Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,280)

Search Parameters:
Keywords = sustainability frameworks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 380 KiB  
Article
B Impact Assessment as a Driving Force for Sustainable Development: A Case Study in the Pulp and Paper Industry
by Yago de Zabala, Gerusa Giménez, Elsa Diez and Rodolfo de Castro
Reg. Sci. Environ. Econ. 2025, 2(3), 24; https://doi.org/10.3390/rsee2030024 (registering DOI) - 6 Aug 2025
Abstract
This study evaluates the effectiveness of the B Impact Assessment (BIA) as a catalyst for integrating sustainability into industrial firms through a qualitative case study of LC Paper, the first B Corp-certified tissue manufacturer globally and a pioneer in applying BIA in the [...] Read more.
This study evaluates the effectiveness of the B Impact Assessment (BIA) as a catalyst for integrating sustainability into industrial firms through a qualitative case study of LC Paper, the first B Corp-certified tissue manufacturer globally and a pioneer in applying BIA in the pulp and paper sector. Based on semi-structured interviews, organizational documents, and direct observation, this study examines how BIA influences corporate governance, environmental practices, and stakeholder engagement. The findings show that BIA fosters structured goal setting and the implementation of measurable actions aligned with environmental stewardship, social responsibility, and economic resilience. Tangible outcomes include improved stakeholder trust, internal transparency, and employee development, while implementation challenges such as resource allocation and procedural complexity are also reported. Although the single-case design limits generalizability, this study identifies mechanisms transferable to other firms, particularly those in environmentally intensive sectors. The case studied also illustrates how leadership commitment, participatory governance, and data-driven tools facilitate the operationalization of sustainability. By integrating stakeholder and institutional theory, this study contributes conceptually to understanding certification frameworks as tools for embedding sustainability. This research offers both theoretical and practical insights into how firms can align strategy and impact, expanding the application of BIA beyond early adopters and into traditional industrial contexts. Full article
22 pages, 485 KiB  
Article
Development and Validation of a Self-Assessment Tool for Convergence Competencies in Humanities, Arts, and Social Sciences for Sustainable Futures in the South Korean Context
by Hyojung Jung, Inyoung Song and Younghee Noh
Sustainability 2025, 17(15), 7131; https://doi.org/10.3390/su17157131 (registering DOI) - 6 Aug 2025
Abstract
Addressing global challenges such as climate change and inequality requires convergence competencies that enable learners to devise sustainable solutions. Such competencies have been emphasized in Science, Technology, Engineering, Mathematics (STEM) fields, but empirical research and assessment tools tailored to Humanities, Arts, and Social [...] Read more.
Addressing global challenges such as climate change and inequality requires convergence competencies that enable learners to devise sustainable solutions. Such competencies have been emphasized in Science, Technology, Engineering, Mathematics (STEM) fields, but empirical research and assessment tools tailored to Humanities, Arts, and Social Sciences (HASS) remain scarce. This study aimed to develop and validate a self-assessment tool to measure convergence competencies among HASS learners. A three-round Delphi survey with domain experts was conducted to evaluate and refine an initial pool of items. Items with insufficient content validity were revised or deleted, and all retained items achieved a Content Validity Ratio (CVR) of ≥0.800, with most scoring 1.000. The validated instrument was administered to 455 undergraduates participating in a convergence education program. Exploratory factor analysis identified five key dimensions: Convergent Commitment, Future Problem Awareness, Future Efficacy, Convergent Learning, and Multidisciplinary Inclusiveness, explaining 69.72% of the variance. Confirmatory factor analysis supported the model’s goodness-of-fit (χ2 (160) = 378.786, RMSEA = 0.054, CFI = 0.952), and the instrument demonstrated high internal consistency (Cronbach’s α = 0.919). The results confirm that the tool is both reliable and valid for diagnosing convergence competencies in HASS contexts, providing a practical framework for interdisciplinary learning and reflective engagement toward sustainable futures. Full article
(This article belongs to the Special Issue Sustainable Management for the Future of Education Systems)
Show Figures

Figure 1

31 pages, 18795 KiB  
Review
Timber Architecture for Sustainable Futures: A Critical Review of Design and Research Challenges in the Era of Environmental and Social Transition
by Agnieszka Starzyk, Nuno D. Cortiços, Carlos C. Duarte and Przemysław Łacek
Buildings 2025, 15(15), 2774; https://doi.org/10.3390/buildings15152774 (registering DOI) - 6 Aug 2025
Abstract
This article provides a critical review of the current design and research challenges in contemporary timber architecture. Conducted from the perspective of a designer-researcher, the review focuses on the role of wood as a material at the intersection of environmental performance, cultural meaning, [...] Read more.
This article provides a critical review of the current design and research challenges in contemporary timber architecture. Conducted from the perspective of a designer-researcher, the review focuses on the role of wood as a material at the intersection of environmental performance, cultural meaning, and spatial practice. The study adopts a conceptual, problem-oriented approach, eschewing the conventional systematic aggregation of existing data. The objective of this study is to identify, interpret and categorise the key issues that are shaping the evolving discourse on timber architecture. The analysis is based on peer-reviewed literature published between 2020 and 2025, sourced from the Scopus and Web of Science Core Collection databases. Fifteen thematic challenges have been identified and classified according to their recognition level in academic and design contexts. The subjects under discussion include well-established topics, such as life cycle assessment and carbon storage, as well as less commonly explored areas, such as symbolic durability, social acceptance, traceability, and the upcycling of low-grade wood. The review under consideration places significant emphasis on the importance of integrating technical, cultural, and perceptual dimensions when evaluating timber architecture. The article proposes an interpretive framework combining design thinking and transdisciplinary insights. This framework aims to bridge disciplinary gaps and provide a coherent structure for understanding the complexity of timber-related challenges. The framework under discussion here encourages a broader understanding of wood as not only a sustainable building material but also a vehicle for systemic transformation in architectural culture and practice. The study’s insights may support designers, educators, and policymakers in identifying strategic priorities for the development of future-proof timber-based design practices. Full article
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 (registering DOI) - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

24 pages, 759 KiB  
Article
The Mediating Role of the Firm Image in the Relationship Between Integrated Reporting and Firm Value in GCC Countries
by Mohammed Saleem Alatawi, Zaidi Mat Daud and Jalila Johari
J. Risk Financial Manag. 2025, 18(8), 438; https://doi.org/10.3390/jrfm18080438 (registering DOI) - 6 Aug 2025
Abstract
In the context of the GCC, the adoption of integrated reporting (IR) remains limited, due in part to weak regulatory enforcement, a lack of awareness of the strategic benefits of IR, and a strong focus on short-term financial results. This limited reporting context [...] Read more.
In the context of the GCC, the adoption of integrated reporting (IR) remains limited, due in part to weak regulatory enforcement, a lack of awareness of the strategic benefits of IR, and a strong focus on short-term financial results. This limited reporting context presents a significant challenge for firms to credibly demonstrate their value to the market and attract potential investors, thus communicating long-term value. Given these limitations, this study considers how IR contributes to firm value, but also examines the mediating role that firm image (FI) plays in this relationship as a reputational construct representing stakeholder perspectives of a firm’s transparency and accountability. The research employs a quantitative methodology, analysing secondary data from corporate governance and integrated reports spanning 2017–2018 to 2022–2023. Findings indicate a positive and robust relationship between integrated reporting and the firm’s value, which was assessed using Tobin’s Q. The findings highlight the significant mediating role of firm image, illustrating how IR practices, via increased transparency, accountability, and sustainability, enhance firm value. This study provides significant insights for researchers, policymakers, and corporate managers, highlighting the strategic relevance of IR in the GCC region. The findings demonstrate that integrated reporting improves transparency, accountability, and sustainability, thereby assisting corporate managers in utilising IR to enhance firm image and facilitate value creation. Policymakers can utilise these insights to develop regulatory frameworks that promote integrated reporting practices, thereby enhancing transparency and sustainable growth within the corporate sector. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Molecular Links Between Metabolism and Mental Health: Integrative Pathways from GDF15-Mediated Stress Signaling to Brain Energy Homeostasis
by Minju Seo, Seung Yeon Pyeon and Man S. Kim
Int. J. Mol. Sci. 2025, 26(15), 7611; https://doi.org/10.3390/ijms26157611 (registering DOI) - 6 Aug 2025
Abstract
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact [...] Read more.
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact to influence both metabolic and psychiatric conditions. Evidence suggests that these pathways converge to regulate brain energy homeostasis through feedback mechanisms involving the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. GDF15 emerges as a key stress-responsive biomarker that links peripheral metabolism with brainstem GDNF family receptor alpha-like (GFRAL)-mediated anxiety circuits. Meanwhile, ceramides impair hippocampal mitochondrial function via membrane incorporation and disruption of the respiratory chain. These disruptions may contribute to sustained pathological states such as depression, anxiety, and cognitive dysfunction. Although direct mechanistic data are limited, integrating these pathways provides a conceptual framework for understanding metabolic–psychiatric comorbidities. Furthermore, differences in age, sex, and genetics may influence these systems, highlighting the need for personalized interventions. Targeting mitochondrial function, GDF15-GFRAL signaling, and gut microbiota composition may offer new therapeutic strategies. This integrative perspective helps conceptualize how metabolic and psychiatric mechanisms interact for understanding the pathophysiology of metabolic and psychiatric comorbidities and highlights therapeutic targets for precision medicine. Full article
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 (registering DOI) - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated Bond Graph Methodology for Building Performance Simulation
by Abdelatif Merabtine
Energies 2025, 18(15), 4168; https://doi.org/10.3390/en18154168 (registering DOI) - 6 Aug 2025
Abstract
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate [...] Read more.
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 (registering DOI) - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

24 pages, 1684 KiB  
Article
Beyond Assistance: Embracing AI as a Collaborative Co-Agent in Education
by Rena Katsenou, Konstantinos Kotsidis, Agnes Papadopoulou, Panagiotis Anastasiadis and Ioannis Deliyannis
Educ. Sci. 2025, 15(8), 1006; https://doi.org/10.3390/educsci15081006 (registering DOI) - 6 Aug 2025
Abstract
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning [...] Read more.
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning environment. Rather than replacing the educator, HCAI serves as a tool that empowers both students and teachers, fostering critical thinking and autonomy in learning. This study investigates the potential for AI to become a collaborative partner that assists learning and enriches academic engagement. The research was conducted during the 2024–2025 winter semester within the Pedagogical and Teaching Sufficiency Program offered by the Audio and Visual Arts Department, Ionian University, Corfu, Greece. The research employs a hybrid ethnographic methodology that blends digital interactions—where students use AI tools to create artistic representations—with physical classroom engagement. Data was collected through student projects, reflective journals, and questionnaires, revealing that structured dialog with AI not only facilitates deeper critical inquiry and analytical reasoning but also induces a state of flow, characterized by intense focus and heightened creativity. The findings highlight a dialectic between individual agency and collaborative co-agency, demonstrating that while automated AI responses may diminish active cognitive engagement, meaningful interactions can transform AI into an intellectual partner that enriches the learning experience. These insights suggest promising directions for future pedagogical strategies that balance digital innovation with traditional teaching methods, ultimately enhancing the overall quality of education. Furthermore, the study underscores the importance of integrating reflective practices and adaptive frameworks to support evolving student needs, ensuring a sustainable model. Full article
(This article belongs to the Special Issue Unleashing the Potential of E-learning in Higher Education)
Show Figures

Figure 1

25 pages, 1851 KiB  
Article
Evaluating Supply Chain Finance Instruments for SMEs: A Stackelberg Approach to Sustainable Supply Chains Under Government Support
by Shilpy and Avadhesh Kumar
Sustainability 2025, 17(15), 7124; https://doi.org/10.3390/su17157124 (registering DOI) - 6 Aug 2025
Abstract
This research aims to investigate financing decisions of capital-constrained small and medium-sized enterprise (SME) manufacturers and distributors under a Green Supply Chain (GSC) framework. By evaluating the impact of Supply Chain Finance (SCF) instruments, this study utilizes Stackelberg game model to explore a [...] Read more.
This research aims to investigate financing decisions of capital-constrained small and medium-sized enterprise (SME) manufacturers and distributors under a Green Supply Chain (GSC) framework. By evaluating the impact of Supply Chain Finance (SCF) instruments, this study utilizes Stackelberg game model to explore a decentralized decision-making system. To our knowledge, this investigation represents the first exploration of game models that uniquely compares financing through trade credit, where the manufacturer offers zero-interest credit without discounts with reverse factoring, while also considering distributor’s efforts on sustainable marketing under the impact of supportive government policies. Our study suggests that manufacturers should adopt reverse factoring for optimal profits and actively participate in distributors’ financing decisions to address inefficiencies in decentralized systems. Furthermore, the distributor’s demand quantity, profits and sustainable marketing efforts show significant increase under reverse factoring, aided by favorable policies. Finally, the results are validated through Python 3.8.8 simulations in the Anaconda distribution, offering meaningful insights for policymakers and supply chain managers. Full article
Show Figures

Figure 1

30 pages, 8483 KiB  
Article
Research on Innovative Design of Two-in-One Portable Electric Scooter Based on Integrated Industrial Design Method
by Yang Zhang, Xiaopu Jiang, Shifan Niu and Yi Zhang
Sustainability 2025, 17(15), 7121; https://doi.org/10.3390/su17157121 - 6 Aug 2025
Abstract
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty [...] Read more.
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty fades for users, the usage frequency declines, resulting in considerable resource wastage. This research collected user needs via surveys and employed the KJ method (affinity diagram) to synthesize fragmented insights into cohesive thematic clusters. Subsequently, a hierarchical needs model for electric scooters was constructed using analytical hierarchy process (AHP) principles, enabling systematic prioritization of user requirements through multi-criteria evaluation. By establishing a house of quality (HoQ), user needs were transformed into technical characteristics of electric scooter products, and the corresponding weights were calculated. After analyzing the positive and negative correlation degrees of the technical characteristic indicators, it was found that there are technical contradictions between functional zoning and compact size, lightweight design and material structure, and smart interaction and usability. Then, based on the theory of inventive problem solving (TRIZ), the contradictions were classified, and corresponding problem-solving principles were identified to achieve a multi-functional innovative design for electric scooters. This research, leveraging a systematic industrial design analysis framework, identified critical pain points among electric scooter users, established hierarchical user needs through priority ranking, and improved product lifecycle sustainability. It offers novel methodologies and perspectives for advancing theoretical research and design practices in the electric scooter domain. Full article
Show Figures

Figure 1

28 pages, 930 KiB  
Review
Financial Development and Energy Transition: A Literature Review
by Shunan Fan, Yuhuan Zhao and Sumin Zuo
Energies 2025, 18(15), 4166; https://doi.org/10.3390/en18154166 - 6 Aug 2025
Abstract
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive [...] Read more.
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive literature review on energy transition research in the context of financial development. We develop a “Financial Functions-Energy Transition Dynamics” analytical framework to comprehensively examine the theoretical and empirical evidence regarding the relationship between financial development (covering both traditional finance and emerging finance) and energy transition. The understanding of financial development’s impact on energy transition has progressed from linear to nonlinear perspectives. Early research identified a simple linear promoting effect, whereas current studies reveal distinctly nonlinear and multidimensional effects, dynamically driven by three fundamental factors: economy, technology, and resources. Emerging finance has become a crucial driver of transition through technological innovation, risk diversification, and improved capital allocation efficiency. Notable disagreements persist in the existing literature on conceptual frameworks, measurement approaches, and empirical findings. By synthesizing cutting-edge empirical evidence, we identify three critical future research directions: (1) dynamic coupling mechanisms, (2) heterogeneity of financial instruments, and (3) stage-dependent evolutionary pathways. Our study provides a theoretical foundation for understanding the complex finance-energy transition relationship and informs policy-making and interdisciplinary research. Full article
Show Figures

Figure 1

17 pages, 1105 KiB  
Systematic Review
Teaching and Learning of Time in Early Mathematics Education: A Systematic Literature Review
by Jorryt van Bommel and Maria Walla
Educ. Sci. 2025, 15(8), 1003; https://doi.org/10.3390/educsci15081003 - 6 Aug 2025
Abstract
This systematic literature review investigates how the concept of time is taught and learned in early mathematics education. While young children are commonly expected to learn how to tell time, this review explores what additional aspects should be emphasised to foster a deeper [...] Read more.
This systematic literature review investigates how the concept of time is taught and learned in early mathematics education. While young children are commonly expected to learn how to tell time, this review explores what additional aspects should be emphasised to foster a deeper and more sustainable understanding of time. Using the EBSCO database, 36 relevant articles published up to December 2024 were identified. To cover different aspects related to the teaching and learning of time, peer-reviewed scientific articles as well as practice-based reports were included in the search. A majority of the articles focused on clock reading as an aspect of time. The aspects duration, sequencing, and measurement of time also frequently appeared whereas expressions of time, or cross-disciplinary aspects were seldom mentioned. Drawing on the findings, this review proposes a comprehensive framework outlining key aspects that should be included in early mathematics education to support the teaching and learning of time. Full article
Show Figures

Figure 1

20 pages, 772 KiB  
Review
Treatment of Refractory Oxidized Nickel Ores (ONOs) from the Shevchenkovskoye Ore Deposit
by Chingis A. Tauakelov, Berik S. Rakhimbayev, Aliya Yskak, Khusain Kh. Valiev, Yerbulat A. Tastanov, Marat K. Ibrayev, Alexander G. Bulaev, Sevara A. Daribayeva, Karina A. Kazbekova and Aidos A. Joldassov
Metals 2025, 15(8), 876; https://doi.org/10.3390/met15080876 (registering DOI) - 6 Aug 2025
Abstract
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from [...] Read more.
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from the Shevchenkovskoye cobalt–nickel ore deposit and other Kazakhstan deposits, highlighting the challenges they pose for conventional beneficiation and metallurgical processing. Current industrial practices are analyzed, including pyrometallurgical, hydrometallurgical, and pyro-hydrometallurgical methods, with an emphasis on their efficiency, environmental impact, and economic feasibility. Special attention is given to the potential of hydro-catalytic leaching as a flexible, energy-efficient alternative for treating low-grade ONOs under atmospheric conditions. The results underscore the necessity of developing cost-effective and sustainable technologies tailored to the unique composition of Kazakhstani ONOs, particularly those rich in iron and magnesium. This work provides a strategic framework for future research and the industrial application of advanced leaching techniques to unlock the full potential of Kazakhstan’s nickel resources. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop