Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
Abstract
1. Introduction
2. Data and Methodology
2.1. Overview of the Research Area
2.2. Data Sources and Processing
2.3. Method
2.3.1. ES Assessment Framework
Primary Classifications | Secondary Classifications | Farmland | Forest | Shrub | Grassland | Waters | Construction Land |
---|---|---|---|---|---|---|---|
Provisioning services | Food production | 1.11 | 0.27 | 0.19 | 0.38 | 0.8 | 0.01 |
Raw Material production | 0.25 | 0.63 | 0.43 | 0.56 | 0.23 | 0 | |
Water supply | −1.31 | 0.33 | 0.22 | 0.31 | 8.29 | 0 | |
Regulating services | Gas regulation | 0.89 | 2.07 | 1.41 | 1.97 | 0.77 | −2.42 |
Climate regulation | 0.47 | 6.2 | 4.23 | 5.21 | 2.29 | 0 | |
Environmental purification | 0.14 | 1.8 | 1.28 | 1.72 | 5.55 | −2.46 | |
Hydrological regulation | 1.5 | 3.86 | 3.35 | 3.82 | 102.24 | −7.51 | |
Supporting services | Soil conservation | 0.52 | 2.52 | 1.72 | 2.4 | 0.93 | 0.02 |
Nutrient cycling maintenance | 0.16 | 0.19 | 0.13 | 0.18 | 0.07 | 0.02 | |
Biodiversity maintenance | 0.17 | 2.3 | 1.57 | 2.18 | 2.55 | 0.34 | |
Cultural services | Aesthetic landscape | 0.08 | 1.01 | 0.69 | 0.96 | 1.89 | 0.01 |
Year | Ecological Quality (NDVI) | Economic Development (GDP) | Population Density | Year | Ecological Quality (NDVI) | Economic Development (GDP) | Population Density |
---|---|---|---|---|---|---|---|
2000 | 1.524 | 0.858 | 0.849 | 2011 | 1.536 | 0.848 | 0.885 |
2001 | 1.535 | 0.874 | 0.851 | 2012 | 1.506 | 0.869 | 0.889 |
2002 | 1.525 | 0.886 | 0.856 | 2013 | 1.481 | 0.851 | 0.893 |
2003 | 1.532 | 0.905 | 0.858 | 2014 | 1.561 | 0.861 | 0.896 |
2004 | 1.534 | 0.893 | 0.862 | 2015 | 1.592 | 0.871 | 0.901 |
2005 | 1.526 | 0.900 | 0.865 | 2016 | 1.585 | 0.876 | 0.904 |
2006 | 1.547 | 0.879 | 0.869 | 2017 | 1.558 | 0.837 | 0.905 |
2007 | 1.558 | 0.841 | 0.874 | 2018 | 1.571 | 0.766 | 0.909 |
2008 | 1.533 | 0.839 | 0.875 | 2019 | 1.563 | 0.797 | 0.912 |
2009 | 1.599 | 0.845 | 0.879 | 2020 | 1.530 | 0.734 | 0.915 |
2010 | 1.564 | 0.830 | 0.884 |
2.3.2. PLUS Model
- (1)
- LEAS
- (2)
- Land Demand Prediction
- (3)
- CARS
- (4)
- Verification of simulation accuracy
Simulation Scenarios | Parameter Settings | References |
---|---|---|
Natural development | Land-use change in county-level regions is predominantly driven by regional socioeconomic development, with relatively limited influence from direct human intervention factors. | [31,39,45,52,53,54] |
Tourism development | Increased intensity of tourism infrastructure construction leads to ecological space compression, so the probability of natural land (farmland/forest/shrubs/grassland) being converted to built-up land increases by 20% and the probability of reverse conversion of built-up land decreases by 30%. | |
Farmland conservation | Strict agricultural land protection policies are implemented, and the occupation of arable land by tourism development is strictly limited, thus reducing the probability of arable land being transferred by 30%. | |
Ecological conservation | Strengthening of ecological spatial control, so that the probability of conversion of forest land/shrubs/waters to construction land is reduced by 50%, and the probability of conversion of agricultural land is simultaneously reduced by 30%. |
Kappa | 0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1 |
---|---|---|---|---|---|
Precision of simulation | Minimum | Low | Medium | High | Maximum |
2.3.3. HWB Assessment Framework
2.3.4. Coupled Coordination Model
- (1)
- Calculate the degree of coupling
- (2)
- Calculate the coupling coordination degree
- (3)
- Introduce the relative development coefficient K
3. Results
3.1. Dynamic Evolution of ES
3.2. Dynamic Evolution of HWB
3.3. ES-HWB Coupling Coordination Dynamics
4. Discussion
4.1. Characteristics and Drivers of ES-HWB Coordination in Chun’an County
4.2. Tourism Industry Driving Mechanisms
4.3. Evaluation Indicator System
4.4. Sustainable Development Policies for County-Level Tourism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPBES. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondízio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- World Tourism Organization. International Tourism Highlights, 2024 Edition; UN Tourism: Madrid, Spain, 2024. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wang, B.J.; Zhang, Q.; Cui, F.Q. Scientific research on ecosystem services and human well-being: A bibliometric analysis. Ecol. Indic. 2021, 125, 107449. [Google Scholar] [CrossRef]
- Xu, J.Y.; Wang, Q.; Wei, J.Y. Assessment of the contribution to human well-being by ecosystem services in Wolong Natural Reserve from the perspective of local communities. Acta Ecol. Sin. 2018, 38, 7348–7358. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, C.L.; Liu, M.X.; Wei, H.J. Uncovering the coupling relationships and key factors linking ecosystem services to human well-being through system dynamics: A case study in the Qinghai-Tibet Plateau. Ecol. Indic. 2024, 166, 112408. [Google Scholar] [CrossRef]
- Liu, L.M.; Wu, J.G. Space cannot substitute for time in the study of the ecosystem services-human wellbeing relationship. Geogr. Sustain. 2025, 6, 100221. [Google Scholar] [CrossRef]
- Liu, L.M.; Wu, J.G. Frameworks, approaches, and methods for studying the relationship between ecosystem services and human wellbeing. J. Nat. Resour. 2024, 39, 2044–2065. [Google Scholar] [CrossRef]
- Liu, L.M.; Liu, Y.L.; Kong, L.Q.; Zhong, Z.; Fang, X.N. How do changes in ecosystem services multifunctionality influence human wellbeing? Evidence from the Yangtze river delta urban agglomeration in China. Land Degrad. Dev. 2024, 35, 5224–5236. [Google Scholar] [CrossRef]
- Bi, J.; Lu, M.H.; Liu, F.C.; Cai, Y.M.; Wang, Y.J.; Duan, M.J.; Li, J.L.; Li, X.Y.; Yu, D.Y. Multi-scale urban ecosystem service changes and their impact mechanisms on human well-being. J. Environ. Manag. 2025, 374, 124117. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.R.; Ren, Y.S.; Lu, L.; Chen, H.F. Relationship between ecosystem services and rural residential well-being in the Xin’an river Basin, China. Ecol. Indic. 2022, 140, 108997. [Google Scholar] [CrossRef]
- Gao, Y.M.; Zhang, N.J.; Ma, Q.; Li, J.W. How is human well-being related to ecosystem services at town and village scales? A case study from the Yangtze River Delta, China. Landsc. Ecol. 2024, 39, 126. [Google Scholar] [CrossRef]
- Wang, W.T.; Zhou, M.M.; Lan, J.Q.; Shi, X.X. Spatial-temporal pattern and influencing factors of tourism eco-efficiency in south Taihang mountain of Henan province based on improvement of ecosystem services value. Areal Res. Dev. 2024, 43, 143–150. [Google Scholar]
- Xu, Z.H.; Wei, H.J.; Fan, W.G.; Wang, X.C.; Zhang, P.; Ren, J.H.; Lu, N.C.; Gao, Z.C.; Dong, X.B.; Kong, W.D. Relationships between ecosystem services and human well-being changes based on carbon flow—A case study of the Manas River Basin, Xinjiang, China. Ecosyst. Serv. 2019, 37, 100934. [Google Scholar] [CrossRef]
- Department of Rural Socioeconomic Survey, National Bureau of Statistics. China County Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2022.
- Wen, J.; Li, S.Y.; Jiang, R.A.; Yang, X.Y.; Lin, Y.; Gao, Y. Industrial Economics; Tsinghua University Press: Beijing, China, 2024. [Google Scholar]
- Li, L.; Feng, R.D.; Xi, J.C.; Huijbens, E.H.; Gao, Y.R. Distinguishing the impact of tourism development on ecosystem service trade-offs in ecological functional zone. J. Environ. Manag. 2023, 342, 118183. [Google Scholar] [CrossRef] [PubMed]
- He, X.R.; Cai, C.Y.; Tang, J.X.; Shi, J.Z.; Yang, R.B. Analysis of coupling coordination and obstacle factors between tourism development and ecosystem services value: A case study of the Yellow River Basin, China. Ecol. Indic. 2023, 157, 111234. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.G.; Gao, G.P.; Shao, J.Q.; Pan, J.Y.; He, G.X.; Hu, Z.J. Integrating ecosystem services closely related to human well-being into the restoration and management of deep lakes facing multiple stressors: Lessons from long-term practice in Qiandao Lake, China. Sci. Total Environ. 2023, 902, 166457. [Google Scholar] [CrossRef]
- Lu, L. Tourism Geography; Science Press: Beijing, China, 2024. [Google Scholar]
- UNWTO. Tourism Statistics. 2024. Available online: https://www.e-unwto.org/toc/unwtotfb/current (accessed on 18 March 2025).
- Ren, Y.S.; Lu, L.; Zhang, H.M.; Chen, H.F.; Zhu, D.C. Residents’ willingness to pay for ecosystem services and its influencing factors: A study of the Xin’an River basin. J. Clean. Prod. 2020, 268, 122301. [Google Scholar] [CrossRef]
- Azam, M.; Mahmudul Alam, M.; Haroon Hafeez, M. Effect of tourism on environmental pollution: Further evidence from Malaysia, Singapore and Thailand. J. Clean. Prod. 2018, 190, 330–338. [Google Scholar] [CrossRef]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Yeoman, I.; Lennon, J.J.; Blake, A.; Galt, M.; Greenwood, C.; Beattie, U.M. Oil depletion: What does this mean for Scottish tourism? Tour. Manag. 2007, 28, 1354–1365. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, H.; Lun, Y.C.; Li, P. Research on the supply and demand of ecosystem services and islanders’ well-being in tourism-oriented islands: A case study of Changshan Archipelago. Tour. Sci. 2025, 39, 135–159. [Google Scholar]
- Chun’an County Bureau of Statistics. Chun’an County Statistical Yearbook (2021); Chun’an County Bureau of Statistics: Hangzhou, China, 2022.
- Li, F.; Zhang, S.W.; Yang, J.C.; Bu, K.; Wang, Q.; Tang, J.M.; Chang, L.P. The effects of population density changes on ecosystem services value: A case study in Western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zhu, C.Q.; Yang, G.B.; Xu, W.H.; Zheng, H.; Zhang, Y.; Xiao, Y. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin. 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef]
- Cao, Y.N.; Kong, L.Q.; Zhang, L.F.; Ouyang, Z.Y. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Gao, Y.; Wang, X.G.; Lin, Q.; Li, L. A new approach to land use optimization and simulation considering urban development sustainability: A case study of Bortala, China. Sustain. Cities Soc. 2022, 87, 104135. [Google Scholar] [CrossRef]
- Xiong, C.S.; Ren, H.Y.; Xu, D.; Gao, Y.M. Spatial scale effects on the value of ecosystem services in China’s terrestrial area. J. Environ. Manag. 2024, 366, 121745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, X.M.; Jin, C.; Dong, J.W.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.G.; Zhang, G.L.; et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens. Environ. 2017, 183, 154–169. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.A.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential biodiversity variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.J.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.C. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Huo, R. Study on the Relationship Between Ecosystem Services and Human Well-being in Coal Resource-based Cities. Ph.D. Dissertation, China University of Mining and Technology, Beijing, China, 2020. [Google Scholar]
- Zuo, L.L.; Peng, W.F.; Tao, S.; Zhu, C.; Xu, X.L. Dynamic changes of land use and ecosystem services value in the upper reaches of the Minjiang River. Acta Ecol. Sin. 2021, 41, 6384–6397. [Google Scholar] [CrossRef]
- Wei, L.Y.; Mao, M.J.; Zhao, Y.X.; Wu, G.H.; Wang, H.B.; Li, M.H.; Liu, T.D.; Wei, Y.H.; Huang, S.R.; Huang, L.Y.; et al. Spatio-temporal characteristics and multi-scenario simulation analysis of ecosystem service value in coastal wetland: A case study of the coastal zone of Hainan Island, China. J. Environ. Manag. 2024, 368, 122199. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, B.B.; Li, J.S.; Liu, Q.Y.; He, L.H.; Lv, S.C.; Yu, S.H. Spatio-temporal analysis of ecological service value driven by land use changes: A case study with Danjiangkou, Hubei section. Resour. Environ. Sustain. 2024, 15, 100146. [Google Scholar] [CrossRef]
- Song, P.H.; Yang, Q.; Wu, W.Y.; Su, T.Y.; Jiang, Y.M.; Lu, J.L.; Sun, Z.Y.; Zhang, J.; Yu, R.; Wang, P.; et al. Assessing and predicting the value of ecosystem services in Sanya City, Hainan Island, China. Ecol. Indic. 2025, 170, 112967. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Allen, J.S.; Lu, K.S.; Potts, T.D. A GIS-based analysis and prediction of parcel land-use change in a coastal tourism destination area. In Proceedings of the World Congress on Coastal and Marine Tourism, Vancouver, BC, Canada, 26–29 April 1999. [Google Scholar]
- Hoang, H.T.T.; Vanacker, V.; Van Rompaey, A.; Vu, K.C.; Nguyen, A.T. Changing human–landscape interactions after development of tourism in the northern Vietnamese Highlands. Anthropocene 2014, 5, 42–51. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Liu, Y.S. Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geogr. Sin. 2018, 73, 637–650. [Google Scholar]
- Gao, Z.Q.; Ju, X.L.; Ding, J.Y.; Wang, Y.F.; Shen, N.; Zhang, X.Y.; Li, M.J. Understanding Water Yield Dynamics and Drivers in the Yellow River Basin Past Trends, Mechanisms, and Future Projections. J. Clean. Prod. 2025, 505, 145441. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wang, T.Y.; Ruan, Z.Y.; Du, P. Spatial-temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Tan, Z.; Guan, Q.Y.; Lin, J.K.; Yang, L.Q.; Luo, H.P.; Ma, Y.R.; Tian, J.; Wang, Q.Z.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecol. Indic. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Han, J.Z.; Hu, Z.Q.; Wang, P.J.; Yan, Z.G.; Li, G.S.; Zhang, Y.H.; Zhou, T. Spatio-temporal evolution and optimization analysis of ecosystem service value-A case study of coal resource-based city group in Shandong, China. J. Clean. Prod. 2022, 363, 132602. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, M.D.; Xie, G.D.; Zhen, L. Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the Hunshandake region of China. Sci. Total Environ. 2022, 850, 158067. [Google Scholar] [CrossRef]
- Chen, Q.; Cai, L.A. Self-fulfilling prophecy in livelihood sustainability: Rural tourism in Pingqian Village, China. Tour. Manag. 2025, 106, 104988. [Google Scholar] [CrossRef]
- Gautam, V.; Bhalla, S. Exploring the relationships among tourism involvement, residents’ empowerment, quality of life and their support for sustainable tourism development. J. Clean. Prod. 2024, 434, 139770. [Google Scholar] [CrossRef]
- McMahon, D.M. Happiness: A History; Atlantic Monthly Press: New York, NY, USA, 2006. [Google Scholar]
- Wang, C.; Wang, X.; Wang, Y.F.; Zhan, J.Y.; Chu, X.; Teng, Y.M.; Liu, W.; Wang, H.H. Spatio-temporal analysis of human wellbeing and its coupling relationship with ecosystem services in Shandong province, China. J. Geogr. Sci. 2023, 33, 392–412. [Google Scholar] [CrossRef]
- Batáry, P.; Gallé, R.; Korányi, D.; Lakatos, T.; Deák, B.; Gallé-Szpisjak, N.; Kabai, M.; Koszta, C.; Kotowska, D.; Marja, R.; et al. Biodiversity and human well-being trade-offs and synergies in villages. Nat. Sustain. 2025, 1–11. [Google Scholar] [CrossRef]
- Zheng, H.N.; Pei, X.; Hu, T.; Xu, Z.H.; Peng, J. Linking perceptions of ecological restoration projects’ impacts on ecosystem services and human well-being for achieving regional sustainability. Appl. Geogr. 2025, 178, 103570. [Google Scholar] [CrossRef]
- Yu, C.Y.; Shen, W.C.; Zhang, Z.F. Assessing progress toward sustainable development in China and its impact on human well-being. Environ. Impact Assess. Rev. 2025, 110, 107729. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Sodhi, N.S.; Peh, K.S.-H.; Brook, B.W. Global evidence that deforestation amplifies flood risk and severity in the developing world. Proc. Natl. Acad. Sci. USA 2007, 104, 4695–4699. [Google Scholar] [CrossRef]
- World Health Organization. Heat and health in the WHO European Region: Updated evidence for effective prevention. WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Zhou, C.; Feng, X.G.; Tang, R. Analysis and forecast of coupling coordination development among the regional economy-ecological environment-tourism industry—A case study of provinces along the Yangtze Economic Zone. Econ. Geogr. 2016, 36, 186–193. [Google Scholar]
- Raudsepp-Hearne, C.; Peterson, G.D.; Tengö, M.; Bennett, E.M.; Holland, T.; Benessaiah, K.; MacDonald, G.K.; Pfeifer, L. Untangling the environmentalist’s paradox: Why is human well-being increasing as ecosystem services degrade? Bioscience 2010, 60, 576–589. [Google Scholar] [CrossRef]
- Zhang, K.; Dearing, J.A.; Dawson, T.P.; Dong, X.; Yang, X.; Zhang, W. Poverty alleviation strategies in eastern China lead to critical ecological dynamics. Sci. Total Environ. 2015, 506–507, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Delgado, L.E.; Marín, V.H. Well-being and the use of ecosystem services by rural households of the Río Cruces watershed, southern Chile. Ecosyst. Serv. 2016, 21, 81–91. [Google Scholar] [CrossRef]
- Liu, M.C.; Yang, L.; Bai, Y.Y.; Min, Q.W. The impacts of farmers’ livelihood endowments on their participation in eco-compensation policies: Globally important agricultural heritage systems case studies from China. Land Use Policy 2018, 77, 231–239. [Google Scholar] [CrossRef]
- Wang, C.; Tang, N. Spatio-temporal characteristics and evolution of rural production-living-ecological space function coupling coordination in Chongqing Municipality. Geogr. Res. 2018, 37, 1100–1114. [Google Scholar]
- Xi, J.Q. The Analysis of Affecting Factors of Farmers’ Well-being and the Coupling Analysis Between Farmer Well-Being and Ecosystem Service. Master’s Dissertation, Northwest University, Xi’an, China, 2018. [Google Scholar]
- Huo, R.; Lu, B.; Xu, X.Y. Research on the Human Well-Being Effect of Ecosystem Services in the Coal Resource City from the Perspective of Local Resident Perception: A Case Study of Xintai City. China Land Sci. 2019, 33, 101–110. [Google Scholar]
- Huo, R.; Xu, X.Y.; Gao, J.L.; Zhu, T.T.; Lu, B. Spatial Patterns of Ecosystem Services and Their Relationships with Residents’ Well-Being in Coal Resource-Based Cities. Chin. J. Soil Sci. 2020, 51, 31–39. [Google Scholar]
- Zhang, J.H.; Yao, H.T.; Zhu, H.M. Chun’an County Annals (1986–2005); Zhejiang People’s Publishing House: Hangzhou, China, 2014. [Google Scholar]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- Mahajan, S.L.; Daw, T. Perceptions of ecosystem services and benefits to human well-being from community-based marine protected areas in Kenya. Mar. Policy 2016, 74, 108–119. [Google Scholar] [CrossRef]
- Butler, R.W. The concept of a tourist area cycle of evolution: Implications for management of resources. Can. Geogr. 1980, 24, 5–12. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Hall, C.M.; Ceron, J.P.; Dubois, G.; Lehmann, L.V.; Scott, D. Tourism and water use: Supply, demand, and security. An international review. Tour. Manag. 2012, 33, 1–15. [Google Scholar] [CrossRef]
- Chin, C.H.; Chin, C.L.; Wong, W.P.M. The implementation of green marketing tools in rural tourism: The readiness of tourists? J. Hosp. Mark. Manag. 2018, 27, 261–280. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Faturay, F.; Lenzen, M.; Gössling, S.; Higham, J. Drivers of global tourism carbon emissions. Nat. Commun. 2024, 15, 10384. [Google Scholar] [CrossRef]
- Yu, H.Y.; Zhang, L.B.; Li, D.Q.; Yang, C.Y.; Gao, Y.N.; Song, T.; Wu, F.C. Practical experience and enlightenment of value implementation of ecological products. Res. Environ. Sci. 2020, 33, 685–690. [Google Scholar]
- Das, B.R.; Rainey, D.V. Agritourism in the Arkansas delta byways: Assessing the economic impacts. Int. J. Tour. Res. 2010, 12, 265–280. [Google Scholar] [CrossRef]
- Parrilla, J.C.; Font, A.R.; Nadal, J.R. Tourism and long-term growth a Spanish perspective. Ann. Tour. Res. 2007, 34, 709–726. [Google Scholar] [CrossRef]
- Sheng, L.; Tsui, Y.M. A general equilibrium approach to tourism and welfare: The case of Macao. Habitat Int. 2009, 33, 419–424. [Google Scholar] [CrossRef]
- Chen, X.P.; Fang, K. Progress towards the research on the doughnut-shaped framework as a novel roadmap for sustainable development assessment. J. Nat. Resour. 2024, 39, 307–318. [Google Scholar] [CrossRef]
- Neto, J.Q.F.; Walther, G.; Bloemhof, J.; Van Nunen, J.A.E.E.; Spengler, T. A methodology for assessing eco-efficiency in logistics networks. Eur. J. Oper. Res. 2009, 193, 670–682. [Google Scholar] [CrossRef]
- Peng, H.S.; Zhang, J.H.; Han, Y.; Tang, G.R.; Zhang, Y. Measurement and empirical analysis of eco-efficiency in tourism destinations based on a Slack-based Measure-Data Envelopment Analysis model. Acta Ecol. Sin. 2017, 37, 628–638. [Google Scholar]
- Smith, L.M.; Case, J.L.; Smith, H.M.; Harwell, L.C.; Summers, J.K. Relating ecosystem services to domains of human well-being: Foundation for a US index. Ecol. Indic. 2013, 28, 79–90. [Google Scholar] [CrossRef]
- Fedele, G.; Locatelli, B.; Djoudi, H. Mechanisms mediating the contribution of ecosystem services to human well-being and resilience. Ecosyst. Serv. 2017, 28, 43–54. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.L.; Liu, C.C.; Liu, L.H. Exploring the nexus between perceived ecosystem services and well-being of rural residents in a mountainous area, China. Appl. Geogr. 2024, 164, 103215. [Google Scholar] [CrossRef]
- Mao, D.H.; He, X.Y.; Wang, Z.M.; Tian, Y.L.; Xiang, H.X.; Yu, H.; Man, W.D.; Jia, M.M.; Ren, C.Y.; Zheng, H.F. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
Data Type | Name of Data | Resolution | Data Sources | |
---|---|---|---|---|
Spatial data | Ecological and environmental spatial data | Elevation | 30 m | https://earthexplorer.usgs.gov/ (accessed on 15 May 2020) |
Slope | 30 m | https://earthexplorer.usgs.gov/ (accessed on 15 May 2020) | ||
Normalized vegetation index (NDVI) | 30 m | http://www.resdc.cn/ (accessed on 15 May 2020) | ||
Temperature | 1 km | https://lpdaac.usgs.gov/ (accessed on 15 May 2020) | ||
Precipitation | 4 km | https://www.climatologylab.org/ (accessed on 15 May 2020) | ||
Natural place names | Vector data | http://www.webmap.cn/ (accessed on 15 May 2020) | ||
Water boundary | Vector data | http://www.webmap.cn/ (accessed on 15 May 2020) | ||
Economic and infrastructure spatial data | Land use | 30 m | https://zenodo.org/records/12779975 (accessed on 15 May 2020) | |
GDP | 1 km | https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0 (accessed on 15 May 2020) | ||
Highway routes | Vector data | http://www.webmap.cn/ (accessed on 15 May 2020) | ||
High-speed rail lines | Vector data | http://www.webmap.cn/ (accessed on 15 May 2020) | ||
Social and administrative spatial data | Population density | 1 km | https://www.worldpop.org/ (accessed on 15 May 2020) | |
Human settlements points | Vector data | http://www.webmap.cn/ (accessed on 15 May 2020) | ||
Administrative boundaries | Vector data | http://www.resdc.cn/ (accessed on 15 May 2020) | ||
Statistical data | Per capita GDP in Chun’an County | — | https://www.stats.gov.cn/ (accessed on 15 May 2020) | |
Grain production per unit area | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Scale of tourism industry and consumer market | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Secondary industry output | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Tertiary industry output (including tourism service industry) | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Total tourism revenue | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Tourism passenger transportation | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Urban registered unemployment rate | — | https://tjj.zj.gov.cn/ (accessed on 15 May 2020) | ||
Number of unemployment insurance participants | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Number of students enrolled in primary and secondary schools | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Investment in education | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Per capita food production | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
General public budget expenditure (including tourism infrastructure development) | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Housing area per capita | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Number of beds in hospitals, health centers | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Number of doctors | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) | ||
Number of participants in basic medical insurance | — | https://www.qdh.gov.cn/ (accessed on 15 May 2020) |
Driving Factor | Specific Details |
---|---|
Elevation | Remote sensing products |
Slope | Remote sensing products |
Temperature | Remote sensing products |
Precipitation | Remote sensing products |
GDP per capita | Remote sensing products |
Population | Remote sensing products |
Human settlement points | Euclidean distance from each grid center to the nearest village settlement, tourist distribution center, tourist lodging, tourist resort, and high business hotel |
Natural place names | Euclidean distance from each grid center to the nearest natural attraction, infrastructure, and public service facility |
Highway routes | Euclidean distance from each grid center to the nearest highway (including internal roads of tourist attractions) |
High-speed rail lines | Euclidean distance from the center of each grid to the nearest high-speed rail line |
Water boundary | Euclidean distance from each grid center to Qiandao Lake Scenic Area, Xin’an River and other water systems |
Primary Indicator | Secondary Indicator | Weighting | Primary Indicator | Secondary Indicator | Weighting |
---|---|---|---|---|---|
Material well-being | Per capita GDP in Chun’an County | 0.071 | Social and cultural well-being | Urban registered unemployment rate | 0.010 |
Grain production per unit area | 0.028 | Number of unemployment insurance participants | 0.062 | ||
Scale of tourism industry and consumer market | 0.065 | Number of students enrolled in primary and secondary schools | 0.062 | ||
Security well-being | Normalized vegetation index (NDVI) | 0.034 | Investment in education | 0.055 | |
Per capita food production | 0.043 | Freedom of choice and action well-being | Secondary industry output | 0.052 | |
General public budget expenditure (including tourism infrastructure development) | 0.081 | Tertiary industry output (including tourism service industry) | 0.069 | ||
Housing area per capita | 0.057 | Total tourism revenue | 0.093 | ||
Health well-being | Number of beds in hospitals, health centers | 0.103 | Tourism passenger Transportation | 0.022 | |
Number of doctors | 0.065 | ||||
Number of participants in basic medical insurance | 0.029 |
Coupling Degree (C) | Coupling Stage | Characterization |
---|---|---|
0 | Minimal coupling | No significant linkage; disordered development |
(0.0~0.3) | Low-level coupling | High ES but lagging HWB improvement |
[0.3~0.5) | Antagonism | Growing HWB begins conflicting with ES |
[0.5~0.8) | Running-in | Conflicts mitigate; initial synergistic interactions emerge |
[0.8~1) | High-level coupling | Sustained enhancement of ES-HWB synergies |
1 | Optimal coupling | Healthy, ordered development with fully coordinated ES-HWB |
Coupling Coordination Degree (D) | Coordination Level | Characterization |
---|---|---|
0 | Uncoordination | Negative evolution trend without coordinated development |
(0.0~0.3) | Moderate imbalance | Asynchronous development with one dimension progressing faster than the other |
[0.3~0.5) | Mild imbalance | Dominant dimension grows rapidly while the subordinate dimension accelerates |
[0.5~0.8) | Primary coordination | Initial synergistic interactions emerge |
[0.8~1) | Intermediate coordination | Deepening coordination approaching optimal state |
1 | Advanced coordination | Optimal mutualism achieved |
Coupling Coordination | K | Development Type | Coupling Coordination | K | Development Type |
---|---|---|---|---|---|
0 | (0–0.8] | Uncoordinated ES lagging | [0.5~0.8) | (0–0.8] | Primary coord. ES lagging |
(0.8–1.2] | Uncoordinated dual-system lagging | (0.8–1.2] | Primary coord. dual-system lagging | ||
(1.2, +∞) | Uncoordinated HWB lagging | (1.2, +∞) | Primary coord. HWB lagging | ||
[0.0~0.3) | (0–0.8] | Moderate imbalance ES lagging | [0.8~1) | (0–0.8] | Intermediate coord. ES lagging |
(0.8–1.2] | Moderate imbalance dual-system lagging | (0.8–1.2] | Intermediate coord. dual-system lagging | ||
(1.2, +∞) | Moderate imbalance HWB lagging | (1.2, +∞) | Intermediate coord. HWB lagging | ||
[0.3~0.5) | (0–0.8] | Mild imbalance ES lagging | 1 | (0–0.8] | Advanced coord. ES lagging |
(0.8–1.2] | Mild imbalance dual-system lagging | (0.8–1.2] | Advanced coord. dual-system lagging | ||
(1.2, +∞) | Mild imbalance HWB lagging | (1.2, +∞) | Advanced coord. HWB lagging |
Natural Development Scenario | Farmland | Forest | Shrub | Grassland | Waters | Construction Land |
---|---|---|---|---|---|---|
Provisioning services | 378.34 | 155,949.86 | 2.90 | 15.10 | 132,898.30 | 21.61 |
Regulating services | 25,096.37 | 1,767,431.69 | 35.44 | 153.64 | 1,580,662.74 | −26,775.52 |
Support services | 7104.33 | 635,633.01 | 11.80 | 57.49 | 50,621.13 | 821.21 |
Cultural services | 630.56 | 127,633.76 | 2.38 | 11.60 | 26,950.41 | 21.61 |
Tourism development scenario | Farmland | Forest | Shrub | Grassland | Waters | Construction Land |
Provisioning services | 375.61 | 155,776.36 | 2.90 | 14.66 | 132745.70 | 22.64 |
Regulating services | 24,915.23 | 1,765,465.44 | 35.42 | 149.14 | 1,578,847.71 | −28,058.97 |
Support services | 7053.06 | 634,925.88 | 11.79 | 55.81 | 50,563.01 | 860.57 |
Cultural services | 626.01 | 127,491.77 | 2.38 | 11.26 | 26,919.46 | 22.64 |
Farmland Conservation Scenario | Farmland | Forest | Shrub | Grassland | Waters | Construction Land |
Provisioning services | 393.60 | 155,810.54 | 2.90 | 13.38 | 132,897.28 | 20.83 |
Regulating services | 26,108.59 | 1,765,852.79 | 35.47 | 136.18 | 1,580,650.57 | −25,809.99 |
Support services | 7390.87 | 635,065.18 | 11.81 | 50.96 | 50,620.74 | 791.59 |
Cultural services | 655.99 | 127,519.74 | 2.38 | 10.28 | 26,950.20 | 20.83 |
Ecological Conservation Scenario | Farmland | Forest | Shrub | Grassland | Waters | Construction Land |
Provisioning services | 382.58 | 156,311.60 | 2.90 | 16.42 | 133,258.83 | 19.53 |
Regulating services | 25,377.74 | 1,771,531.43 | 35.49 | 167.05 | 1,584,950.76 | −24,197.48 |
Support services | 7183.98 | 637,107.43 | 11.82 | 62.51 | 50,758.46 | 742.14 |
Cultural services | 637.63 | 127,929.82 | 2.38 | 12.61 | 27,023.52 | 19.53 |
Year | HWB Index | ESV Index | Coupling Degree | Coordination Degree | K | Development Type | Coupling Stage |
---|---|---|---|---|---|---|---|
2000 | 0.156 | 0.0001 | 0.898 | 0.140 | 0.0001 | Moderate imbalance (ES lagging) | High coupling |
2001 | 0.145 | 0.080 | 0.605 | 0.132 | 1.821 | Moderate imbalance (HWB lagging) | Running-in |
2002 | 0.161 | 0.163 | 0.735 | 0.220 | 0.984 | Moderate imbalance (dual-system lagging) | Running-in |
2003 | 0.179 | 0.261 | 0.776 | 0.292 | 0.688 | Moderate imbalance (ES lagging) | Running-in |
2004 | 0.197 | 0.295 | 0.832 | 0.338 | 0.666 | Mild imbalance (ES lagging) | High coupling |
2005 | 0.209 | 0.347 | 0.841 | 0.371 | 0.603 | Mild imbalance (ES lagging) | High coupling |
2006 | 0.225 | 0.380 | 0.865 | 0.404 | 0.591 | Mild imbalance (ES lagging) | High coupling |
2007 | 0.278 | 0.332 | 0.971 | 0.479 | 0.838 | Mild imbalance (dual-system lagging) | High coupling |
2008 | 0.309 | 0.300 | 0.996 | 0.513 | 1.031 | Primary coordination (dual-system lagging) | High coupling |
2009 | 0.337 | 0.516 | 0.961 | 0.577 | 0.653 | Primary coordination (ES lagging) | High coupling |
2010 | 0.348 | 0.472 | 0.978 | 0.584 | 0.737 | Primary coordination (ES lagging) | High coupling |
2011 | 0.408 | 0.499 | 0.993 | 0.647 | 0.817 | Primary coordination (dual-system lagging) | High coupling |
2012 | 0.486 | 0.569 | 0.999 | 0.724 | 0.854 | Primary coordination (dual-system lagging) | High coupling |
2013 | 0.514 | 0.488 | 0.998 | 0.733 | 1.054 | Primary coordination (dual-system lagging) | High coupling |
2014 | 0.563 | 0.754 | 0.996 | 0.807 | 0.746 | Intermediate coordination (ES lagging) | High coupling |
2015 | 0.619 | 0.941 | 0.991 | 0.869 | 0.658 | Intermediate coordination (ES lagging) | High coupling |
2016 | 0.711 | 1.000 | 0.997 | 0.936 | 0.711 | Intermediate coordination (ES lagging) | High coupling |
2017 | 0.760 | 0.788 | 0.997 | 0.938 | 0.964 | Intermediate coordination (dual-system lagging) | High coupling |
2018 | 0.773 | 0.591 | 0.974 | 0.910 | 1.307 | Intermediate coordination (HWB lagging) | High coupling |
2019 | 0.811 | 0.755 | 0.990 | 0.961 | 1.074 | Intermediate coordination (dual-system lagging) | High coupling |
2020 | 0.798 | 0.458 | 0.934 | 0.889 | 1.742 | Intermediate coordination (HWB lagging) | High coupling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Lu, L. Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China. Land 2025, 14, 1604. https://doi.org/10.3390/land14081604
Jiang W, Lu L. Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China. Land. 2025; 14(8):1604. https://doi.org/10.3390/land14081604
Chicago/Turabian StyleJiang, Weifeng, and Lin Lu. 2025. "Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China" Land 14, no. 8: 1604. https://doi.org/10.3390/land14081604
APA StyleJiang, W., & Lu, L. (2025). Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China. Land, 14(8), 1604. https://doi.org/10.3390/land14081604