Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
Abstract
1. Introduction
Treatment Method | Advantage(s) | Limitation(s) | Ref. and Year |
---|---|---|---|
Coagulation/flocculation | Inexpensive | Produces secondary waste | [14], 2005 |
Adsorption | Effective for organic contaminants, easy to implement | Adsorbent incurs frequent replacement or regeneration costs | [15], 2021 |
Trickling Filters | Effective technology for recovering and recycling precious metals | Costly equipment | [16], 2021 |
Electrocoagulation | Low energy consumption, simple operation | Requires large area, can become clogged, less effective for high-strength waste | [17], 2022 |
Membrane technology | Requires no chemicals | Rapid membrane fouling | [18], 2010 |
Advanced oxidation processes | Highly effective for recalcitrant organic pollutants, no sludge formation, can remove emerging contaminants | Laboratory scale | [19], 2012 |
2. Properties of Metal Sulfide Photocatalysts
3. Synthesis of Metal Sulfides
4. Green Synthesis of Metal Sulfides
Synthesis of Metal Sulfides Using Plants
Plant(s) | Metal Sulfide | Particle Size | Morphology | Crystal Structure | Ref. and Year |
---|---|---|---|---|---|
Azadirachta indica, Syzygium cumini, and Cascabela thevetia | CuS | Spherical | Hexagonal | [83], 2010 | |
Targetes patula, Azadiracta indica, and Terminallia arjuna | CuS | 11 nm | Covellite | [81], 2017 | |
S. frutescene | CdS | Spherical | Hexagonal | [84], 2021 | |
Calotropis gigantea | CuS | 15–25 nm | Polydisperse | Hexagonal | [85], 2010 |
Ocimum tenuiflorum | CuS | ~10 nm | Spherical | Hexagonal | [86], 2011 |
Urtica dioica | CuS | 6 nm | Flake-like | Cubic | [87], 2014 |
Phoenix dactylifera and Urtica dioica | FeS | 68 nm 18–62 nm | Spherical | Mackinawite hexagonal | [93], 1998 |
Uncaria tomentosa | FeS | 5 to 80 nm | Spherical | - | [96], 2014 |
Banana peel | NiS | 9nm | Quasi-spherical | Hexagonal | [94], 2019 |
Banana peel | FeS | - | Grain-like | Tetragonal | [95], 2007 |
Hordeum vulgare | FeS | 10–500 nm | Spherical | Monoclinic | [92], 2018 |
Artemisia herba-alba | FeS | 40 nm | Spherical | - | [97], 2016 |
Aloe vera | CuS | - | - | Covellite | [98], 2016 |
Acalypha indica | ZnS | 5–20 nm | Spherical | Hexagonal | [99], 2010 |
Stevia rebaudiana | ZnS | 8.5 nm | Spherical | Cubic | [100], 2016 |
Jatropha latex | ZnS | 10 nm | Spherical | Cubic | [101], 2012 |
Aloe vera | PbS | 35–200 nm | Polygonal | Cubic | [102], 2015 |
Calotropis gigantean | CdS | 20 nm | Spherical | Cubic | [103], 2011 |
Asparagus racemosus | CdS | 2–8 nm | Spherical | Cubic | [104], 2009 |
Phyllanthus niruri | ZnS | 2 μm | Hexagonal | Wurzite | [105], 2016 |
Rosemary | Ag2S | 5–40 nm | Spherical | Cubic | [106], 2013 |
Diospyros kaki | Ag2S | 82–128 nm | Long nanocluster | Monoclinic | [107], 2020 |
Cantharanthus roesus | ZnS | 32 nm | Cylindrical | Cubic | [108], 2016 |
Vegetable oil | Sb2S3 | 8.09–8.27 nm | Nanorods | Orthorhombic stibinite | [109], 2012 |
Tridaxprocumbens | ZnS | ~40 nm | Radial hexagonal, spherical, rod | Hexagonal wurtzite | [110], 2012 |
Phyllanthus emblica | ZnS | >100 nm | Spherical | Cubic | [111], 2014 |
Banana peel | ZnS | 9.09–12.50 nm | Nanoflakes and flowers | Wurtzite and cubic | [112], 2009 |
Orange fruit peel | ZnS | 3 nm | Spherical | Cubic | [113], 2010 |
Aloe vera | CdS | - | Spherical | Cubic | [114], 1908 |
Annona muricata | CdS | 4 nm | Spherical | Cubic | [115], 2014 |
Banana peel | CdS | 1.48 nm | Wire-like | - | [116], 2015 |
Watermelon | CdS | 80–90 nm | Spherical | Hexagonal | [117], 2014 |
Pistacia atlantica | Ag2S | 12–14 nm | Spherical | Monoclinic | [118], 2012 |
Cochlospermum gossypium | Ag2S | 25 nm | Spherical | Monoclinic | [119], 2012 |
5. Photocatalytic Degradation of Dyes Using Metal Sulfides Synthesized Using Plants
Plant Species | Catalyst | Dye | Type of Light/Light Source | Bandgap (eV) | DosageConcentration | IrradiationTime | % Degradation | Ref. and Year |
---|---|---|---|---|---|---|---|---|
S. frutescence | CdS | MG | UV, 300 W | 3.55 Ev | 50 mg 10 mg/L | 60 | 91 | [84], 2021 |
Colotropis gigantea tea | CuS | SO | Sunlight | - | 10–50 mg/L | 60 | 81 | [85], 2010 |
Colotropis gigantea leaf | CdS | MB EY | Sunlight | 2.42 eV | 60 | 100 | [103], 2011 | |
Cochlospernum gossypium | Ag2S | FL | Solar light | [119], 2012 | ||||
Ficus johanis | ZnS | Mercury lamp | 290–320 nm 3.84 | 10 mg/L | 100 | [130], 2011 | ||
Xanthan gum | CuS | MB RB EY CR | Sunlight | 30 mg | 240 | 90 69 29 60 | [121], 2023 | |
Kalanchoe | CuS | Yellow 3G | 300 W xenon lamp | 0.2 g/L | 120 | 77 | [122], 2016 | |
Calotropis gigantea | CuS | S O | Sunlight | 2.76 | 0.05 g/L | 60 | 81 | [123], 2023 |
Celosia aregentea flower | Bi2S3 | MB MO RhB EB | UV | 3.17 | 10 mg 5 ppm | 180 | 90 7 19 75 | [121], 2023 |
Dicliptera roxburghiana | CdS | MB | Sunlight | 3.31 | 5 mg 10 ppm | 120 | 87 | [125], 2024 |
Sutherlandia frutescens | ZnS | MG | 300 W UV lamp | 3.6 | 25–100 mg 10 ppm | 60 | 90 | [126], 2021 |
Artemisia herba alba | ZnS | MB | Sunlight | 3.70 | 20 mg 10 ppm | 180 | 94 | [127], 2022 |
Mimosa | CuFeS2 | MB | Visible | 90 | 98 | [128], 2020 | ||
Crocus sativus L. | CdS | RhB | UV light | 2.4 Ev | 0.03 mg 3 ppm | 80 | 92 | [129], 2022 |
6. The Limitations of and Future Perspectives for Using Green Metal Sulfides as Photocatalysts for Dye Degradation
7. Heterostructures of Green Metal Sulfides as Photocatalysts for Degradation of Dyes
Plant Species | Catalyst | Pollutant | Light Source | Dosage | IrradiationTime | % Degradation | Ref. and Year |
---|---|---|---|---|---|---|---|
Mimosa pudica | CuFeS2 | MB | Sunlight | 30 mg | 90 | 98 | [153], 2020 |
Kalanchoe | CuS@Fe3O4 | Yellow 3G | 300 W xenon lamp | 0.2 g/L | 120 | 92.35 | [123], 2023 |
Azadrichta indica | NiS@ Biochar | Tinidazole | Sunlight | 0.011 g | 110 | 89.14 | [154], 2024 |
Eichhornia crassipes | CQDs/CuS | Brilliant green | Tungsten lamp of 200 W | 0.09 g | 100 | 96.3 | [152], 2022 |
M. oleifera | CuS/Ni CuS/Co | Metanil yellow | - | 6 mg | 105 | 91.8 93.9 | [155], 2023 |
Calotropis procera | FeS/NiS | SO MB | 300 W Xe lamp | 30 mg 10 ppm | 100 | 77 81 | [34], 2021 |
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, P.S.; Joshiba, G.J.; Femina, C.C.; Varshini, P.; Priyadharshini, S.; Karthick, M.A.; Jothirani, R. A Critical Review on Recent Developments in the Low-Cost Adsorption of Dyes from Wastewater. Desalin. Water Treat. 2019, 172, 395–416. [Google Scholar] [CrossRef]
- Batalhão, A.C.; Bouloumytis, V.; Zuffo, A.C.; Pimentel da Silva, L. Integrated Water Resources Management and Urban Sustainability. In The Route Towards Global Sustainability: Challenges and Management Practices; Springer International Publishing: Cham, Switzerland, 2023; pp. 289–312. [Google Scholar]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A Critical Review on Advances in the Practices and Perspectives for the Treatment of Dye Industry Wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef]
- Ogugbue, C.J.; Sawidis, T. Optimisation of Process Parameters for Bioreduction of Azo Dyes Using Bacillus firmus under Batch Anaerobic Condition. Int. J. Environ. Stud. 2011, 68, 651–665. [Google Scholar] [CrossRef]
- Rajkumar, D.; Kim, J.G. Oxidation of Various Reactive Dyes with In Situ Electro-Generated Active Chlorine for Textile Dyeing Industry Wastewater Treatment. J. Hazard. Mater. 2006, 136, 203–212. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, R.G.; Saratale, L.F.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Henze, M.; Harremoes, P.; Jansen, J.L.; Arvin, E. Wastewater Treatment: Biological and Chemical Process; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Zwiener, C.; Frimmel, F.H. Short-Term Tests with a Pilot Sewage Plant and Biofilm Reactors for the Biological Degradation of the Pharmaceutical Compounds Clofibric Acid, Ibuprofen, and Diclofenac. Sci. Total Environ. 2003, 309, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, O.F.S.; Palaniandy, P. Photocatalytic Degradation of Pharmaceuticals Using TiO-Based Nanocomposite Catalyst—Review. Civ. Environ. Eng. Rep. 2019, 29, 1–33. [Google Scholar]
- Rai, P.K. Heavy Metal Pollution in Aquatic Ecosystems and Its Phytoremediation Using Wetland Plants: An Ecosustainable Approach. Int. J. Phytoremediation 2008, 10, 133–160. [Google Scholar] [CrossRef]
- Tsalas, N.; Golfinopoulos, S.K.; Samios, S.; Katsouras, G.; Peroulis, K. Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview. Energies 2024, 17, 2808. [Google Scholar] [CrossRef]
- Anjaneyulu, Y.; Sreedhara Chary, N.; Samuel Suman Raj, D. Decolourization of Industrial Effluents—Available Methods and Emerging Technologies—A Review. Rev. Environ. Sci. Biotechnol. 2005, 4, 245–273. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef]
- Singla, A. Review of Biological Treatment Solutions and Role of Nanoparticles in the Treatment of Wastewater Generated by Diverse Industries. Nanotechnol. Environ. Eng. 2022, 7, 699–711. [Google Scholar] [CrossRef]
- Chaplin, B.P. The Prospect of Electrochemical Technologies Advancing Worldwide Water Treatment. Acc. Chem. Res. 2019, 52, 596–604. [Google Scholar] [CrossRef]
- Peters, T. Membrane Technology for Water Treatment. Chem. Eng. Technol. 2010, 33, 1233–1240. [Google Scholar] [CrossRef]
- O’Shea, K.E.; Dionysiou, D.D. Advanced Oxidation Processes for Water Treatment. J. Phys. Chem. Lett. 2012, 3, 2112–2113. [Google Scholar] [CrossRef]
- Mudhoo, A.; Paliya, S.; Goswami, P.; Singh, M.; Lofrano, G.; Carotenuto, F.; Carraturo, G.; Libralato, M.; Guida, M.; Usman, M.; et al. Fabrication, Functionalization and Performance of Doped Photocatalysts for Dye Degradation and Mineralization: A Review. Environ. Chem. Lett. 2020, 18, 1825–1903. [Google Scholar] [CrossRef]
- Kumari, H.; Sonia, R.; Suman, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, P.; Kumar, S.; Kumar, A.; Kumar, R. A Review on Photocatalysis Used for Wastewater Treatment: Dye Degradation. Water Air Soil. Pollut. 2023, 234, 349. [Google Scholar] [CrossRef]
- Far, H.S.; Najafi, M.; Hasanzadeh, M.; Rahimi, R. Synthesis of MXene/Metal-Organic Framework (MXOF) Composite as an Efficient Photocatalyst for Dye Contaminant Degradation. Inorg. Chem. Commun. 2023, 152, 110680. [Google Scholar]
- Araujo, R.N.; Nascimento, E.P.; Firmino, H.C.T.; Macedo, D.A.; Neves, G.A.; Morales, M.A.; Menezes, R.R.R. α-Fe2O3 Fibers: An Efficient Photocatalyst for Dye Degradation under Visible Light. J. Alloys Compd. 2021, 882, 160683. [Google Scholar] [CrossRef]
- Mohajerani, M.; Mehrvar, M.; Ein-Mozaffari, F. An Overview of the Integration of Advanced Oxidation Technologies and Other Processes for Water and Wastewater Treatment. Int. J. Eng. 2009, 3, 120–146. [Google Scholar]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced Oxidation Process-Mediated Removal of Pharmaceuticals from Water: A Review. J. Environ. Manage 2018, 219, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.M.; Sancho, M.; García-Fayos, J.; Lora-García, M.A. Advanced Oxidation Processes for Water Disinfection: A Practical Review. Desalin. Water Treat. 2013, 51, 1723–1734. [Google Scholar]
- Barba, C.; Martínez-Huitle, M.J.; Brillas, E. Decontamination of Water Containing Pharmaceutical Residues by Electrochemical Advanced Oxidation Processes: A Review. Curr. Opin. Electrochem. 2020, 22, 115–126. [Google Scholar]
- Patra, R.; Dash, P.K.; Panda, P.; Yang, P.C. A Breakthrough in Photocatalytic Wastewater Treatment: The Incredible Potential of g-C3N4/Titanate Perovskite-Based Nanocomposites. Nanomaterials 2023, 13, 2173. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, R. Photocatalytic Degradation of Dye Effluent Using TiO2 as Photocatalyst: A Review. J. Environ. Chem. Eng. 2021, 9, 105801. [Google Scholar]
- Wei, H.; Zhang, C.; Cheng, Z.; Zhang, Y. Fenton Oxidation for Wastewater Treatment: Advances and Challenges. Chem. Eng. J. 2022, 430, 133218. [Google Scholar]
- Molinari, R.; Argurio, C.; Drioli, E.; Avella, A. Innovative hybrid membrane processes for water treatment and desalination. Desalination 2001, 138, 241–246. [Google Scholar]
- Dionysiou, D. Advanced oxidation technologies in water treatment: The journey of environmental chemistry. Environ. Sci. Technol. Lett. 2018, 5, 155–160. [Google Scholar]
- Pathania, S.; Hmar, J.J.L.; Verma, B.; Majumder, T.; Kumar, V.; Chinnamuthu, P. Titanium dioxide (TiO2) sensitized zinc oxide (ZnO)/conducting polymer nanocomposites for improving performance of hybrid flexible solar cells. J. Electron. Mater. 2022, 51, 5986–6001. [Google Scholar] [CrossRef]
- Toe, C.Y.; Zhou, S.; Gunawan, M.; Lu, X.; Ng, Y.H.; Amal, R. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. J. Mater. Chem. A 2021, 9, 20277–20319. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal sulfide photocatalysts for hydrogen generation: A review of recent advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Vattikuti, S.P.; Shim, J.; Byon, C. 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction photocatalyst for enhanced photocatalytic activity. J. Solid State Chem. 2018, 258, 526–535. [Google Scholar] [CrossRef]
- García-Segura, J.; Brillas, E. Electrochemical advanced oxidation processes: An overview of the current knowledge. Electrochim. Acta 2019, 327, 135032. [Google Scholar]
- Nandhakumar, S.R.; Rajeshkumar, S.; Anand, R.S.; Malyla, V.; Dua, K.; Ezhilarasan, D.; Lakshmi, T. Biogenic metal sulfide nanoparticles synthesis and applications for biomedical and environmental technology. In Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 495–506. [Google Scholar]
- Shahzad, A.; Liaqat, F.; Kumar, S. Nanotechnology-based solutions for water treatment: Challenges and future perspectives. Environ. Chem. Lett. 2022, 20, 1159–1180. [Google Scholar]
- Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. Review of metal sulfide nanostructures and their applications. ACS Appl. Nano Mater. 2023, 6, 7077–7106. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, A.; Antakyali, C.; Beretsou, F.; Kassinos, D. Advanced oxidation processes for water treatment: State of the art and key research challenges. Chem. Eng. J. 2024, 450, 138019. [Google Scholar]
- Terranova, U.; De Leeuw, N.H. Phase stability and thermodynamic properties of FeS polymorphs. J. Phys. Chem. Solids 2017, 111, 317–323. [Google Scholar] [CrossRef]
- Fedorchuk, A.O.; Parasyuk, O.V.; Kityk, I.V. Second anion coordination for wurtzite and sphalerite chalcogenide derivatives as a tool for the description of anion sub-lattice. Mater. Chem. Phys. 2013, 139, 92–99. [Google Scholar] [CrossRef]
- Majumdar, D. Recent progress in copper sulfide-based nanomaterials for high-energy supercapacitor applications. J. Electroanal. Chem. 2021, 880, 114825. [Google Scholar] [CrossRef]
- Becerra-Paniagua, D.K.; Díaz-Cruz, E.B.; Baray-Calderón, A.; Garcia-Angelmo, A.R.; Regalado-Pérez, E.; Rodriguez-Torres, M.P.; Martínez-Alonso, C. Nanostructured metal SULFIDEs synthesized by microwave-assisted heating: A review. J. Mater. Sci. Mater. Electron. 2022, 33, 22631–22667. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid. Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Dutta, D.; Das, B.M. Scope of Green Nanotechnology Towards Amalgamation of Green Chemistry for Cleaner Environment: A Review on Synthesis and Applications of Green Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100418. [Google Scholar] [CrossRef]
- Rafique, M.S.; Rafique, M.; Tahir, M.B.; Hajra, S.; Nawaz, T.; Shafiq, F. Synthesis methods of nanostructures. In Nanotechnology and Photocatalysis for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–56. [Google Scholar]
- Escudero, A.; Carrillo-Carrión, C.; Romero-Ben, E.; Franco, A.; Rosales-Barrios, C.; Castillejos, M.C.; Khiar, N. Molecular bottom-up approaches for the synthesis of inorganic and hybrid nanostructures. Inorganics 2021, 9, 58. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Sarvi, M.N. Recent Achievements in the Microbial Synthesis of Semiconductor Metal Sulfide Nanoparticles. Mater. Sci. Semicond. Process. 2015, 40, 293–301. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, N.; Islam, M.S.; Ahmad, M.A.; Ercisli, S.; Ullah, R.; Bari, A.; Munir, I. Rice seeds biofortification using biogenic iron oxide nanoparticles synthesized by Glycyrrhiza glabra: A study on growth and yield improvement. Sci. Rep. 2024, 14, 12368. [Google Scholar] [CrossRef]
- Mansour, A.F.; Abdo, M.A.; Maged, F.A.; Agag, G.M. Synthesis, optical properties, and stabilization of ZnS quantum dots by polymeric matrices. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1443–1450. [Google Scholar] [CrossRef]
- Castro-Longoria, E.; Vilchis-Nestor, A.R.; Avalos-Borja, M. Biosynthesis of Silver, Gold, and Bimetallic Nanoparticles Using the Filamentous Fungus Neurospora crassa. Colloids Surf. B 2011, 83, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Odom, T.W.; Lieber, C.M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, X.L.; He, R.R.; Zhu, J.; Deng, Z.X. Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 2002, 124, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.Q.; Xu, Y.; Hong, J.M.; Liu, H.B.; Yin, G.; Li, B.L.; Tie, C.Y.; Xu, Z. Sol–gel template synthesis of an array of single-crystal CdS nanowires on a porous alumina template. Adv. Mater. 2001, 13, 1393–1394. [Google Scholar] [CrossRef]
- Ge, J.P.; Wang, J.; Zhang, H.X.; Li, Y.D. A general atmospheric pressure chemical vapor deposition synthesis and crystallographic study of transition-metal sulfide one-dimensional nanostructures. Chem.–Eur. J. 2004, 10, 3525–3530. [Google Scholar] [CrossRef]
- Gorai, S.; Ganguli, D.; Chaudhuri, S. Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates. Mater. Chem. Phys. 2004, 88, 383–387. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Jha, R.; Bhushan, M.; Sharma, R. Comparative study of the electrochemical properties of mesoporous 1-D and 3-D nano-structured rhombohedral nickel sulfide in alkaline electrolytes. J. Phys. Chem. Solids 2020, 144, 109503. [Google Scholar] [CrossRef]
- Ye, Y.; Guo, Q.; Liu, X.; Liu, C.; Wang, J.; Liu, Y.; Qiu, J. Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: Sonication-assisted synthesis, chemical stability, and optical properties. Chem. Mater. 2017, 29, 8361–8368. [Google Scholar] [CrossRef]
- Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y. Unveiling the active structure of single nickel atom catalysis: Critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777. [Google Scholar] [CrossRef]
- Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Q.; Shi, G. Graphene-based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132. [Google Scholar] [CrossRef]
- Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Yao, H.; Liang, Z.; Lee, H.W.; Hsu, P.C.; Zheng, G.; Cui, Y. High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS2 Materials. Nano Lett. 2014, 14, 7138–7144. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Yu, H.; Ghimire, N.J.; Wu, S.; Aivazian, G.; Ross, J.S.; Zhao, B.; Yan, J.; Mandrus, D.G.; Xiao, D.; et al. Optical Generation of Excitonic Valley Coherence in Monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yao, Y.; Hong, W.; Hong, Z.; He, X.; Wang, T.; Jian, C.; Ju, Q.; Cai, Q.; Sun, Z.; et al. The Controllable Synthesis of High-Quality Two-Dimensional Iron Sulfide with Specific Phases. Small 2023, 19, 2207325. [Google Scholar] [CrossRef]
- Han, W.; Gao, M. Investigations on Iron Sulfide Nanosheets Prepared via a Single-Source Precursor Approach. Cryst. Growth Des. 2008, 8, 1023–1030. [Google Scholar] [CrossRef]
- Naveed, M.; Younas, W.; Cao, C.; Rafai, S.; Khalid, S.; Wang, Z.; Qiao, C. Ultrafast, Facile, and Scalable Microwave-Assisted Synthesis Method to Prepare Nickel Sulfide Nanosheets for High-Energy Density Hybrid Capacitors. ChemNanoMat 2019, 5, 1216–1224. [Google Scholar] [CrossRef]
- Jothi, P.R.; Salunkhe, R.R.; Pramanik, M.; Kannan, S.; Yamauchi, Y. Surfactant-Assisted Synthesis of Nanoporous Nickel Sulfide Flakes and Their Hybridization with Reduced Graphene Oxides for Supercapacitor Applications. RSC Adv. 2016, 6, 21246–21253. [Google Scholar] [CrossRef]
- Xu, M.; Wu, H.; Da, P.; Zhao, D.; Zheng, G. Unconventional 0-, 1-, and 2-Dimensional Single-Crystalline Copper Sulfide Nanostructures. Nanoscale 2012, 4, 1794–1799. [Google Scholar] [CrossRef]
- Ahmad, K.S.; Jaffri, S.B.; Al-Hawadi, J.S.; Lin, W.; Gupta, R.K.; Ashraf, G.A.; Alotaibi, N.H. Energizing Tomorrow with Dithiocarbamate Complexes: Unveiling BaS3:La2S3:PrS1.7 Tri-Metallic Chalcogenide Semiconductor Decorated Electrode for Supercapacitors and Electrocatalysis. Int. J. Hydrogen Energy 2024, 80, 810–820. [Google Scholar] [CrossRef]
- Nouseen, S.; Singh, P.; Lavate, S.; Chattopadhyay, J.; Kuchkaev, A.M.; Yakhvarov, D.G.; Srivastava, R. Transition Metal-Based Ternary Hierarchical Metal Sulfide Microspheres as Electrocatalyst for Splitting of Water into Hydrogen and Oxygen Fuel. Catal. Today 2022, 397, 618–630. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Alghuthaymi, M.A.; Almoammar, H.; Rai, M.; Said-Galiev, E.; Abd-Elsalam, K.A. Myconanoparticles: Synthesis and Their Role in Phytopathogen Management. Biotechnol. Biotechnol. Equip. 2015, 29, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xie, Y. Green Synthesis of Metal-Based Nanomaterials for Environmental Applications. Environ. Chem. Lett. 2016, 14, 261–273. [Google Scholar]
- Raliya, R.; Tarafdar, J.C. Novel Approach for Silver Nanoparticle Synthesis Using Fungi Aspergillus terreus and Its Mechanism of Antibacterial Action against MDR Strain of Staphylococcus aureus. Nanomedicine 2013, 9, 1219–1230. [Google Scholar]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Bharath, L. Mechanism of Plant-Mediated Synthesis of Silver Nanoparticles—A Review on Biomolecules Involved, Characterization and Antibacterial Activity. Chem.-Biol. Interact. 2017, 273, 219–227. [Google Scholar] [CrossRef]
- Devi, L.S.; Joshi, S.R. Ultrastructures of Silver Nanoparticles Biosynthesized Using Endophytic Fungus and Their Efficacy against Pathogenic Bacteria. Curr. Microbiol. 2012, 65, 446–451. [Google Scholar]
- Narayanan, K.B.; Sakthivel, N. Biological Synthesis of Metal Nanoparticles by Microbes. Adv. Colloid. Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef]
- Munyai, S.; Tetana, Z.N.; Mathipa, M.M.; Ntsendwana, B.; Hintsho-Mbita, N.C. Green synthesis of Cadmium SULFIDE nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria. Optik 2021, 247, 167851. [Google Scholar] [CrossRef]
- Philip, D. Green Synthesis of Gold and Silver Nanoparticles Using Hibiscus Rosa Sinensis. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 1417–1424. [Google Scholar] [CrossRef]
- Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green Synthesis of Zinc Oxide Nanoparticles by Aloe Barbadensis Miller Leaf Extract: Structure and Optical Properties. Mater. Res. Bull. 2011, 46, 2560–2566. [Google Scholar] [CrossRef]
- Velmurugan, P.; Anbalagan, K.; Manosathyadevan, M.; Lee, K.J.; Cho, M.; Lee, S.M.; Park, J.H.; Oh, B.T. Green Synthesis of Silver and Gold Nanoparticles Using Zingiber officinale Root Extract and Antibacterial Activity of Silver Nanoparticles against Food Pathogens. Bioprocess Biosyst. Eng. 2014, 37, 1935–1943. [Google Scholar] [CrossRef]
- Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D.B.; Harsoor, V.; Yalagatti, M.S.; Venugopal, K.; Reddy, A. Green Fabrication of Silver Nanoparticles by Onion (Allium cepa) Extract and Its Characterization. Adv. Mater. Lett. 2012, 3, 168–172. [Google Scholar]
- Kumar, P.B.; Kalishwaralal, K.; Sriram, M.; Gurunathan, S. Optimization of Silver Nanoparticle Synthesis by Bacillus licheniformis. Colloids Surf. B 2009, 71, 226–229. [Google Scholar]
- He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of Gold Nanoparticles Using the Bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. [Google Scholar] [CrossRef]
- Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of Silver Nanoparticles by Phoma Glomerata and Its Antifungal Activity against Swaminathanmyces sp. Curr. Nanosci. 2009, 5, 117–122. [Google Scholar]
- Mosquera, J.; García, I.; Liz-Marzán, L.M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 2018, 51, 2305–2313. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Murthy, S.K. Nanoparticles in Modern Medicine: State of the Art and Future Challenges. Int. J. Nanomed. 2007, 2, 129–141. [Google Scholar]
- Tripathi, R.M.; Bhadwal, A.S.; Gupta, R.K.; Shrivastav, A.; Shrivastav, B.R. Synthesis of Gold Nanoparticles by Biological Method and Their Characterization. World J. Nano Sci. Eng. 2014, 4, 21–28. [Google Scholar]
- Parveen, K.; Banse, V.; Ledwani, L. Green Synthesis of Nanoparticles: Their Advantages and Disadvantages. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1724, p. 020048. [Google Scholar]
- Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef]
- Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid Synthesis of Silver Nanoparticles Using Dried Medicinal Plant of Basil. Colloids Surf. B 2010, 81, 81–86. [Google Scholar] [CrossRef]
- Dauthal, P.; Mukhopadhyay, M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016, 55, 9557–9577. [Google Scholar] [CrossRef]
- Gan, P.P.; Ng, S.H.; Huang, Y.; Li, S.F.Y. Green Synthesis of Gold Nanoparticles Using Palm Oil Mill. Effluent (POME): A Low-Cost and Eco-Friendly Viable Approach. Biochem. Eng. J. 2012, 65, 82–88. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Rostami-Vartooni, A.; Bagherzadeh, M.; Safari, R. Green Synthesis of Silver Nanoparticles Using Plantago major Extract and Their Application as a Catalyst in the Reduction of Methylene Blue and Potassium Hexacyanoferrate (III). J. Colloid. Interface Sci. 2015, 457, 360–368. [Google Scholar]
- Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green. Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; Pyne, S.; Misra, A. Green Synthesis of Silver Nanoparticles Using Seed Extract of Jatropha curcas. Colloids Surf. A 2009, 348, 212–216. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. Green Synthesis of Silver Nanoparticles Using Azadirachta indica Aqueous Leaf Extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Akinmoladun, F.O.; Akinrinlola, B.L.; Komolafe, T.A.; Farombi, A.G.; Akinmoladun, A.C. Green Synthesis of Silver Nanoparticles from the Aqueous Extract of Diospyros monbuttensis and Their Antioxidant and Antimicrobial Potentials. Appl. Nanosci. 2020, 10, 3059–3067. [Google Scholar]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Shinde, V.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; et al. Synthesis of Silver Nanoparticles Using Dioscorea bulbifera Tuber Extract and Evaluation of Its Synergistic Potential in Combination with Antimicrobials. Int. J. Nanomed. 2012, 7, 483–496. [Google Scholar] [CrossRef]
- Prabhu, S.; Poulose, E.K. Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef]
- Shanmugavadivu, M.; Kuppusamy, S.; Ranjithkumar, R. Synthesis of Silver Nanoparticles Using Citrus sinensis Peel Extract and Its Antibacterial Activity. Spectrochim. Acta Part A 2014, 129, 537–541. [Google Scholar]
- Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity. World Acad. Sci. Eng. Technol. 2009, 43, 357–364. [Google Scholar]
- Lee, K.J.; Jun, B.H.; Kim, T.H.; Joung, J.W.; Kim, B.G.; Lee, Y.S.; Cho, M.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Nanomed. 2010, 5, 115–122. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D.G. A Rapid Method to Estimate the Concentration of Citrate Capped Silver Nanoparticles from UV-Visible Light Spectra. Anal. Chem. 2014, 86, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Kim, H.K.; Wamer, W.G.; Melka, D.; Callahan, J.H.; Yin, J.J. Phototoxicity of Zinc Oxide Nanoparticles and Its Mechanism. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar]
- Ma, X.; Wang, Y.; Zhao, Y.; Zhang, P.; Cui, H.; Lin, Y. Light-Induced Antibacterial Activity of ZnO/Au Nanocomposites Synthesized by Sol-Gel Method. Mater. Sci. Eng. C 2014, 42, 1–7. [Google Scholar]
- Gunalan, S.; Sivaraj, R.; Rajendran, V. Green Synthesized ZnO Nanoparticles against Bacterial and Fungal Pathogens. Prog. Nat. Sci. Mater. Int. 2012, 22, 693–700. [Google Scholar] [CrossRef]
- Applerot, G.; Lellouche, J.; Perkas, N.; Nitzan, Y.; Gedanken, A.; Banin, E. ZnO Nanoparticles: Antibacterial Activity and Mechanism of Action. Langmuir 2012, 28, 746–752. [Google Scholar]
- Kannan, S.; Subiramaniyam, N.P.; Sathishkumar, M. A Novel Green Synthesis Approach for Improved Photocatalytic Activity and Antibacterial Properties of Zinc Sulfide Nanoparticles Using Plant Extract of Acalypha indica and Tridax procumbens. J. Mater. Sci. Mater. Electron. 2020, 31, 9846–9859. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Ahmaruzzaman, M. Metal SULFIDEs and Their Heterojunctions for Photocatalytic Degradation of Organic Dyes: A Comprehensive Review. Environ. Sci. Pollut. Res. 2023, 30, 90410–90457. [Google Scholar] [CrossRef]
- Ayodhya, D.; Venkatesham, M.; Kumari, A.S.; Reddy, G.B.; Ramakrishna, D.; Veerabhadram, G. Photocatalytic Degradation of Dye Pollutants under Solar, Visible, and UV Lights Using Green Synthesized CuS Nanoparticles. J. Exp. Nanosci. 2016, 11, 418–432. [Google Scholar] [CrossRef]
- Hajiani, M.; Sayadi, M.H.; Mozafarjalali, M.; Ahmadpour, N. Green Synthesis of Recyclable, Cost-Effective, Chemically Stable, and Environmentally Friendly CuS@Fe3O4 Nanoparticles for the Photocatalytic Degradation of Dye. J. Clust. Sci. 2023, 34, 1939–1951. [Google Scholar] [CrossRef]
- Spoorthi, K.; Nagaraju, G.; Kumar, E.V.; Naz, S.; Hirad, A.H.; Naika, H.R. Facile Green Synthesis of Bi2S3 Nanoparticles: Applications in Simultaneous Dye Degradation and Seed Germination of Fenugreek Seeds. Nano-Struct. Nano-Objects 2024, 39, 101262. [Google Scholar] [CrossRef]
- Ullah, A.; Rasheed, S.; Ali, I.; Ullah, N. Plant Mediated Synthesis of CdS Nanoparticles, Their Characterization and Application for Photocatalytic Degradation of Toxic Organic Dye. Chem. Rev. Lett. 2021, 4, 98–107. [Google Scholar]
- Munyai, S.; Mahlaule-Glory, L.M.; Hintsho-Mbita, N.C. Green Synthesis of Zinc SULFIDE (ZnS) Nanostructures Using S. frutescens Plant Extract for Photocatalytic Degradation of Dyes and Antibiotics. Mater. Res. Express 2022, 9, 015001. [Google Scholar] [CrossRef]
- Ouni, S.; Mohamed, N.B.H.; Haouari, M.; Elaissari, A.; Errachid, A.; Jaffrezic-Renault, N. A Novel Green Synthesis of Zinc Sulfide Nano-Adsorbents Using Artemisia herba-alba Plant Extract for Adsorption and Photocatalysis of Methylene Blue Dye. Chem. Afr. 2023, 6, 2523–2535. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Anitha, A.; Ponmurugan, P.; Arunkumar, D.; Natheer, S.E.; Kannan, S. Oxytetracycline Degradation and Antidermatophytic Activity of Novel Biosynthesized MoS2 Photocatalysts. Mater. Sci. Eng. B 2024, 301, 117164. [Google Scholar] [CrossRef]
- Dadmehr, M.; Korouzhdehi, B.; Tavassoli, A.; Malekkiani, M. Photocatalytic Activity of Green Synthesized Cadmium Sulfide Quantum Dots on the Removal of RhB Dye and Its Cytotoxicity and Antibacterial Studies. Nanotechnology 2022, 33, 395101. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Habib, F.; Darwish, N.; Shanableh, A. Iron Sulfide Nanoparticles Prepared Using Date Seed Extract: Green Synthesis, Characterization and Potential Application for Removal of Ciprofloxacin and Chromium. Powder Technol. 2021, 380, 219–228. [Google Scholar] [CrossRef]
- Suresh, R.; Mangalaraja, R.V.; Mansilla, H.D.; Santander, P.; Yáñez, J. Reduced Graphene Oxide-Based Photocatalysis. In Green Photocatalysts; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–166. [Google Scholar]
- Shyagathur, S.C.; Pattar, J.; Rao, A.H.N.; Sreekanth, R.; Mahendra, K.; Nagaraju, G. Enhanced Degradation of Dyes Using a Novel CuS/g-C3N4/rGO Ternary Composite Catalyst: Synthesis, Characterization, and Mechanistic Insights. Mater. Chem. Phys. 2024, 327, 129877. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Sohrabi, B.; Karimi, A.; Chenab, K.K. The ZnS–CuS Thin Layer Nanocomposites Green Synthesis and Their Efficient Photocatalytic Applications in Photodegradation of Organic Dye Molecules. J. Nanostruct. Chem. 2023, 13, 533–543. [Google Scholar] [CrossRef]
- Wang, H.J.; Cao, Y.; Wu, L.L.; Wu, S.S.; Raza, A.; Liu, N.; Wang, J.Y.; Miyazawa, T. ZnS-Based Dual Nano-Semiconductors (ZnS/PbS, ZnS/CdS or ZnS/Ag2S): A Green Synthesis Route and Photocatalytic Comparison for Removing Organic Dyes. J. Environ. Chem. Eng. 2020, 6, 6771–6779. [Google Scholar] [CrossRef]
- Agboola, P.O.; Haider, S.; Shakir, I. Copper Sulfide and Their Hybrids with Carbon Nanotubes for Photocatalysis and Antibacterial Studies. Ceram. Int. 2022, 48, 10136–10143. [Google Scholar] [CrossRef]
- Rajabi, H.R.; Farsi, M. Effect of Transition Metal Ion Doping on the Photocatalytic Activity of ZnS Quantum Dots: Synthesis, Characterization, and Application for Dye Decolorization. J. Mol. Catal. A Chem. 2015, 399, 53–61. [Google Scholar] [CrossRef]
- Pandey, T.; Singh, A.; Kaundal, R.S.; Pandey, V. Cation Exchange Doping by Transition and Non-Transition Metals: Embracing Luminescence for Band Gap Tunability in a ZnS Lattice. New J. Chem. 2024, 48, 1009–1035. [Google Scholar] [CrossRef]
- Yang, K.; Li, X.; Yu, C.; Zeng, D.; Chen, F.; Zhang, K.; Huang, W.; Ji, H. Review on Heterophase/Homophase Junctions for Efficient Photocatalysis: The Case of Phase Transition Construction. Chin. J. Catal. 2019, 40, 796–818. [Google Scholar] [CrossRef]
- Kandhasamy, N.; Murugadoss, G.; Kannappan, T.; Kirubaharan, K.; Manavalan, R.K.; Gopal, R. Cerium-Based Metal Sulfide Derived Nanocomposite-Embedded rGO as an Efficient Catalyst for Photocatalytic Application. Environ. Sci. Pollut. Res. 2023, 30, 29711–29726. [Google Scholar] [CrossRef]
- Bakhsh, E.M.; Khan, M.I. Clove oil-mediated green synthesis of silver-doped cadmium sulfide and their photocatalytic degradation activity. Inorg. Chem. Commun. 2022, 138, 109256. [Google Scholar] [CrossRef]
- Iqbal, M.; Ali, A.; Nahyoon, N.A.; Majeed, A.; Pothu, R.; Phulpoto, S.; Thebo, K.H. Photocatalytic Degradation of Organic Pollutant with Nanosized Cadmium Sulfide. Mater. Sci. Energy Technol. 2019, 2, 41–45. [Google Scholar] [CrossRef]
- Zhang, S.; Ou, X.; Xiang, Q.; Carabineiro, S.A.C.; Fan, J.; Lv, K. Research Progress in Metal Sulfides for Photocatalysis: From Activity to Stability. Chemosphere 2022, 303, 135085. [Google Scholar] [CrossRef]
- Ramzan, M.; Javed, M.; Iqbal, S.; Alhujaily, A.; Mahmood, Q.; Aroosh, K.; Bahadur, A.; Qayyum, M.A.; Awwad, N.S.; Ibrahium, H.A.; et al. Designing Highly Active Sg-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study. Inorganics 2023, 11, 156. [Google Scholar] [CrossRef]
- Sandhu, Z.A.; Raza, M.A.; Farwa, U.; Nasr, S.; Yahia, I.S.; Fatima, S.; Munawar, M.; Hadayet, Y.; Ashraf, S.; Ashraf, H. Response Surface Methodology: A Powerful Tool for Optimizing the Synthesis of Metal Sulfide Nanoparticles for Dye Degradation. Mater. Adv. 2023, 4, 5094–5125. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, L. Metal SULFIDE Semiconductors for Photocatalytic Hydrogen Production. Catal. Sci. Technol. 2013, 3, 1672–1690. [Google Scholar] [CrossRef]
- Zhang, J.; Wageh, S.; Al-Ghamdi, A.; Yu, J. New Understanding on the Different Photocatalytic Activity of Wurtzite and Zinc-Blende CdS. Appl. Catal. B Environ. 2016, 192, 101–107. [Google Scholar] [CrossRef]
- Cao, K.; Ge, X.; Li, S.; Tian, Z.; Cui, S.; Guo, G.; Yang, L.; Li, X.; Wang, Y.; Bai, S.; et al. Facile preparation of a 3D rGO/gC 3 N 4 nanocomposite loaded with Ag NPs for photocatalytic degradation. RSC Adv. 2025, 15, 17089–17101. [Google Scholar] [CrossRef] [PubMed]
- Abdrashitova, R.N.; Bozhenkova, G.S.; Ponomarev, A.A.; Gilya-Zetinov, A.G.; Markov, A.A.; Zavatsky, M.D. Synthesis of ZNO doped multi walled carbon nanotubes (MWNTS) for dyes degradation and water purification. Water Conserv. Manag. 2023, 7, 1–5. [Google Scholar] [CrossRef]
- Poornima, G.S.; Prashanth, M.K.; Shanavaz, H.; Rajappa, S.; Alharethy, F.; Kumar, K.K.; Yadav, K.K.; Jeon, B.H.; Raghu, M.S. Plant Extract Aided Synthesis of Iron SULFIDE/Nickel SULFIDE Type-II Heterostructure for Photochemical CO2 Reduction and Simultaneous Degradation of Dyes. J. Environ. Chem. Eng. 2025, 13, 115854. [Google Scholar] [CrossRef]
- Vyas, Y.; Chundawat, P.; Dharmendra, D.; Jain, A.; Punjabi, P.B.; Ameta, C. Biosynthesis and Characterization of Carbon Quantum Dots@CuS Composite Using Water Hyacinth Leaves and Its Usage in Photocatalytic Dilapidation of Brilliant Green Dye. Mater. Chem. Phys. 2022, 281, 125921. [Google Scholar] [CrossRef]
- Nsude, H.E.; Nsude, K.U.; Whyte, G.M.; Obodo, R.M.; Iroegbu, C.; Maaza, M.; Ezema, F.I. Green Synthesis of CuFeS2 Nanoparticles Using Mimosa Leaves Extract for Photocatalysis and Supercapacitor Applications. J. Nanopart. Res. 2020, 22, 352. [Google Scholar] [CrossRef]
- Yadav, N.; Yadav, G.; Ahmaruzzaman, M. Azadirachta indica Leaf Extract-Derived NiS@Functionalized Biochar Catalyst: Efficient Acetalization and Enhanced Reusability in Photodegradation of Tinidazole. Renew. Energy 2024, 229, 120749. [Google Scholar] [CrossRef]
- Karthika, M.; Balu, A.R.; Suganya, M.; Devi, S.C.; Anitha, S.; Sriramraj, M.; Devendran, K. Green Synthesis of CuS:Co and CuS:Ni Nanoparticles Using Moringa oleifera Leaf Extract and Investigations on Their Photocatalytic, Electrochemical, Nonlinear Optical, and Antibacterial Properties. Chem. Afr. 2023, 6, 3049–3058. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langa, C.D.; Mabuba, N.; Hintsho-Mbita, N.C. Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review. Catalysts 2025, 15, 727. https://doi.org/10.3390/catal15080727
Langa CD, Mabuba N, Hintsho-Mbita NC. Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review. Catalysts. 2025; 15(8):727. https://doi.org/10.3390/catal15080727
Chicago/Turabian StyleLanga, Carol D., Nonhlangabezo Mabuba, and Nomso C. Hintsho-Mbita. 2025. "Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review" Catalysts 15, no. 8: 727. https://doi.org/10.3390/catal15080727
APA StyleLanga, C. D., Mabuba, N., & Hintsho-Mbita, N. C. (2025). Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review. Catalysts, 15(8), 727. https://doi.org/10.3390/catal15080727