Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,188)

Search Parameters:
Keywords = superhydrophobicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 5391 KB  
Review
Graphene/CNT Nanocomposites: Processing, Properties, and Applications
by Sachin Kumar Sharma, Slavica Miladinović, Lokesh Kumar Sharma, Sandra Gajević, Yogesh Sharma, Mohit Sharma, Stefan Čukić and Blaža Stojanović
Nanomaterials 2026, 16(2), 100; https://doi.org/10.3390/nano16020100 - 12 Jan 2026
Abstract
Carbon nanotube (CNT) and graphene-reinforced nanocomposites have become exceptional multifunctional materials because of their exceptional mechanical, thermal, and electrical properties. Recent developments in synthesis methods, dispersion strategies, and interfacial engineering have effectively overcome agglomeration-related limitations by significantly improving filler distribution, matrix compatibility, and [...] Read more.
Carbon nanotube (CNT) and graphene-reinforced nanocomposites have become exceptional multifunctional materials because of their exceptional mechanical, thermal, and electrical properties. Recent developments in synthesis methods, dispersion strategies, and interfacial engineering have effectively overcome agglomeration-related limitations by significantly improving filler distribution, matrix compatibility, and load-transfer efficiency. These nanocomposites have better wear durability, corrosion resistance, and surface properties like super-hydrophobicity. A comparative analysis of polymer, metal, and ceramic matrices finds benefits for applications in biomedical, construction, energy, defense, and aeronautics. Functionally graded architecture, energy-harvesting nanogenerators, and additive manufacturing are some of the new fabrication processes that enhance design flexibility and functional integration. In recent years, scalability, life-cycle evaluation, and environmentally friendly processing have all gained increased attention. The development of next-generation, high-performance graphene and carbon nanotube (CNT)-based nanocomposites is critically reviewed in this work, along with significant obstacles and potential next steps. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 9262 KB  
Article
Frost Suppression and Enhancement of an Air-Source Heat Pump via an Electrostatically Sprayed Superhydrophobic Heat Exchanger
by Sicheng Fan, Zhengyu Duan, Zhaoqing Ke, Donghua Zou and Zhiping Yuan
Energies 2026, 19(2), 342; https://doi.org/10.3390/en19020342 - 10 Jan 2026
Viewed by 32
Abstract
Frost accumulation on heat exchangers severely limits the efficiency and reliability of air-source heat pumps (ASHPs) in cold, humid environments. Superhydrophobic coatings fabricated via electrostatic spraying offer a promising energy-free strategy for frost suppression. In this study, a robust superhydrophobic coating was deposited [...] Read more.
Frost accumulation on heat exchangers severely limits the efficiency and reliability of air-source heat pumps (ASHPs) in cold, humid environments. Superhydrophobic coatings fabricated via electrostatic spraying offer a promising energy-free strategy for frost suppression. In this study, a robust superhydrophobic coating was deposited on the heat exchanger of a residential ASHP using this scalable technique. Under low-temperature heating conditions (2/1 °C), the coated exchanger delayed frost completion by a factor of 2.83 and shortened defrosting time by 33.3% compared to a conventional hydrophilic counterpart. These improvements translated to a 6.24% increase in average heating capacity and a 2.83% gain in the coefficient of performance (COP). Although the thicker superhydrophobic coating resulted in a marginal 3.1% reduction in cooling capacity during free-cooling operation, the significant enhancements in frost resistance and heating performance underscore its practical value. This work demonstrates that electrostatic spraying is a viable and effective method for fabricating high-performance superhydrophobic heat exchangers, paving the way for more efficient and frost-resistant ASHPs. Full article
(This article belongs to the Special Issue Novel Technologies and Sustained Advances of Heat Pump System)
25 pages, 2088 KB  
Review
A Review of Oil–Water Separation Technology for Transformer Oil Leakage Wastewater
by Lijuan Yao, Han Shi, Wen Qi, Baozhong Song, Jun Zhou, Wenquan Sun and Yongjun Sun
Water 2026, 18(2), 180; https://doi.org/10.3390/w18020180 - 9 Jan 2026
Viewed by 97
Abstract
The oily wastewater produced by transformer oil leakage contains pollutants such as mineral oil, metal particles, aged oil and additives, which can disrupt the dissolved oxygen balance in water bodies, pollute soil and endanger human health through the food chain, causing serious environmental [...] Read more.
