Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = sustainable drugs synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 188
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

32 pages, 2027 KiB  
Review
Harnessing the Loop: The Perspective of Circular RNA in Modern Therapeutics
by Yang-Yang Zhao, Fu-Ming Zhu, Yong-Juan Zhang and Huanhuan Y. Wei
Vaccines 2025, 13(8), 821; https://doi.org/10.3390/vaccines13080821 - 31 Jul 2025
Viewed by 376
Abstract
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and [...] Read more.
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and modular delivery platforms are accelerating clinical translation. In this review, we synthesize recent advances in circRNA therapeutics, with a focused analysis of their stability and immunogenic properties in vaccine and drug development. Notably, key synthesis strategies, delivery platforms, and AI-driven optimization methods enabling scalable production are discussed. Moreover, we summarize preclinical and emerging clinical studies that underscore the potential of circRNA in vaccine development and protein replacement therapies. As both a promising expression vehicle and programmable regulatory molecule, circRNA represents a versatile platform poised to advance next-generation biologics and precision medicine. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

41 pages, 2975 KiB  
Review
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review
by Ibraheem Borie M. Ibraheem, Reem Mohammed Alharbi, Neveen Abdel-Raouf, Nouf Mohammad Al-Enazi, Khawla Ibrahim Alsamhary and Hager Mohammed Ali
Pharmaceutics 2025, 17(8), 989; https://doi.org/10.3390/pharmaceutics17080989 (registering DOI) - 30 Jul 2025
Viewed by 285
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as a “superbug”, and its resistance mechanisms, including target modification, drug inactivation, efflux pumps, biofilm formation, and quorum sensing. The limitations of conventional antibiotics (e.g., β-lactams, vancomycin, macrolides) are discussed, alongside the promise of algal-derived compounds such as fatty acids, pigments, polysaccharides, terpenoids, and phenolic compounds. These metabolites exhibit potent anti-MRSA activity by disrupting cell division (via FtsZ inhibition), destabilizing membranes, and inhibiting protein synthesis and metabolic pathways, effectively countering multiple resistance mechanisms. Leveraging advances in algal biotechnology, this review highlights the untapped potential of marine algae to drive innovative, sustainable therapeutic strategies against antibiotic resistance. Full article
Show Figures

Figure 1

25 pages, 14674 KiB  
Article
Eco-Friendly Silver Nanoparticles Synthesis Method Using Medicinal Plant Fungal Endophytes—Biological Activities and Molecular Docking Analyses
by Harish Chandra, Sagar Vishwakarma, Nilesh Makwana, Arun S. Kharat, Vijeta Chaudhry, Sumit Chand, Rajendra Prasad, Soban Prakash, Annapurna Katara, Archana Yadav, Manisha Nigam and Abhay Prakash Mishra
Biology 2025, 14(8), 950; https://doi.org/10.3390/biology14080950 - 28 Jul 2025
Viewed by 495
Abstract
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as [...] Read more.
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as reducing and stabilizing agents thereby minimizing the need for hazardous chemicals. The AgNPs demonstrated strong potent biological activities, showcasing significant antioxidant, antibacterial, and anticancer properties. The antibacterial efficacy was demonstrated against various Gram-positive and Gram-negative bacteria, while cytotoxicity on the A549 lung cancer cell line revealed an IC50 value of 10.46 µg/mL. A molecular docking analysis revealed interactions between the major bioactive compound, dimethylsulfoxonium formylmethylide, and the pathogenic proteins, Staphylococcus aureus and Salmonella typhi, displaying moderate binding affinities. Furthermore, the ADME analysis of dimethylsulfoxonium formylmethylide indicated favourable pharmacokinetic properties, including high gastrointestinal absorption, minimal lipophilicity, and low potential for drug–drug interactions, making it a promising candidate for oral drug formulations. These findings further support the compound’s suitability for biomedical applications. This research emphasizes the potential of C. smithii as a sustainable source for synthesizing bioactive nanoparticles, paving the way for their application in developing novel therapeutic agents. This study highlights the significance of harnessing endophytic fungi from medicinal plants for sustainable nanotechnology advancements. Full article
Show Figures

Graphical abstract

33 pages, 2018 KiB  
Review
Biogenic Synthesis of Silver Nanoparticles and Their Diverse Biomedical Applications
by Xiaokun Jiang, Shamma Khan, Adam Dykes, Eugen Stulz and Xunli Zhang
Molecules 2025, 30(15), 3104; https://doi.org/10.3390/molecules30153104 - 24 Jul 2025
Viewed by 545
Abstract
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique [...] Read more.
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique physicochemical properties and therapeutic potential. This review examines the biogenic synthesis of AgNPs, focusing on microbial, plant-based, and biomolecule-assisted approaches. It highlights how reaction conditions, such as pH, temperature, and media composition, influence nanoparticle size, shape, and functionality. Particular emphasis is placed on microbial synthesis for its eco-friendly and scalable nature. The mechanisms of AgNP formation and their structural impact on biomedical performance are discussed. Key applications are examined including antimicrobial therapies, cancer treatment, drug delivery, and theranostics. Finally, the review addresses current challenges, such as reproducibility, scalability, morphological control, and biosafety, and outlines future directions for engineering AgNPs with tailored properties, paving the way for sustainable and effective next-generation biomedical solutions. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Graphical abstract

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 554
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 1980 KiB  
Review
Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance
by Guadalupe Avalos-Navarro, Martha Patricia Gallegos-Arreola, Emmanuel Reyes-Uribe, Luis Felipe Jave Suárez, Gildardo Rivera-Sánchez, Héctor Rangel-Villalobos, Ana Luisa Madriz-Elisondo, Itzae Adonai Gutiérrez Hurtado, Juan José Varela-Hernández and Ramiro Ramírez-Patiño
Int. J. Mol. Sci. 2025, 26(14), 6954; https://doi.org/10.3390/ijms26146954 - 20 Jul 2025
Viewed by 409
Abstract
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree [...] Read more.
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree of subclonality. Furthermore, metabolic adaptations such as enhanced glycogen synthesis and storage, as well as increased fatty acid oxidation (FAO), play a critical role in sustaining energy supply in metastases and contributing to chemoresistance. FAO promotes the infiltration of macrophages into the tumor, where they polarize to the M2 phenotype, which is associated with immune suppression and tissue remodeling. Additionally, the tumor microbiome and the action of cytotoxic drugs trigger neutrophil extravasation through inflammatory pathways. Chemoresistant neutrophils in the tumor microenvironment can suppress effector lymphocyte activation and facilitate the formation of neutrophil extracellular traps (NETs), which are linked to drug resistance. This article examines the genomic features of metastatic tumors, along with the metabolic and immunological dynamics within the metastatic tumor microenvironment, and their contribution to drug resistance. It also discusses the molecular mechanisms underlying resistance to chemotherapeutic agents commonly used in the treatment of metastatic cancer. Full article
(This article belongs to the Special Issue Breast Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

19 pages, 2490 KiB  
Article
Linker-Free Hyaluronic Acid-Dexamethasone Conjugates: pH-Responsive Nanocarriers for Targeted Anti-Inflammatory Therapy
by Anton N. Bokatyi, Natallia V. Dubashynskaya, Igor V. Kudryavtsev, Andrey S. Trulioff, Artem A. Rubinstein, Elena N. Vlasova and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(14), 6608; https://doi.org/10.3390/ijms26146608 - 10 Jul 2025
Viewed by 634
Abstract
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we [...] Read more.
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we engineered a polymeric platform for glucocorticoid delivery with precisely controlled parameters including particle size, surface charge, targeting capability, and release kinetics. This study reports a linker-free synthesis of hyaluronic acid-dexamethasone (HA-DEX) conjugates through Steglich esterification, catalyzed by 4-dimethylaminopyridine (DMAP), which facilitates the acylation of sterically hindered alcohols. The reaction specifically couples carboxyl groups of hyaluronic acid with the C21 hydroxyl group of dexamethasone. Incorporation of hydrophobic dexamethasone moieties induced self-assembly into nanoparticles featuring a hydrophobic core and negatively charged hydrophilic shell (−20 to −25 mV ζ-potential). In vitro characterization revealed pH-dependent release profiles, with 80–90% dexamethasone liberated in mildly acidic phosphate buffer (pH 5.2) versus 50–60% in phosphate-buffered saline (pH 7.4) over 35 days, demonstrating both sustained release and inflammation-responsive behavior. The conjugates exhibited potent anti-inflammatory activity in a human tumor necrosis factor-α (TNFα)-induced inflammation model. These findings position HA-DEX conjugates as promising candidates for targeted glucocorticoid delivery to specific anatomical sites including ocular, articular, and tympanic tissues, where their combination of CD44-targeting capability, enhanced permeability and retention effects, and stimulus-responsive release can optimize therapeutic outcomes while minimizing off-target effects. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

