in the presence of ions, the Elovich model provided better predictions of the data. Thermodynamic evaluation showed that the adsorption was endothermic (ΔH° > 0) and spontaneous (ΔG° < 0), accompanied by an increase in the disorder of the solid–liquid interface (ΔS° > 0). The calculated activation energy (Ea) was 17.42 kJ/mol, further supporting the involvement of chemisorption. The equilibrium adsorption data were well matched to the Langmuir model at high concentrations (monolayer adsorption), while they were accurately described by the Freundlich model at lower concentrations (surface heterogeneity). The dimensionless separation factor (RL) confirmed that the adsorption process was favorable at all initial MB concentrations. The results of this study provide insights into the application of agricultural waste in environmental remediation and highlight the potential of untreated whole rice husk as a sustainable and economically viable alternative to activated carbon, which can help promote resource recovery and pollution control. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

Back to TopTop