Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Magnetic Biomembrane Production
2.1.1. Microorganism Maintenance
2.1.2. Preparation of Pre-Inoculum
2.1.3. Biomembrane Production
2.1.4. Production of Magnetite Nanoparticles
2.1.5. Incorporation of Magnetite Nanoparticles into Biocellulose Membranes
2.2. Physicochemical and Structural Characterizations
2.2.1. X-Ray Diffraction (XRD)
2.2.2. Fourier-Transform Infrared (FTIR) Spectroscopy
2.2.3. Scanning Electron Microscopy (SEM)
2.2.4. Vibrating Sample Magnetometry (VSM)
3. Results and Discussion
3.1. X-Ray Diffraction (XRD)
3.2. Fourier-Transform Infrared (FTIR) Spectrometry
3.3. Scanning Electron Microscopy (SEM)
3.4. Vibrating Sample Magnetometry (VSM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betlej, I.; Zakaria, S.; Krajewski, K.J.; Boruszewski, P. Bacterial cellulose–properties and its potential application. Sains Malays. 2021, 50, 493–505. [Google Scholar] [CrossRef]
- Amorim, J.D.P.; Souza, K.C.; Duarte, C.R.; Duarte, I.S.; Ribeiro, F.A.S.; Silva, G.S.; Farias, P.M.A.; Sting, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Xu, W.; Xiong, R.; Huang, C. Cellulose-based fibrous materials for self-powered wearable pressure sensor: A mini review. Cellulose 2023, 30, 1981–1998. [Google Scholar] [CrossRef]
- Kurosumi, A.; Sasaki, C.; Yamashita, Y.; Nakamura, Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr. Polym. 2019, 76, 333–335. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Ullah, M.W.; Khan, S.; Park, J.K. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean J. Chem. Eng. 2020, 37, 925–937. [Google Scholar] [CrossRef]
- Dhar, P.; Etula, J.; Bankar, S.B. In Situ Bioprocessing of Bacterial Cellulose with Graphene: Percolation Network Formation, Kinetic Analysis with Physicochemical and Structural Properties Assessment. ACS Appl. Bio. Mater. 2019, 2, 4052–4066. [Google Scholar] [CrossRef]
- Saleh, A.K.; Alessa, A.H.; Omran, A.M.E. Characterization of ex situ developed bacterial cellulose/ZnO-NPs nanocomposite for antimicrobial evaluation. Biomass Convers. Biorefin. 2024, 15, 4597–4605. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Han, S.S. Potential of magnetic nano cellulose in biomedical applications: Recent advances. Biomater. Polym. Horiz. 2022, 1, 32–47. [Google Scholar] [CrossRef]
- Jin, K.; Jin, C.; Wu, Y. Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydr. Polym. 2022, 283, 119171. [Google Scholar] [CrossRef]
- Ulla, M.W.; Alabbosh, K.F.S.; Fatima, A.; Ul Islam, S.; Manan, S.; Ul-Islam, M.; Yang, G. Advanced biotechnological applications of bacterial nanocellulose-based nanohybrids: A review. Adv. Ind. Eng. Polym. Res. 2024, 7, 100–121. [Google Scholar] [CrossRef]
- Popa, L.; Ghica, M.V.; Tudoroiu, E.E.; Ionescu, D.; Dinu-Pirvu, C.E. Bacterial cellulose—A remarkable polymer as a source for biomaterials tailoring. Materials 2022, 15, 1054. [Google Scholar] [CrossRef] [PubMed]
- Muiruri, J.K.; Yeo, J.C.C.; Zhu, Q.; Ye, E.; Loh, X.J.; Li, Z. Bacterial cellulose: Recent advances in biosynthesis, functionalization strategies and emerging applications. Eur. Polym. J. 2023, 199, 112446. [Google Scholar] [CrossRef]
- Heidarian, P.; Kouzani, A.Z. A self-healing magneto-responsive nanocellulose ferrogel and flexible soft strain sensor. J. Biol. Macromol. 2023, 234, 15. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.; Cleveland, D.; Tran, G.; Joseph, F. Potential of bacterial cellulose for sustainable fashion and textile applications: A review. J. Mater. Sci. 2024, 59, 6685–6710. [Google Scholar] [CrossRef]
- Katyal, M.; Mahajan, R.; Sharma, A.; Gupta, R.K.; Aggarwal, N.; Yadav, A. Bacterial cellulose: Nature's greener tool for industries. Biotechnol. Appl. Biochem. 2023, 70, 1629–1640. [Google Scholar] [CrossRef]
- Maruthupandy, M.; Riquelme, D.; Rajivgandhi, G.; Muneeswaran, T.; Cho, W.S.; Anand, M.; Manoharan, N.; Quero, F. Dual-role of graphene/bacterial cellulose/magnetite nanocomposites as highly effective antibacterial agent and visible-light-driven photocatalyst. J. Environ. Chem. Eng. 2021, 9, 5. [Google Scholar] [CrossRef]
- Chaabane, L.; Chahdoura, H.; Mehdaoui, R.; Snoussi, M.; Beyou, E.; Lahcini, M.; Baouab, M.H.V. Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydr. Polym. 2020, 247, 116707. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Z.; Luo, S.Y.; Zong, M.H.; Lou, W.Y. Multi-functional Magnetic Hydrogels Based on Millettia Speciosa Champ Residue Cellulose and Chitosan: Highly Efficient and Reusable Adsorbent for Congo Red and Cu2+ removal. Chem. Eng. J. 2021, 423, 130198. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Du, Z.; Hu, S.; Huang, J.; Shi, Z.; Su, B.; Yang, G. CoFe2O4 Embedded Bacterial Cellulose for Flexible, Biodegradable, and Self-Powered Electromagnetic Sensor. Nano Energy 2022, 102, 107740. [Google Scholar] [CrossRef]
- Fan, M.; Xia, X.; Li, S.; Zhang, R.; Wu, L.; Qu, M.; Tang, P.; Bin, Y. Sustainable bacterial cellulose reinforced carbon nanotube buckypaper and its multifunctionality for electromagnetic interference shielding, Joule heating and humidity sensing. Chem. Eng. J. 2022, 441, 136103. [Google Scholar] [CrossRef]
- Petrov, K.D.; Chubarov, A.S. Magnetite nanoparticles for biomedical applications. Encyclopedia 2022, 2, 1811–1828. [Google Scholar] [CrossRef]
- Souza, T.C.; Costa, A.F.d.S.; Vinhas, G.M.; Sarubbo, L.A. Synthesis of iron oxides and influence on final sizes and distribution in bacterial cellulose applications. Polymers 2023, 15, 3284. [Google Scholar] [CrossRef]
- Saipul Bahri, N.S.N.; Nguyen, T.; Matsumoto, K.; Watanabe, M.; Morita, Y.; Septiani, E.L.; Le, K.A.C.; Hirano, T.; Ogi, T. Controlling the magnetic responsiveness of cellulose nanofiber particles embedded with iron oxide nanoparticles. ACS Appl. Bio Mater. 2024, 7, 3227–3237. [Google Scholar] [CrossRef] [PubMed]
- Aphesteguy, J.C.; Jacobo, S.E.; Schegoleva, N.N.; Kurlyandskaya, G.V. Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. J. Alloys Compd. 2010, 495, 509–512. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167. [Google Scholar] [CrossRef]
- Jun, Y.; Seo, J.; Cheon, J. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Acc. Chem. Res. 2008, 41, 179–189. [Google Scholar] [CrossRef]
- Ze, X.L.; Sun, Y.J.; Ge, S.W.; Zhu, F.; Yin, F.; Gu, L.; Yang, F.; Hu, P.; Chen, G.P.; Wang, K.; et al. An overview of synthesis and structural regulation of magnetic nanomaterials prepared by chemical coprecipitation. Superalloys 2023, 13, 152. [Google Scholar] [CrossRef]
- Yazdani, F.; Seddigh, M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater. Chem. Phys. 2016, 184, 318–323. [Google Scholar] [CrossRef]
- Souza, T.C.; dos Santos, A.R.; Chacon, J.L.d.S.P.; Durval, Í.J.B.; Costa, A.F.d.S.; Padrón Hernández, E.; Converti, A.; Vinhas, G.M.; Sarubbo, L.A. Innovation in methods for incorporating magnetite into biocellulose for electromagnetic interference shielding effectiveness applications. Energies 2024, 17, 3202. [Google Scholar] [CrossRef]
- Goss, C. Saturation magnetisation, coercivity and lattice parameter changes in the system Fe₃O₄-γFe₂O₃, and their relationship to structure. Phys. Chem. Miner. 1988, 16, 164–171. [Google Scholar] [CrossRef]
- Jiang, W.; Lai, K.; Hu, H.; Zeng, X.; Lan, F.; Liu, K.; Wu, Y.; Gu, Z. The effect of [Fe³⁺]/[Fe²⁺] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J. Nanopart. Res. 2011, 13, 5135–5145. [Google Scholar] [CrossRef]
- Eom, T.; Kim, S.; An, S.; Oh, K.; Suhr, D. Effect on the formation of Fe₃O₄ with ferrous sulfate/ferric sulfate molar ratio and precipitants. J. Korean Med. Sci. 2011, 21, 157–162. [Google Scholar] [CrossRef]
- Shahid, M.; Choi, Y. Characterization and application of magnetite particles, synthesized by reverse coprecipitation method in open air from mill scale. J. Magn. Magn. Mater. 2020, 495, 165823. [Google Scholar] [CrossRef]
- Hestrin, S.; Schramm, M. Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 1954, 58, 345–352. [Google Scholar] [CrossRef]
- Hungund, B.; Gupta, S.G. Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. J. Microb. Biochem. Technol. 2010, 2, 127–133. [Google Scholar] [CrossRef]
- Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient source. Front. Microbiol. 2017, 8, 2027. [Google Scholar] [CrossRef]
- Galdino, C.J.S., Jr.; Maia, A.D.; Meira, H.M.; Souza, T.C.; Amorim, J.D.P.; Almeida, F.C.G.; Costa, A.F.S.; Sarubbo, L.A. Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochem. 2020, 91, 288–296. [Google Scholar] [CrossRef]
- Valenzuela, R.; Bastidas, D.M.; Rojas, A.; Urreta, S.E.; Chiacchiarini, P.; Sapag, K. Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe₃O₄) by the co-precipitation method. J. Alloys Compd. 2009, 488, 227–231. [Google Scholar] [CrossRef]
- Rahmawati, R.; Harjanto, S.; Soepriyanto, S.; Susanto, H.; Suharso, D. Optimization of frequency and stirring rate for synthesis of magnetite (Fe₃O₄) nanoparticles by using coprecipitation-ultrasonic irradiation methods. Procedia Eng. 2017, 170, 55–59. [Google Scholar] [CrossRef]
- Syahida, A.; Sutanto, H.; Manawan, M.; Setiadi, E.; Wibowo, A.; Irianti, F.; Alkian, I.; Hidayanto, E.; Priyono, P.; Marhaendrajaya, I.; et al. Diffraction and magnetization properties of Fe₃O₄ nanoparticle from natural iron sand in various stirring rate for potential biomedical applications. Rasayan J. Chem. 2022, 15, 316–325. [Google Scholar] [CrossRef]
- Burton, A.W.; Ong, K.; Rea, T.; Chan, I.Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 2009, 117, 75–90. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Pei, Y.; Ring, T.A. Room temperature coprecipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 2013, 6, 5549–5567. [Google Scholar] [CrossRef]
- Cheah, Y.S.; Masaharu, K. Comparison of crystallinity index computational methods based on lignocellulose X-ray diffractogram. Mater. Res. Found. 2023, 29, 128–134. [Google Scholar] [CrossRef]
- Saragi, T.; Widyaiswari, U.; Manalu, D.J.; Adiperdana, B.; Risdiana, R.; Adachi, T. Particle Size and Its Distribution Deduced from Magnetic Properties of Magnetite Nanoparticles by the Modified Langevin Equation. AIP Adv. 2023, 13, 095103. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, D.; Yokouchi, Y.; Tanaka, H.; Iwata, I. Crystalline investigations of cellulose films and fibers prepared using ionic liquid mixed solvent. J. Jpn. Soc. Test. Mater. 2022, 71, 579–584. [Google Scholar] [CrossRef]
- Wroblewski, C.; Volford, T.; Martos, B.; Samoluk, J.; Martos, P. High yield synthesis and application of magnetite nanoparticles (Fe₃O₄). Magnetochemistry 2020, 6, 22. [Google Scholar] [CrossRef]
- Zheng, H.; Daghagheleh, O.; Ma, Y.; Taferner, B.; Schenk, J.; Kapelyushin, Y. Phase transition of magnetite ore fines during oxidation probed by in situ high-temperature X-ray diffraction. Metall. Mater. Trans. B 2023, 54BI, 1195. [Google Scholar] [CrossRef]
- Sabur, A.; Gafur, A. Crystallographic, morphological, magnetic, and thermal characterization of superparamagnetic magnetite nanoparticles (Fe₃O₄) synthesized by chemical coprecipitation method and calcined at 250 °C for 4 hr. J. Nanomater. 2024, 2024, 577778. [Google Scholar] [CrossRef]
- Girardet, T.; Venturini, P.; Martinez, H.; Dupin, J.-C.; Cleymand, F.; Fleutot, S. Spinel. Magnetic iron oxide nanoparticles: Properties, synthesis and washing methods. Appl. Sci. 2022, 12, 8127. [Google Scholar] [CrossRef]
- Usawattanakul, N.; Torgbo, S.; Sukyai, P.; Khantayanuwong, S.; Puangsin, B.; Srichola, P. Development of nanocomposite film comprising of polyvinyl alcohol (PVA) incorporated with bacterial cellulose nanocrystals and magnetite nanoparticles. Polymers 2021, 13, 1778. [Google Scholar] [CrossRef]
- Chanthiwong, M.; Mongkolthanaruk, W.; Eichhorn, S.J.; Pinitsoontorn, S. Controlling the processing of co-precipitated magnetic bacterial cellulose/iron oxide nanocomposites. Mater. Des. 2020, 196, 109148. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Xu, N.; Guo, K.; Xu, Z.; Chen, C.; Liu, H.; Gao, J. Regulation of saturation magnetization of magnetite by doping with group III elements. Phys. Chem. Chem. Phys. 2023, 25, 33152–33158. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.J.; Ferguson, R.M.; Khandhar, A.P.; Krishnan, K.M. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv. 2016, 6, 77452–77464. [Google Scholar] [CrossRef]
- Sriplai, N.; Mongkolthanaruk, W.; Eichhorn, S.J.; Pinitsoontorn, S. Magnetically responsive and flexible bacterial cellulose membranes. Carbohydr. Polym. 2018, 192, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Yang, Q.; He, Y.; Liu, R. Current sensor based on an integrated micro-ring resonator and superparamagnetic nanoparticles. Opt. Express 2020, 28, 5684–5691. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Litvinova, L.S.; Safronov, A.P.; Schupletsova, V.V.; Tyukova, I.S.; Khaziakhmatova, O.G.; Slepchenko, G.B.; Yurova, K.A.; Cherempey, E.G.; Kulesh, N.A.; et al. Water-Based Suspensions of Iron Oxide Nanoparticles with Electrostatic or Steric Stabilization by Chitosan: Fabrication, Characterization and Biocompatibility. Sensors 2017, 17, 2605. [Google Scholar] [CrossRef]
- Mira-Cuenca, C.; Meslier, T.; Roig-Sanchez, S.; Laromaine, A.; Roig, A. Patterning bacterial cellulose films with iron oxide nanoparticles and magnetic resonance imaging monitoring. ACS Appl. Polym. Mater. 2021, 3, 4959–4965. [Google Scholar] [CrossRef]
- Yingkamhaeng, N.; Intapan, I.; Sukyai, P. Fabrication and characterisation of functionalised superparamagnetic bacterial nanocellulose using ultrasonic-assisted in situ synthesis. Fibers Polym. 2018, 19, 489–497. [Google Scholar] [CrossRef]
- Khanam, J.; Ahmed, M.F.; Zaman, S.M.; Sharmin, N. Synthesis of nano-sized magnetic iron oxide by a simple and facile co-precipitation method. Bangladesh J. Sci. Ind. Res. 2022, 57, 67–76. [Google Scholar] [CrossRef]
- Osipov, V.V.; Platonov, V.V.; Uimin, M.A.; Podkin, A.V. Laser synthesis of magnetic iron oxide nanopowders. Tech. Phys. 2012, 57, 543–549. [Google Scholar] [CrossRef]
- Darbandi, M.; Stromberg, F.; Landers, J.; Reckers, N.; Sanyal, B.; Keune, W.; Wende, H. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 2012, 45, 195001. [Google Scholar] [CrossRef]
Magnetite | Crystallinity (%) | Crystallite Size (nm) |
---|---|---|
In this study | 60.5 | 6.96 |
Souza et al. [29] | 43.0 | 20.20 |
Sample | Magnetite Concentration (%) | Saturation Magnetization (emu/g) | Coercive Field (Oe) |
---|---|---|---|
Fe3O4 (MAG N) | 100 | 50.0 | ≈0 |
Fe3O4 [29] | 100 | 29.0 | 87, 57 |
BCP-COMAG [29] | 82, 92 | 10.0 | 22, 07 |
BC40MAG | 40 | 29.6 | ≈0 |
BC50MAG | 50 | 30.7 | ≈0 |
BC60MAG | 60 | 34.4 | ≈0 |
BC70MAG | 70 | 36.2 | ≈0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, T.C.d.; Durval, I.J.B.; Meira, H.M.; Costa, A.F.d.S.; Hernández, E.P.; Converti, A.; Vinhas, G.M.; Sarubbo, L.A. Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials. Membranes 2025, 15, 198. https://doi.org/10.3390/membranes15070198
Souza TCd, Durval IJB, Meira HM, Costa AFdS, Hernández EP, Converti A, Vinhas GM, Sarubbo LA. Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials. Membranes. 2025; 15(7):198. https://doi.org/10.3390/membranes15070198
Chicago/Turabian StyleSouza, Thaís Cavalcante de, Italo José Batista Durval, Hugo Moraes Meira, Andréa Fernanda de Santana Costa, Eduardo Padrón Hernández, Attilio Converti, Glória Maria Vinhas, and Leonie Asfora Sarubbo. 2025. "Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials" Membranes 15, no. 7: 198. https://doi.org/10.3390/membranes15070198
APA StyleSouza, T. C. d., Durval, I. J. B., Meira, H. M., Costa, A. F. d. S., Hernández, E. P., Converti, A., Vinhas, G. M., & Sarubbo, L. A. (2025). Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials. Membranes, 15(7), 198. https://doi.org/10.3390/membranes15070198