14 pages, 2508 KiB  
Article
Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials
by Thaís Cavalcante de Souza, Italo José Batista Durval, Hugo Moraes Meira, Andréa Fernanda de Santana Costa, Eduardo Padrón Hernández, Attilio Converti, Glória Maria Vinhas and Leonie Asfora Sarubbo
Membranes 2025, 15(7), 198; https://doi.org/10.3390/membranes15070198 - 1 Jul 2025
Viewed by 481
Abstract
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance [...] Read more.
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance magnetic composites. Numerous studies have explored BC-magnetite systems; however, innovations combining ex situ coprecipitation synthesis within BC matrices, tailored reagent molar ratios, stirring protocols, and purification processes remain limited. This study aimed to optimize the ex situ coprecipitation method for synthesizing superparamagnetic magnetite nanoparticles embedded in BC membranes, focusing on enhancing particle stability and crystallinity. BC membranes containing varying concentrations of magnetite (40%, 50%, 60%, and 70%) were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The resulting magnetic BC membranes demonstrated homogenous dispersion of nanoparticles, improved crystallite size (6.96 nm), and enhanced magnetic saturation (Ms) (50.4 emu/g), compared to previously reported methods. The adoption and synergistic optimization of synthesis parameters—unique to this study—conferred greater control over the physicochemical and magnetic properties of the composites. These findings position the optimized BC-magnetite nanocomposites as highly promising candidates for advanced applications, including electromagnetic interference (EMI) shielding, electronic devices, gas sensors, MRI contrast agents, and targeted drug delivery systems. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

50 pages, 2258 KiB  
Review
Green Synthesis of Silver Nanoparticles Using Plant Extracts: A Comprehensive Review of Physicochemical Properties and Multifunctional Applications
by Furkan Eker, Emir Akdaşçi, Hatice Duman, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(13), 6222; https://doi.org/10.3390/ijms26136222 - 27 Jun 2025
Viewed by 1523
Abstract
Green synthesis of silver nanoparticles (AgNPs) using plant extracts has emerged as a sustainable and eco-friendly alternative to conventional physical and chemical methods. This review provides a comprehensive overview of plant-mediated synthesis routes, emphasizing the influence of phytochemicals on nanoparticle formation, morphology, and [...] Read more.
Green synthesis of silver nanoparticles (AgNPs) using plant extracts has emerged as a sustainable and eco-friendly alternative to conventional physical and chemical methods. This review provides a comprehensive overview of plant-mediated synthesis routes, emphasizing the influence of phytochemicals on nanoparticle formation, morphology, and stability. The physicochemical properties of AgNPs, such as size, shape, and surface characteristics, are critically examined in relation to synthesis parameters, summarizing the plant species employed and associated reaction conditions. The wide-ranging applications of plant-based AgNPs are explored, including antimicrobial, agricultural, environmental, industrial, and biomedical uses, such as drug delivery and wound healing. The section is supported with recent application-specific studies to their corresponding nanoparticle properties, highlighting the relationship between structure and function. Finally, this review discusses current challenges, particularly potential toxicity considerations, and outlines future perspectives for standardization, mechanistic understanding, and translational potential in wide-ranging applications. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
Show Figures

Figure 1

35 pages, 450 KiB  
Review
An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications
by Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Materials 2025, 18(13), 2978; https://doi.org/10.3390/ma18132978 - 23 Jun 2025
Cited by 1 | Viewed by 452
Abstract
Bio-nanocomposites represent an advanced class of materials that combine the unique properties of nanomaterials with biopolymers, enhancing mechanical, electrical and thermal properties while ensuring biodegradability, biocompatibility and sustainability. These materials are gaining increasing attention, particularly in biomedical applications, due to their ability to [...] Read more.
Bio-nanocomposites represent an advanced class of materials that combine the unique properties of nanomaterials with biopolymers, enhancing mechanical, electrical and thermal properties while ensuring biodegradability, biocompatibility and sustainability. These materials are gaining increasing attention, particularly in biomedical applications, due to their ability to interact with biological systems in ways that conventional materials cannot. Graphene and graphene oxide (GO), two of the most well-known nanocarbon-based materials, have garnered substantial interest in bio-nanocomposite research because of their extraordinary properties such as high surface area, excellent electrical conductivity, mechanical strength and biocompatibility. The integration of graphene-based nanomaterials within biopolymers, such as polysaccharides and proteins, forms a new class of bio-nanocomposites that can be tailored for a wide range of biological applications. This review explores the synthesis methods, properties and biotechnological applications of graphene-based bio-nanocomposites, with a particular focus on polysaccharide-based and protein-based composites. Emphasis is placed on the biotechnological potential of these materials, including drug delivery, tissue engineering, wound healing, antimicrobial activities and industrial food applications. Additionally, biodegradable polymers such as polylactic acid, hyaluronic acid and polyethylene glycol, which play a crucial role in biotechnological applications, will be discussed. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Engineered Nanomaterials)
30 pages, 1753 KiB  
Review
From Nature to Innovation: Advances in Nanocellulose Extraction and Its Multifunctional Applications
by A. M. P. Hansini, G. D. C. P. Galpaya, M. D. K. M. Gunasena, P. M. Abeysundara, V. Kirthika, L. Bhagya, H. D. C. N. Gunawardana and K. R. Koswattage
Molecules 2025, 30(13), 2670; https://doi.org/10.3390/molecules30132670 - 20 Jun 2025
Viewed by 911
Abstract
Nanocellulose obtained from renewable and abundant biomass has garnered significant attention as a sustainable material with exceptional properties and diverse applications. This review explores the key aspects of nanocellulose, focusing on its extraction methods, applications, and future prospects. The synthesis of nanocellulose involves [...] Read more.
Nanocellulose obtained from renewable and abundant biomass has garnered significant attention as a sustainable material with exceptional properties and diverse applications. This review explores the key aspects of nanocellulose, focusing on its extraction methods, applications, and future prospects. The synthesis of nanocellulose involves mechanical, chemical, and biological techniques, each uniquely modifying the cellulose structure to isolate cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). These methods provide tailored characteristics, enabling applications across a wide range of industries. Nanocellulose’s remarkable properties, including high mechanical strength, large surface area, thermal stability, and biodegradability, have propelled its use in packaging, electronics, biomedicine, and environmental remediation. It has shown immense potential in enhancing the mechanical performance of composites, improving water purification systems, and serving as a scaffold for tissue engineering and drug delivery. However, challenges related to large-scale production, functionalization, regulatory frameworks, and safety concerns persist, necessitating further research and innovation. This review emphasizes the need for sustainable production strategies and advanced functionalization techniques to harness nanocellulose’s full potential. As an eco-friendly, high-performance material, nanocellulose presents a promising avenue for addressing global sustainability challenges while offering transformative solutions for various industries. Full article
Show Figures

Figure 1

16 pages, 549 KiB  
Review
Green Chemistry Approaches in Pharmaceutical Synthesis: Sustainable Methods for Drug Development
by Alina Stefanache, Alexandra Marcinschi, George-Alexandru Marin, Andreea-Maria Mitran, Ionut Iulian Lungu, Alina Monica Miftode, Florina Crivoi, Diana Lacatusu, Mihaela Baican, Oana Cioanca and Monica Hancianu
AppliedChem 2025, 5(2), 13; https://doi.org/10.3390/appliedchem5020013 - 17 Jun 2025
Viewed by 4159
Abstract
The Pharmaceutical Strategy for Europe addresses the environmental implications at all stages of the life cycle of pharmaceuticals, from design and production through use to disposal. In the last decade, “green chemistry” has transformed pharmaceuticals by promoting sustainability and reducing environmental impact. This [...] Read more.
The Pharmaceutical Strategy for Europe addresses the environmental implications at all stages of the life cycle of pharmaceuticals, from design and production through use to disposal. In the last decade, “green chemistry” has transformed pharmaceuticals by promoting sustainability and reducing environmental impact. This review discusses the latest developments in green chemistry approaches, which are applied in drug design and production, including the concepts, innovative techniques, and methodologies. This review is notably built on over 80 documents and demonstrates the practical application of green chemistry principles in pharmaceutical synthesis, emphasizing successful implementation and the environmental benefits achieved. Therefore, this review discusses the positive changes brought by green chemistry to pharmaceutical production and highlights the need for further research in designing and manufacturing “greener” substances, as well as in pollution abatement. Full article
Show Figures

Figure 1

27 pages, 1354 KiB  
Review
Biomedical Applications of Functionalized Composites Based on Metal–Organic Frameworks in Bone Diseases
by Chenxi Yun, Zhe Yuan, Rim El Haddaoui-Drissi, Ruitong Ni, Yunyun Xiao, Zhenhui Qi, Jie Shang and Xiao Lin
Pharmaceutics 2025, 17(6), 757; https://doi.org/10.3390/pharmaceutics17060757 - 8 Jun 2025
Viewed by 1045
Abstract
Every year, millions of people worldwide suffer from bone tissue damage caused by bone trauma and surgical operations, as well as diseases such as osteoporosis, osteoarthritis, osteomyelitis, and periodontitis. Bone defect repair is one of the major challenges in the field of regenerative [...] Read more.
Every year, millions of people worldwide suffer from bone tissue damage caused by bone trauma and surgical operations, as well as diseases such as osteoporosis, osteoarthritis, osteomyelitis, and periodontitis. Bone defect repair is one of the major challenges in the field of regenerative medicine. Although bone grafts are the gold standard for treating bone defects, factors such as donor sources and immune responses limit their application. Functionalized nanomaterials have become an effective means of treating bone diseases due to their good biocompatibility and osteoinductivity, anti-inflammatory, and antibacterial properties. Metal–organic frameworks (MOFs) are porous coordination polymers composed of metal ions and organic ligands, featuring unique physical properties, including a high surface area–volume ratio and porosity. In regenerative medicine, MOFs function as the functions of drug carriers, metal ion donors, nanozymes, and photosensitizers. When combined with other functional materials, they regulate cellular reactive oxygen species, macrophage phenotypic transformation, bone resorption, osteogenesis, and mineralization, providing a new paradigm for bone tissue engineering. This study reviews the classification of functionalized MOF composites in biomedicine and the application of their synthesis techniques in bone diseases. The unique in vivo and in vitro applications of MOFs in bone diseases, including osteoarthritis, osteoporosis, bone tumors, osteomyelitis, and periodontitis, are explored. Their properties include excellent drug loading and sustained release abilities, high antibacterial activity, and bone induction abilities. This review enables readers to better understand the cutting-edge progress of MOFs in bone regeneration applications, which is crucial for the design of and functional research on MOF-related nanomaterials. Full article
Show Figures

Graphical abstract

57 pages, 11752 KiB  
Review
Cellulose-Based Hybrid Hydrogels for Tissue Engineering Applications: A Sustainable Approach
by Elizabeth Vázquez-Rivas, Luis Alberto Desales-Guzmán, Juan Horacio Pacheco-Sánchez and Sofia Guillermina Burillo-Amezcua
Gels 2025, 11(6), 438; https://doi.org/10.3390/gels11060438 - 6 Jun 2025
Viewed by 3237
Abstract
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves [...] Read more.
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves into current research focused on creating advanced cellulose-based hydrogels with tailored mechanical, biological, chemical, and surface properties. These hydrogels show promise in healing, regenerating, and even replacing human tissues and organs. The synthesis of these hydrogels employs a range of innovative techniques, including supramolecular chemistry, click chemistry, enzyme-induced crosslinking, ultrasound, photo radiation, high-energy ionizing radiation, 3D printing, and other emerging methods. In the realm of tissue engineering, various types of hydrogels are explored, such as stimuli-responsive, hybrid, injectable, bio-printed, electrospun, self-assembling, self-healing, drug-releasing, biodegradable, and interpenetrating network hydrogels. Moreover, these materials can be further enhanced by incorporating cell growth factors, biological molecules, or by loading them with cells or drugs. Looking ahead, future research aims to engineer and tailor hydrogels to meet specific needs. This includes exploring safer and more sustainable materials and synthesis techniques, identifying less invasive application methods, and translating these studies into practical applications. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop