Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
Abstract
1. Introduction
2. Valorization of Aquatic Biomass
2.1. Aquatic Animal Biomass-Based Carbon Dots and Their Application
2.2. Aquatic Plant Biomass-Based Carbon Dots and Their Application
3. Carbon Dots for Biosensing and Marine Biotoxins
3.1. Background and Biosensing System Technologies of Marine Biotoxins
3.2. Applications of Carbon-Based Nanomaterials in Biosensing
3.3. Applications of AB-CDs in Biosensing System Technologies
4. Critical Discussion and Future Outlook
- Biomass Variability: Quantum yield inconsistency (5–25%) due to heterogeneous waste composition (e.g., fish scales vs. algae) (see Table 4), reducing detection reproducibility.
- ◦
- Animal-derived CDs: Higher heterogeneity (5–15% QY) from diverse protein/calcium profiles.
- ◦
- Plant/Algal CDs: More consistent QY (15–25%) via uniform polysaccharides and natural N/S doping.
- Scalability: Batch-processing limits versus industrial-scale demands.
- Simple reaction conditions: Hydrothermal methods for AB-CDs operate at 160–220 °C, avoiding high-temperature pyrolysis (>500 °C) or vacuum processes required for semiconductor QDs.
- Shorter processing times: Microwave-assisted AB-CD synthesis achieves full carbonization in 1–4 h vs. 8–24 h for semiconductor QDs.
- Renewable energy compatibility: Solar- or biomass-powered reactors further reduce energy footprints by 30%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.; Zheng, Q.; Tao, S.; Xia, C.; Liu, C.; Liu, P.; Yang, B. Carbon Dots based photoinduced reactions: Advances and perspectives. Adv. Sci. 2023, 10, 2207621. [Google Scholar] [CrossRef]
- Wareing, T.C.; Gentile, P.; Phan, A.N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021, 15, 15471–15501. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, Y.; Zhang, Z.; Akram, A.; Chen, L.; Li, J. The Preparation of Biomass-Derived Carbon Dots and Its Application Prospect in the Field of Vascular Stent Coating. Coatings 2024, 14, 1432. [Google Scholar] [CrossRef]
- Tu, L.; Li, Q.; Qiu, S.; Li, M.; Shin, J.; Wu, P.; Singh, N.; Li, J.; Ding, Q.; Hu, C.; et al. Recent developments in carbon dots: A biomedical application perspective. J. Mater. Chem. B 2023, 11, 3038–3053. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish waste: From problem to valuable resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef]
- Jin, T.; Liu, T.; Lam, E.; Moores, A. Chitin and chitosan on the nanoscale. Nanoscale Horiz. 2021, 6, 505–542. [Google Scholar] [CrossRef] [PubMed]
- Botana, L.M.; Vilariño, N.; Alfonso, A.; Louzao, M.C.; Vieytes, M.R.; Botana, A.M.; Vale, C. Use of biosensors as alternatives to current regulatory methods for marine biotoxins. In Molecular Biological Technologies for Ocean Sensing; Humana Press: Totowa, NJ, USA, 2012; pp. 219–242. [Google Scholar]
- Vilariño, N.; Fonfría, E.S.; Louzao, M.C.; Botana, L.M. Use of biosensors as alternatives to current regulatory methods for marine biotoxins. Sensors 2009, 9, 9414–9443. [Google Scholar] [CrossRef] [PubMed]
- Alfio, V.G.; Manzo, C.; Micillo, R. From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules 2021, 26, 1002. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2022—Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Feng, Z.; Adolfsson, K.H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustain. Mater. Technol. 2021, 29, e00304. [Google Scholar] [CrossRef]
- Yadav, S.; Daniel, S. Green synthesis of zero-dimensional carbon nanostructures in energy storage applications—A review. Energy Storage 2024, 6, e500. [Google Scholar] [CrossRef]
- Hassan, O.H.; Saad, A.S.; Ghali, M. Cost-Effective Hydrothermal Synthesis of Luminescent Carbon Dots from Date Palm Midrib. Key Eng. Mater. 2024, 985, 75–80. [Google Scholar] [CrossRef]
- Anagbonu, P.; Ghali, M.; Allam, A. Low-temperature green synthesis of few-layered graphene sheets from pomegranate peels for supercapacitor applications. Sci. Rep. 2023, 13, 15627. [Google Scholar] [CrossRef] [PubMed]
- Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost effective synthesis of graphene nanomaterials for non-enzymatic electrochemical sensors for glucose: A comprehensive review. Sensors 2022, 22, 355. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.H. Ultrafast, low-cost, and mass production of high-quality graphene. Angew. Chem. Int. Ed. 2020, 59, 9232–9234. [Google Scholar] [CrossRef]
- Coroş, M.; Pogăcean, F.; Roşu, M.C.; Socaci, C.; Borodi, G.; Mageruşan, L.; Biriş, A.R.; Pruneanu, S. Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. Rsc Adv. 2016, 6, 2651–2661. [Google Scholar] [CrossRef]
- Sisa, A.; Martínez-Álvarez, O.; Gómez-Estaca, J.; Mosquera, M. Valorization of Yellowfin Tuna Tails: From Proteolytic Enzyme Production to Gelatin and Antioxidant Hydrolysate Extraction. Foods 2024, 13, 2034. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.C.; Islam, M.R.; Sadia, S.; Yeasmin, M.; Park, J.S.; Lee, H.J.; Chun, B.S. Trash to treasure: An up-to-date understanding of the valorization of seafood by-products, targeting the major bioactive compounds. Mar. Drugs 2023, 21, 485. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Xu, Q.; Cao, Y.; Wei, J.; Liang, Z.; Jiang, X.; Wu, Y.; Guo, C. Solvothermal regulation of fluorescence quantum yield of carbon dots derived from biomass for zebrafish imaging. J. Lumin. 2024, 271, 120583. [Google Scholar] [CrossRef]
- Yang, F.; Han, X.; Ai, Y.; Shao, B.; Ding, W.; Tang, K.; Sun, W. A Portable Electrochemical Dopamine Detector Using a Fish Scale-Derived Graphitized Carbon-Modified Screen-Printed Carbon Electrode. Molecules 2024, 29, 744. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, C.; Dong, P.; Fu, P.; Zhang, Y.; Hua, R. Green synthesis of carbon dots from fish scales for selective turn off–on detection of glutathione. Rsc Adv. 2024, 14, 3578–3587. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xiao, X.; Cai, C.; Cheng, Q.; Zhu, L.; Zhang, J.; Wei, B.; Wang, H. Insight into the differences in carbon dots prepared from fish scales using conventional hydrothermal and microwave methods. Environ. Sci. Pollut. Res. 2023, 30, 54616–54627. [Google Scholar] [CrossRef]
- Xu, C.; Wang, B.; Xing, J.; Zhao, Y.; Zhu, L.; Zhang, J.; Wei, B.; Wang, H. Highly fluorescent fish scale-derived carbon dots for quercetin sensing. New J. Chem. 2024, 48, 16631–16641. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Yang, X.; Chang, J.; Liu, Z.; Jiang, K. Fish-scale-derived carbon dots as efficient fluorescent nanoprobes for detection of ferric ions. RSC Adv. 2019, 9, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Wong, S.I.; Li, Q.; Zhou, P.; Zhou, J.; Zhao, Y.; Sunarso, J.; Zhuo, S. Fishbone-derived N-doped hierarchical porous carbon as an electrode material for supercapacitor. J. Alloys Compd. 2020, 832, 154950. [Google Scholar] [CrossRef]
- Gopika, R.; Ashraf, P.M.; Binsi, P.K. Utilization of tuna fish skin waste: Synthesis and application of nanocarbon dots for corrosion resistance in epoxy polymers. Arab. J. Sci. Eng. 2024, 49, 9249–9267. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, R.; Zhou, J. Shrimp-Shell-Derived Carbon Dots for Quantitative Detection by Fluorometry and Colorimetry: A New Analytic Chemistry Experiment for University Education. J. Chem. Educ. 2024, 101, 2784–2789. [Google Scholar] [CrossRef]
- Kechagias, A.; Lykos, C.; Karabagias, V.K.; Georgopoulos, S.; Sakavitsi, V.; Leontiou, A.; Salmas, C.E.; Giannakas, A.E.; Konstantinou, I. Development and Characterization of N/S-Carbon Quantum Dots by Valorizing Greek Crayfish Food Waste. Appl. Sci. 2023, 13, 8730. [Google Scholar] [CrossRef]
- Kumar, M.; Chinnathambi, S.; Bakhori, N.; Abu, N.; Etezadi, F.; Thangavel, V.; Packwood, D.; Sivaniah, E.; Pandian, G.N. Biomass-derived carbon dots as fluorescent quantum probes to visualize and modulate inflammation. Sci. Rep. 2024, 14, 12665. [Google Scholar] [CrossRef] [PubMed]
- Kammler, S.; Romero, A.M.; Burkhardt, C.; Baruth, L.; Antranikian, G.; Liese, A.; Kaltschmitt, M. Macroalgae valorization for the production of polymers, chemicals, and energy. Biomass Bioenergy 2024, 183, 107105. [Google Scholar] [CrossRef]
- Uma, V.S.; Usmani, Z.; Sharma, M.; Diwan, D.; Sharma, M.; Guo, M.; Tuohy, M.G.; Makatsoris, C.; Zhao, X.; Thakur, V.K.; et al. Valorisation of algal biomass to value-added metabolites: Emerging trends and opportunities. Phytochem. Rev. 2023, 22, 1015–1040. [Google Scholar] [CrossRef]
- Kurian, M.; Paul, A. Recent trends in the use of green sources for carbon dot synthesis–A short review. Carbon Trends 2021, 3, 100032. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Cai, J.; Huang, X.; Lin, L.; Lin, Y.; Yang, H.; Li, S. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchem. J. 2019, 147, 1038–1047. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, V.K.; Singh, M.; Singh, P.; Khadim, S.R.; Singh, U.; Koch, B.; Hassan, S.H.; Asthana, R.K. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. J. Photochem. Photobiol. A Chem. 2019, 376, 63–72. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Z.; Dong, J.; Zhu, J.; Liu, C.; Li, G.; Lu, M.; Han, J.; Cao, S.; Wang, W. Fluorescent imaging and toxicology study of alga-derived carbon dots in zebrafish. Ecotoxicol. Environ. Saf. 2024, 273, 116122. [Google Scholar] [CrossRef] [PubMed]
- Pena, A.C.; Raymundo, L.M.; Trierweiler, L.F.; Gutterres, M. Green carbon dots synthesized from Chlorella Sorokiniana microalgae biochar for chrome detection. J. Ind. Eng. Chem. 2023, 117, 130–139. [Google Scholar] [CrossRef]
- Deka, M.J.; Dutta, P.; Sarma, S.; Mehdi, O.K.; Talukdar, N.C.; Chowdhury, D. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon 2019, 5, e01985. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, V.; Singh, J.; Upadhyaya, C.P. Recent Developments in Microbial Technologies; Springer: Singapore, 2021. [Google Scholar]
- Kim, Y.; Jeon, Y.; Na, M.; Hwang, S.J.; Yoon, Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. Sensors 2024, 24, 431. [Google Scholar] [CrossRef]
- Gopalakrishnakone, P.; Haddad, K.V., Jr.; William, K.; Euikyung, T. Marine and Freshwater Toxins; Toxinology; Springer: Dordrecht, The Netherlands, 2016; ISBN 978-94-007-6419-4. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, J.; Yang, C.; Jiang, J.; Zhang, Q.; Ping, J.; Li, P. Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): Principles, application, and perspective. TrAC Trends Anal. Chem. 2023, 165, 117144. [Google Scholar] [CrossRef]
- Dom, I.; Biré, R.; Hort, V.; Lavison-Bompard, G.; Nicolas, M.; Guérin, T. Extended Targeted and Non-Targeted Strategies for the Analysis of Marine Toxins in Mussels and Oysters by (LC-HRMS). Toxins 2018, 10, 375. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Yan, X.; Wang, L.; Ma, R.; Qi, X.; Wang, S.; Mao, X. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. J. Hazard. Mater. 2022, 421, 126690. [Google Scholar] [CrossRef]
- Mafra Jr, L.L.; de Souza, D.A.; Menezes, M.; Schramm, M.A.; Hoff, R. Marine biotoxins: Latest advances and challenges toward seafood safety, using Brazil as a case study. Curr. Opin. Food Sci. 2023, 53, 101078. [Google Scholar] [CrossRef]
- Gerssen, A.; Martínez, A.G. Emerging Marine Biotoxins. Toxins 2019, 11, 314. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Dechraoui Bottein, M.Y.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef]
- Roggatz, C.C.; Fletcher, N.; Benoit, D.M.; Algar, A.C.; Doroff, A.; Wright, B.; Wollenberg Valero, K.C.; Hardege, J.D. Saxitoxin and tetrodotoxin bioavailability increases in future oceans. Nat. Clim. Change 2019, 9, 840–844. [Google Scholar] [CrossRef]
- Hashem, M.; Abd El-Azeem, R.M.; Mahrous, H.; Dawood, A.K. Cytochrome Oxidase I (COI) gene analysis of the Nile Puffer Fish (Tetraodon lineatus) from Lake Nasser, Aswan, Egypt. Egypt. J. Aquat. Biol. Fish. 2020, 24, 75–84. [Google Scholar] [CrossRef]
- Tinacci, L.; Malloggi, C.; Giusti, A.; Galli, F.; Dall’Ara, S.; Armani, A. Seafood cross-contamination by tetrodotoxin (TTX): Management of an unusual route of exposure. J. Consum. Prot. Food Saf. 2024, 19, 119–122. [Google Scholar] [CrossRef]
- Curulli, A. Electrochemical biosensors in food safety: Challenges and perspectives. Molecules 2021, 26, 2940. [Google Scholar] [CrossRef] [PubMed]
- Dillon, M.; Zaczek-Moczydlowska, M.A.; Edwards, C.; Turner, A.D.; Miller, P.I.; Moore, H.; McKinney, A.; Campbell, K. Current trends and challenges for rapid smart diagnostics at point-of-site testing for marine toxins. Sensors 2021, 21, 2499. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wang, R.; Zhao, H. Towards sensitive reliable immunoassays of marine biotoxins: From rational design to food analysis. J. Agric. Food Chem. 2024, 72, 16076–16094. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Shen, X.; Liu, M.; Kong, C.; Zhai, W.; Fodjo, E.K.; Cai, Y. Chitosan and nafion assisted modification of enzyme-free electrochemical immunosensors for the detection of tetrodotoxin. Mater. Express 2021, 11, 461–468. [Google Scholar]
- Li, Y.R.; Dong, X.X.; Cai, W.Y.; Liang, Y.F.; Chen, X.H.; Li, X.M.; Wang, Y.; Liu, Y.J.; Lei, H.T.; Xu, Z.L. Non-toxic immunosensor for highly efficient detection of tetrodotoxin by electrochemical and colorimetric dual-mode sensing platform. Sens. Actuators B Chem. 2023, 389, 133849. [Google Scholar] [CrossRef]
- Daniso, E.; Melpignano, P.; Susmel, S.; Tulli, F. Optimization of an OLED-based immunosensor for the detection of tetrodotoxin in mussels. Food Control. 2024, 160, 110352. [Google Scholar] [CrossRef]
- Kim, T.H.; Cho, C.H.; Kweon, S.Y.; Kim, S.M.; Kailasa, S.K.; Park, J.P.; Park, C.Y.; Park, T.J. Development of fluorometric detection for saxitoxin with its specific binding peptide. Sens. Diagn. 2024, 3, 301–308. [Google Scholar] [CrossRef]
- Serrano, P.C.; Nunes, G.E.; Avila, L.B., Jr.; Reis, C.P.; Gomes, A.M.; Reis, F.T.; Sartorelli, M.L.; Melegari, S.P.; Matias, W.G.; Bechtold, I.H. Electrochemical impedance biosensor for detection of saxitoxin in aqueous solution. Anal. Bioanal. Chem. 2021, 413, 6393–6399. [Google Scholar] [CrossRef]
- Bratakou, S.; Nikoleli, G.P.; Siontorou, C.G.; Nikolelis, D.P.; Karapetis, S.; Tzamtzis, N. Development of an Electrochemical Biosensor for the Rapid Detection of Saxitoxin Based on Air Stable Lipid Films with Incorporated Anti-STX Using Graphene Electrodes. Electroanalysis 2017, 29, 990–997. [Google Scholar] [CrossRef]
- Sun, A.; Chai, J.; Xiao, T.; Shi, X.; Li, X.; Zhao, Q.; Li, D.; Chen, J. Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples. Sens. Actuators B Chem. 2018, 258, 408–414. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W.; Li, Y.; Han, Y.; Wei, J.; Wu, L. Development of magnetic fluorescence aptasensor for sensitive detection of saxitoxin based on Fe3O4@ Au-Pt nanozymes. Sci. Total Environ. 2024, 921, 171236. [Google Scholar] [CrossRef]
- Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-printed electrodes for biosensing: A review (2008–2013). Microchim. Acta 2014, 181, 865–891. [Google Scholar] [CrossRef]
- Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-based nanomaterials in sensors for food safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, L.; Zhao, L.; Chao, J.; Tao, F.; Wang, F.; Li, C. Development of fluorescence sensor and test paper based on molecularly imprinted carbon quantum dots for spiked detection of domoic acid in shellfish and lake water. Anal. Chim. Acta 2022, 1197, 339515. [Google Scholar] [CrossRef]
- Nelis, J.L.; Migliorelli, D.; Mühlebach, L.; Generelli, S.; Stewart, L.; Elliott, C.T.; Campbell, K. Highly sensitive electrochemical detection of the marine toxins okadaic acid and domoic acid with carbon black modified screen printed electrodes. Talanta 2021, 228, 122215. [Google Scholar] [CrossRef]
- Onfray, C.; Thiam, A. Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. Micromachines 2023, 14, 1688. [Google Scholar] [CrossRef]
- Cancelliere, R.; Cianciaruso, M.; Carbone, K.; Micheli, L. Biochar: A sustainable alternative in the development of electrochemical printed platforms. Chemosensors 2022, 10, 344. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef]
- Lou, Y.; Hao, X.; Liao, L.; Zhang, K.; Chen, S.; Li, Z.; Ou, J.; Qin, A.; Li, Z. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Sel. 2021, 2, 1117–1145. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. Eng 2024, 5, 2223–2263. [Google Scholar] [CrossRef]
- Saini, S.; Kumar, K.; Saini, P.; Mahawar, D.K.; Rathore, K.S.; Kumar, S.; Dandia, A.; Parewa, V. Sustainable synthesis of biomass-derived carbon quantum dots and their catalytic application for the assessment of α, β-unsaturated compounds. RSC Adv. 2022, 12, 32619–32629. [Google Scholar] [CrossRef]
- Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A review of carbon dots produced from biomass wastes. Nanomaterials 2020, 10, 2316. [Google Scholar] [CrossRef]
- Bosu, S.; Rajamohan, N.; Sagadevan, S.; Raut, N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. Chemosphere 2023, 345, 140471. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Irmawati, R.; Hashim, H.S.; Ramdzan, N.S.M.; Fauzi, N.I.M. A review on carbon dots: Synthesis, characterization and its application in optical sensor for environmental monitoring. Nanomaterials 2022, 12, 2365. [Google Scholar] [CrossRef] [PubMed]
- Karthika, S.; Kuzmanović, U.; Schaus, S.E.; Galagan, J.E.; Grinstaff, M.W. Strategy, design, and fabrication of electrochemical biosensors: A tutorial. ACS Sens. 2024, 9, 2254–2274. [Google Scholar]
Source | Method | Conditions | Advantages | Disadvantages | Quantum Yield (%) | Applications | References |
---|---|---|---|---|---|---|---|
Fish scales (carp) | Hydrothermal | 200 °C/8 h, DMF solvent | High fluorescence yield and bioimaging | Toxic solvent (DMF) | 31.71 | Bioimaging | [21] |
Tilapia fish scales | Enzymatic hydrolysis | Room temp., enzymatic pre-treatment | Eco-friendly and selective detection | Time-intensive enzymatic process | N/A | Dopamine sensing in sweat | [22] |
Grass fish scales | Pyrolysis | 400 °C/4 h | Environmentally friendly and simple setup | Energy-intensive process | 23.8 | Environmental sensing | [23] |
Tuna skin | Hydrothermal | 180 °C/1 h | High yield and rapid synthesis | Limited scalability | N/A | Anticorrosive coatings | [28] |
Shrimp shells | Hydrothermal | 200 °C/6 h | Simple setup and high yield | Limited scalability | N/A | H2O2 and glucose sensing | [29] |
Crayfish shells | Hydrothermal | 220 °C/8 h | Antioxidant and antibacterial properties | High energy consumption | 8 | Food packaging | [30] |
Palm kernel and oyster shells | Hydrothermal | 160 °C/4 h | Biocompatibility and theragnostic applications | High process temperature | 22 | Bioimaging and inflammatory markers | [31] |
Source | Synthesis Method | Key Features | Quantum Yield (%) | Applications | Reference |
---|---|---|---|---|---|
Dunaliella salina | Hydrothermal (200 °C/5 h) | N/S-co-doped, low toxicity, and fluorescent | 5.93 | Algal imaging, Fe(III) sensing, and as an antioxidant | [35] |
Dunaliella salina | Hydrothermal (200 °C/3 h) | Nitrogen–phosphorus doped and fluorescent | 8 | Hg(II)/Cr(VI) sensing | [36] |
Laver, Wakame (algae) | Hydrothermal (200 °C/8 h) | High fluorescence and stable | N/A | Zebrafish imaging and nano-medicine | [37] |
Chlorella sorokiniana | Green synthesis | Stable and low cytotoxicity | N/A | Chrome (VI/III) sensing | [38] |
Type of Sensor | Marine Biotoxin | LOD/Range | Nanostructures | Reference |
---|---|---|---|---|
Electrochemical immunosensor | TTX | 2–1250 ng/mL (LOQ 4 µg/kg) | Chitosan and Nafion | [56] |
Electrochemical and colorimetric | TTX | Electrochemical: 1 × 10−5 μg/mL Colorimetric: 1.83 × 10−4 μg/mL | Biomimetic mineralized material (HRP/anti-TTX mAb@ZIF-8) | [57] |
OLED-based immunosensor | TTX | 44 ng/g | Not specified | [58] |
Fluorometric sensor | STX | 1.5 ppb | Graphene oxide (GO) | [59] |
Electrochemical biosensor | STX | Above 0.3 µg/L | Aptamers | [60] |
Lipid film biosensor | STX | Fast response (5–20 min) | Graphene nanosheets | [61] |
Fluorescent nanobiosensor | STX | 20.0–100.0 μg/L; LOD: 0.3 μg/kg in shellfish | Quantum dots and molecularly imprinted silica layers | [62] |
Magnetic fluorescent biosensor | STX | 0.6 nM | Green quantum dots (g-QDs), Fe3O4@Au-Pt nanozymes, and STX aptamer | [63] |
Sensor based on carbon dots (CDs) | DA | 10 nM | Carbon dots (CDs) | [64] |
Screen-printed electrochemical | DA, OA | DA: 1.7 ng/mL; OA: 0.15 ng/mL (buffer) | Carbon black | [65] |
Parameter | Aquatic Animal Biomass-Based CDs | Aquatic Plant Biomass-Based CDs | References |
---|---|---|---|
Quantum Yield Range | 5–15% | 15–25% | [28,31] |
Primary Sources | Fish scales and crustacean shells | Micro/macroalgae | [21,28,29,35,36] |
Variability Drivers |
|
| [28,31] |
Key Advantage | Enhanced conductivity | Natural heteroatom doping | [27,35] |
Synthesis Method | Avg. Energy (kWh/kg) | Temp. Range (°C) | Time (h) |
---|---|---|---|
AB-CDs (Hydrothermal) | 50–80 | 160–220 | 1–8 |
Semiconductor QDs | 120–200 | 300–500 | 8–24 |
Chemical Precursor CDs | 90–150 | 200–400 | 6–12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawood, A.; Ghali, M.; Micheli, L.; Hashem, M.H.; Piccirillo, C. Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications. Clean Technol. 2025, 7, 64. https://doi.org/10.3390/cleantechnol7030064
Dawood A, Ghali M, Micheli L, Hashem MH, Piccirillo C. Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications. Clean Technologies. 2025; 7(3):64. https://doi.org/10.3390/cleantechnol7030064
Chicago/Turabian StyleDawood, Ahmed, Mohsen Ghali, Laura Micheli, Medhat H. Hashem, and Clara Piccirillo. 2025. "Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications" Clean Technologies 7, no. 3: 64. https://doi.org/10.3390/cleantechnol7030064
APA StyleDawood, A., Ghali, M., Micheli, L., Hashem, M. H., & Piccirillo, C. (2025). Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications. Clean Technologies, 7(3), 64. https://doi.org/10.3390/cleantechnol7030064