Development of a UV-LED Photoreactor for Colorant Degradation in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Keyword Co-Occurrence Analysis
2.2. Photoreactor
2.3. Photoreactor Characterization
2.4. Evaluation of System with Rhodamine B
3. Results and Discussion
3.1. Co-Occurrence Map
3.2. System Characterization
3.3. Photodegradation of Rhodamine B
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOPs | Advanced oxidation processes |
ROS | Reactive oxygen species |
Rh B | Rhodamine B |
SDGs | Sustainable Development Goals |
LEDs | Light-emitting diodes |
LED | Light-emitting diode |
UV | Ultraviolet |
TOC | Total organic carbon |
DOC | Dissolved organic carbon |
LC-MS | Liquid chromatography-mass spectrometry |
References
- Comisión Nacional del Agua. Estadísticas del Agua en México 2021. 2021. Available online: https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/EAM%202021.pdf (accessed on 7 April 2025).
- Comisión Nacional del Agua. Usos del Agua. 2020. Available online: https://sinav30.conagua.gob.mx:8080/UsosAgua/#/industrial (accessed on 7 April 2025).
- Diario Oficial de la Federación. NORMA Oficial Mexicana NOM-001-SEMARNAT-2021, Que es. 2021. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022 (accessed on 15 April 2025).
- Espinosa, W.A. Evaluación y Comparación de la Capacidad Floculante de Taninos Modificados (Quebracho, Acacia, Castaño) y su Aplicación en el Tratamiento de Aguas Residuales. Master’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2016. [Google Scholar]
- González-Crisostomo, J.C.; López-Juárez, R.; Petranovskii, V. Photocatalytic degradation of rhodamine B dye in aqueous suspension by ZnO and M-ZnO (M = La3+, Ce3+, Pr3+ and Nd3+) nanoparticles in the presence of UV/H2O2. Processes 2021, 9, 1736. [Google Scholar] [CrossRef]
- Gil, C.G. Objetivos de Desarrollo Sostenible (ODS): Una revisión crítica. Papeles Relac. Ecosociales Cambio Glob. 2018, 140, 107–118. [Google Scholar]
- Condorchem Enviro Solutions. Eliminación del Color en Efluentes de la Industria Textil. Available online: https://condorchem.com/es/blog/tratamiento-para-la-eliminacion-del-color-en-aguas-residuales-de-la-industria-textil/ (accessed on 26 November 2013).
- Zhao, J.; Ren, G.; Li, Z.; Meng, X. Design and experimental analysis of a novel slant-plate photoreactor. AIChE J. Am. Inst. Chem. Eng. 2023, 69, e17883. [Google Scholar] [CrossRef]
- Yuan, S.; Gou, N.; Alshawabkeh, A.N.; Gu, A.Z. Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere 2013, 93, 2796–2804. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Reji Kumar, R.; Kalidasan, B.; Laghari, I.A.; Samykano, M.; Kothari, R.; Abusorrah, A.M.; Sharma, K.; Tyagi, V.V. Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. J. Environ. Manag. 2021, 297, 113300. [Google Scholar] [CrossRef]
- Nandi, P.; Das, D. hotocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. Appl. Surf. Sci. 2018, 465, 546–556. [Google Scholar] [CrossRef]
- Rahman, Q.I.; Ahmad, M.; Misra, S.K.; Lohani, M. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 2012, 91, 170–174. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 2014, 5, 3306–3351. [Google Scholar] [CrossRef]
- Molinari, R. Photoreactor. In En Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. [Google Scholar]
- Riddell, A.; Kvist, P.; Bernin, D. A 3D printed photoreactor for investigating variable reaction geometry, wavelength, and fluid flow. Rev. Sci. Instrum. 2022, 93, 084103. [Google Scholar] [CrossRef]
- Tahir, B.; Tahir, M.; Amin, N.S. Performance analysis of monolith photoreactor for CO2 reduction with H2. Energy Convers. Manag. 2015, 90, 272–281. [Google Scholar] [CrossRef]
- Granda, F.; Mejía, G.H. Sistemas fotocatalíticos para el tratamiento de VOCs en corrientes gaseosas: Aspectos básicos y aplicaciones. Vector Manizales 2015, 10, 122. [Google Scholar]
- Siwe, H.; Aerssens, A.; Flour, M.V.; Ternest, S.; Van Simaey, L.; Verstraeten, D.; Kalmar, A.F.; Leroux-Roels, I.; Meuleman, P.; Cools, P. Microbiological evaluation of ultraviolet C light-emitting diodes for disinfection of medical instruments. Heliyon 2024, 10, e37281. [Google Scholar] [CrossRef]
- Cassar, J.R.; Ouyang, B.; Krishnamurthy, K.; Demirci, A. Microbial Decontamination of Food by Light-Based Technologies: Ultraviolet (UV) Light, Pulsed UV Light (PUV), and UV Light-Emitting Diodes (UV-LED); Food Engineering Series; Springer: Berlin/Heidelberg, Germany, 2020; pp. 493–521. [Google Scholar] [CrossRef]
- Song, K.; Mohseni, M.; Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Eskandarian, M.R.; Choi, H.; Fazli, M.; Rasoulifard, M.H. Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chem. Eng. J. 2016, 300, 414–422. [Google Scholar] [CrossRef]
- Corzo Lucioni, A. Estudio cinético de la degradación fotocatalítica oxidativa de rodamina B con ZnO y luz solar. Rev. Soc. Química Perú 2011, 77, 267–274. [Google Scholar]
- Piras, A.; Olla, C.; Reekmans, G.; Kelchtermans, A.; De Sloovere, D.; Elen, K.; Carbonaro, C.M.; Fusaro, L.; Adriaensens, P.; Hardy, A.; et al. Photocatalytic Performance of Undoped and Al-Doped ZnO Nanoparticles in the Degradation of Rhodamine B under UV-Visible Light:The Role of Defects and Morphology. Int. J. Mol. Sci. 2022, 23, 15459. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, R.; Kottam, N.; Girija, C.; Nagabhushana, B. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2011, 215–216, 91–97. [Google Scholar] [CrossRef]
- Zhuang, X.; Huang, X.; Li, H.; Lin, T.; Gao, Y. A new heterometallic Silver/Cadmium thiocyanate directed by benzyl viologen possessing photocurrent response and photocatalytic degradation on rhodamine B in artificial seawater. Crystals 2024, 14, 944. [Google Scholar] [CrossRef]
- Armaković, S.J.; Savanović, M.M.; Armaković, S. Spray-Deposited TiO2 layers on aluminum foil for sustainable water remediation. Crystals 2024, 14, 875. [Google Scholar] [CrossRef]
- Ren, X.; Du, Y.; Qu, X.; Li, Y.; Yin, L.; Shen, K.; Zhang, J.; Liu, Y. Controllable Synthesis of ZnO Nanoparticles with Improved Photocatalytic Performance for the Degradation of Rhodamine B under Ultraviolet Light Irradiation. Molecules 2023, 28, 5135. [Google Scholar] [CrossRef]
- Lim, H.; Yusuf, M.; Song, S.; Park, S.; Park, K.H. Efficient photocatalytic degradation of dyes using photo-deposited Ag nanoparticles on ZnO structures: Simple morphological control of ZnO. RSC Adv. 2021, 11, 8709–8717. [Google Scholar] [CrossRef] [PubMed]
- Altaf, C.T.; Colak, T.O.; Rostas, A.M.; Popa, A.; Toloman, D.; Suciu, M.; Sankir, N.D.; Sankir, M. Impact on the photocatalytic dye degradation of morphology and Annealing-Induced defects in zinc oxide nanostructures. ACS Omega 2023, 8, 14952–14964. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Z.; Yang, C.; Fan, H.; Wang, J.; Tian, Z.; Zhang, H. Critical role of water on the surface of ZnO in H2S removal at room temperature. Ind. Eng. Chem. Res. 2018, 57. [Google Scholar] [CrossRef]
- Moumen, A.; Belhocine, Y.; Sbei, N.; Rahali, S.; Ali, F.A.M.; Mechati, F.; Hamdaoui, F.; Seydou, M. Removal of malachite green dye from aqueous solution by catalytic wet oxidation technique using Ni/kaolin as catalyst. Molecules 2022, 27, 7528. [Google Scholar] [CrossRef]
- Kumar, R.S. Study of UV assisted photocatalytic degradation of organic dye. Mater. Today Proc. 2022, 66, 3244–3249. [Google Scholar] [CrossRef]
- Ji, R.; Zhao, Z.; Yu, X.; Chen, M. Determination of rhodamine B in capsicol using the first derivative absorption spectrum. Optik 2019, 181, 796–801. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, J.-N. Photodegradation of Rhodamine B catalyzed by TiO2 thin films. J. Photochem. Photobiol. A Chem. 1998, 116, 167–170. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, D.; Jeong, S.; Do, H.T.; Kim, J.H. Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega 2020, 5, 4233–4241. [Google Scholar] [CrossRef]
- Thapa, R.; Ghosh, S.; Sinthika, S.; Mathan Kumar, E.; Park, N. Magnetic, elastic and optical properties of zinc peroxide (ZnO2): First principles study. J. Alloys Compd. 2015, 620, 156–163. [Google Scholar] [CrossRef]
- Sowri Babu, K.; Ramachandra Reddy, A.; Sujatha, C.; Venugopal Reddy, K. Optimization of UV emission intensity of ZnO nanoparticles by changing the excitation wavelength. Mater. Lett. 2013, 99, 97–100. [Google Scholar] [CrossRef]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int. Sch. Res. Not. 2012, 9, 7–12. [Google Scholar] [CrossRef]
- de Araujo Scharnberg, A.R.; de Loreto, A.C.; Wermuth, T.B.; Alves, A.K.; Arcaro, S.; Santos, P.A.M.d.; Rodriguez, A.d.A.L. Porous ceramic supported TiO2 nanoparticles: Enhanced photocatalytic activity for Rhodamine B degradation. Bol. Soc. Esp. Ceram. Vidr. 2020, 59, 230–238. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Thomas, M.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem. Eng. J. 2011, 169, 126–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Li, Z.; Feng, Q. Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation. J. Mater. Sci. 2018, 53, 3149–3162. [Google Scholar] [CrossRef]
- Kaldante, Y.D.; Chaskar, M.G. Optimized photocatalytic parameters for the degradation of Rhodamine-B dye with ZnO under artificial light illumination. Int. J. Res. Anal. Rev. (IJRAR) 2019, 6. [Google Scholar]
- Kedruk, Y.Y.; Baigarinova, G.A.; Gritsenko, L.V.; Cicero, G.; Abdullin, K.A. Facile Low-Cost synthesis of highly photocatalitycally active zinc oxide powders. Front. Mater. 2022, 9, 869493. [Google Scholar] [CrossRef]
- De Souza, D.A.; De Almeida Da Silva, P.H.; Da Silva, F.P.; Romaguera-Barcelay, Y.; Ferreira, R.D.; Araujo, E.A.; Junior De Lima Nascimento, J.F.; Da Costa, F.F.; Takeno, L.L.; Ruiz, Y.L.; et al. Easy and Fast Obtention of ZnO by Thermal Decomposition of Zinc Acetate and Its Photocatalytic Properties over Rhodamine B Dye. Colorants 2024, 3, 229–252. [Google Scholar] [CrossRef]
- Ramanathan, S.; Selvin, S.P.; Obadiah, A.; Durairaj, A.; Santhoshkumar, P.; Lydia, S.; Ramasundaram, S.; Vasanthkumar, S. Synthesis of reduced graphene oxide/ZnO nanocomposites using grape fruit extract and Eichhornia crassipes leaf extract and a comparative study of their photocatalytic property in degrading Rhodamine B dye. J. Environ. Health Sci. Eng. 2019, 17, 195–207. [Google Scholar] [CrossRef]
- Roibu, A.; Morthala, R.B.; Leblebici, M.E.; Koziej, D.; Van Gerven, T.; Kuhn, S. Design and characterization of visible-light LED sources for microstructured photoreactors. React. Chem. Eng. 2018, 3, 849–865. [Google Scholar] [CrossRef]
- Levine, L.H.; Richards, J.T.; Coutts, J.L.; Soler, R.; Maxik, F.; Wheeler, R.M. Feasibility of Ultraviolet-Light-Emitting diodes as an alternative light source for photocatalysis. J. Air Waste Manag. Assoc. 2011, 61, 932–940. [Google Scholar] [CrossRef]
- Aubineau, T.; Laurent, J.; Olanier, L.; Guérinot, A. Design, Characterization and Evaluation of a lab-made photoreactor: A first step towards standardized procedures in photocatalysis. Chem.—Methods 2023, 3, e202300002. [Google Scholar] [CrossRef]
- Casado, C.; Timmers, R.; Sergejevs, A.; Clarke, C.; Allsopp, D.; Bowen, C.; Van Grieken, R.; Marugán, J. Design and validation of a LED-based high intensity photocatalytic reactor for quantifying activity measurements. Chem. Eng. J. 2017, 327, 1043–1055. [Google Scholar] [CrossRef]
- Tugaoen, H.O.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci. Total Environ. 2017, 613–614, 1331–1338. [Google Scholar] [CrossRef]
Catalyst | Light Source | Experimental Conditions | RhB Degradation (%) | Reference |
---|---|---|---|---|
T700-ZnO (calcined at 700 °C) | UV light | 10 mg/L RhB, 120 min | 99.12% | [27] |
Ag–ZnOsf (flower-like ZnO + Ag) | UV + SPR Ag | 35 min | RhB: 94.2% (ZnO sf), 99.7% (Ag–ZnOsf) | [28] |
ZnO NS (nanosheets, 800 °C annealed) | UV light | 120 min | 98% | [29] |
System | k (min−1) | R2 |
---|---|---|
ZnO + UV | 23.8 | 0.89 |
ZnO + UV + Air | 27.8 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ildefonso-Ojeda, B.; Hernández-Chávez, M.; Contreras-Bárbara, J.R.; Roa-Tort, K.; Rivera-Fernández, J.D.; Fabila-Bustos, D.A. Development of a UV-LED Photoreactor for Colorant Degradation in Water. Crystals 2025, 15, 688. https://doi.org/10.3390/cryst15080688
Ildefonso-Ojeda B, Hernández-Chávez M, Contreras-Bárbara JR, Roa-Tort K, Rivera-Fernández JD, Fabila-Bustos DA. Development of a UV-LED Photoreactor for Colorant Degradation in Water. Crystals. 2025; 15(8):688. https://doi.org/10.3390/cryst15080688
Chicago/Turabian StyleIldefonso-Ojeda, Betsabé, Macaria Hernández-Chávez, José R. Contreras-Bárbara, Karen Roa-Tort, Josué D. Rivera-Fernández, and Diego A. Fabila-Bustos. 2025. "Development of a UV-LED Photoreactor for Colorant Degradation in Water" Crystals 15, no. 8: 688. https://doi.org/10.3390/cryst15080688
APA StyleIldefonso-Ojeda, B., Hernández-Chávez, M., Contreras-Bárbara, J. R., Roa-Tort, K., Rivera-Fernández, J. D., & Fabila-Bustos, D. A. (2025). Development of a UV-LED Photoreactor for Colorant Degradation in Water. Crystals, 15(8), 688. https://doi.org/10.3390/cryst15080688