The oily wastewater produced by transformer oil leakage contains pollutants such as mineral oil, metal particles, aged oil and additives, which can disrupt the dissolved oxygen balance in water bodies, pollute soil and endanger human health through the food chain, causing serious environmental pollution. Effective oil–water separation technology is the key to ecological protection and resource recovery. This paper reviews the principles, influencing factors and research progress of traditional (gravity sedimentation, air flotation, adsorption, demulsification) and new (nanocomposite adsorption, metal–organic skeleton materials, superhydrophobic/superlipophilic modified films) transformer oil–water separation technologies. Traditional technologies are mostly applicable to large-particle-free oil and are difficult to adapt to complex matrix wastewater. However, the new technology has significant advantages in separation efficiency (up to over 99.5%), selectivity and cycling stability (with a performance retention rate of over 85% after 20–60 cycles), breaking through the bottlenecks of traditional methods. In the future, it is necessary to develop low-cost and efficient separation technologies, promote the research and development of intelligent responsive materials, upgrade low-carbon preparation processes and their engineering applications, support environmental protection treatment in the power industry and encourage the coupling of material innovation and processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
12 pages, 4677 KB  
Article
Preparation of Robust Superhydrophobic Surfaces Based on the Screen Printing Method
by Yinyu Sun, Qing Ding, Qiaoqiao Zhang, Yuting Xie, Zien Zhang, Yudie Pang, Zhongcheng Ke and Changjiang Li
Nanomaterials 2026, 16(2), 86; https://doi.org/10.3390/nano16020086 - 8 Jan 2026
Viewed by 182
Abstract
The bioinspired superhydrophobic surfaces have demonstrated many fascinating performances in fields such as self-cleaning, anti-corrosion, anti-icing, energy-harvesting devices, and antibacterial coatings. However, developing a low-cost, feasible, and scalable production approach to fabricate robust superhydrophobic surfaces has remained one of the main challenges in [...] Read more.
The bioinspired superhydrophobic surfaces have demonstrated many fascinating performances in fields such as self-cleaning, anti-corrosion, anti-icing, energy-harvesting devices, and antibacterial coatings. However, developing a low-cost, feasible, and scalable production approach to fabricate robust superhydrophobic surfaces has remained one of the main challenges in the past decades. In this paper, we propose an uncommon method for the fabrication of a durable superhydrophobic coating on the surface of the glass slide (GS). By utilizing the screen printing method and high-temperature curing, the epoxy resin grid (ERG) coating was uniformly and densely loaded on the surface of GS (ERG@GS). Subsequently, the hydrophobic silica (H-SiO2) was deposited on the surface of ERG@GS by the impregnation method, thereby obtaining a superhydrophobic surface (H-SiO2@ERG@GS). It is demonstrated that the micro-grooves in ERG can provide a large specific surface area for the deposition of low surface energy materials, while the micro-columns can offer excellent protection for the superhydrophobic coating when it is subjected to mechanical wear. It is important to note that micro-columns, micro-grooves, and nano H-SiO2 jointly form the micro–nano structure, providing a uniform and robust rough structure for the superhydrophobic surface. Therefore, the combination of a micro–nano rough structure, low surface energy material, and air cushion effect endow the material with excellent durability and superhydrophobic property. The results show that H-SiO2@ERG@GS possesses excellent self-cleaning property, mechanical durability, and chemical stability, indicating that this preparation method of the robust superhydrophobic coating has significant practical application value. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 2815 KB  
Article
Preparation and Research of a Metal Anti-Corrosion Coating Based on PDMS Reinforcement
by Chenyan Xie, Peng Dou, Gaojie Fu, Jiaqi Wang, Zeyi Wei, Xinglin Lu, Suji Sheng, Lixin Yuan and Bin Shen
Coatings 2026, 16(1), 74; https://doi.org/10.3390/coatings16010074 - 8 Jan 2026
Viewed by 148
Abstract
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is [...] Read more.
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is extremely important to improve the wear resistance of superhydrophobic coatings. In this study, a kind of fluorine-modified SiO2 particle was prepared with pentafluorooctyltrimethoxysilane (FAS-13) as the low surface energy modifier, following the fabrication of a superhydrophobic coating on metal substrate via a PDMS-doped spray deposition method to reinforcement wear resistance property. XPS, FT-IR and Raman spectra confirmed the successful introduction of FAS-13 on SiO2 particles, as evidenced by the characteristic fluorine-related peaks. TGA revealed that the fluorine modified SiO2 (F-SiO2) particles exhibited excellent thermal stability, with an initial decomposition temperature of 354 °C. From the perspective of surface morphology, the relevant data indicated a peak-to-valley height difference of only 88.7 nm, with Rq of 11.9 nm and Ra of 8.86 nm. And it also exhibited outstanding superhydrophobic property with contact angle (CA) of 164.44°/159.48°, demonstrating remarkable self-cleaning performance. And it still maintained CA of over 150° even after cyclic abrasion of 3000 cm with 800 grit sandpaper under a 100 g load, showing exceptional wear resistance. In addition, it was revealed that the coated electrode retained a high impedance value of 8.53 × 108 Ω·cm2 at 0.1 Hz after 480 h of immersion in 5 wt% NaCl solution, with the CPE exponent remaining close to unity (from 1.00 to 0.97), highlighting its superior anti-corrosion performance and broad application prospects for metal corrosion prevention. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

13 pages, 3153 KB  
Article
Fabrication of a Superhydrophobic Surface via Wet Etching of a Polydimethylsiloxane Micropillar Array
by Wu-Hsuan Pei, Chuan-Chieh Hung and Yi-Je Juang
Polymers 2026, 18(1), 132; https://doi.org/10.3390/polym18010132 - 31 Dec 2025
Viewed by 418
Abstract
Superhydrophobic surfaces have gained considerable attention due to their ability to repel water and reduce surface adhesion, and they are now widely applied for self-cleaning, anti-fouling, anti-icing, and corrosion resistance purposes. In this study, either a computer numerical control (CNC) machine or photolithographic [...] Read more.
Superhydrophobic surfaces have gained considerable attention due to their ability to repel water and reduce surface adhesion, and they are now widely applied for self-cleaning, anti-fouling, anti-icing, and corrosion resistance purposes. In this study, either a computer numerical control (CNC) machine or photolithographic techniques were employed to fabricate molds with microwells, followed by soft lithography to obtain a polydimethylsiloxane (PDMS) micropillar array. An etching process was then carried out. It was found that, as etching time increased, the diameters of micropillars decreased, leading to a decrease in the solid fraction of the composite surface and increases in contact angles. When the ratios of spacing to diameter (W/D) and of height to diameter (H/D) both exceeded 1.5, the contact angle was found to exceed 150° and the original PDMS micropillar surface with a contact angle of around 135° became superhydrophobic. A drastic decrease in sliding angle was also observed at this threshold. Changes in contact angles with different W/D values were in good agreement with values calculated using the Cassie–Baxter equation, and the droplet state was verified by a pressure balance model. Meanwhile, the PDMS etching rate when using acetone as the solvent was approximately 6–8 times faster than that when using 1-Methyl-2-pyrrolidone (NMP), a result which is comparable to data in the literature. Full article
(This article belongs to the Special Issue Polymer Microfabrication and 3D/4D Printing)
Show Figures

Figure 1

6 pages, 933 KB  
Proceeding Paper
Femtosecond Laser Micro- and Nanostructuring of Aluminium Moulds for Durable Superhydrophobic PDMS Surfaces
by Stefania Caragnano, Raffaele De Palo, Felice Alberto Sfregola, Caterina Gaudiuso, Francesco Paolo Mezzapesa, Pietro Patimisco, Antonio Ancona and Annalisa Volpe
Mater. Proc. 2025, 26(1), 2; https://doi.org/10.3390/materproc2025026002 - 22 Dec 2025
Viewed by 160
Abstract
Surface functionalisation of polymers is essential for enhancing properties such as wettability and mechanical resistance. This study presents a scalable, coating-free approach to fabricate hydrophobic and superhydrophobic Polydimethylsiloxane (PDMS) surfaces. Aluminium (AA2024) moulds were microstructured using a TruMicro femtosecond laser system to generate [...] Read more.
Surface functionalisation of polymers is essential for enhancing properties such as wettability and mechanical resistance. This study presents a scalable, coating-free approach to fabricate hydrophobic and superhydrophobic Polydimethylsiloxane (PDMS) surfaces. Aluminium (AA2024) moulds were microstructured using a TruMicro femtosecond laser system to generate grid patterns with controlled hatch distances and depths, as well as laser-induced periodic surface structures (LIPSSs). These features were accurately replicated onto PDMS, as confirmed by scanning electron miscoscopy (SEM) and profilometry. Contact angle measurements showed a marked increase in hydrophobicity, reaching superhydrophobicity for optimised parameters, with surface stability maintained over four months without degradation. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Materials)
Show Figures

Figure 1

13 pages, 3362 KB  
Article
Multifunctional Bamboo Fiber/Epoxy Composites Featuring Integrated Superhydrophobicity and Enhanced Mechanical–Thermal Performance
by Yanchao Liu, Ze Yu, Rumin Li, Xiaodong Wang and Yingjie Qiao
Nanomaterials 2026, 16(1), 8; https://doi.org/10.3390/nano16010008 - 19 Dec 2025
Viewed by 270
Abstract
Developing sustainable, high-performance biomass composites is crucial for replacing non-renewable structural materials. In this study, a “bamboo steel” composite was fabricated using a multilevel modification strategy involving alkali pretreatment, toughened resin impregnation, and surface functionalization. Bamboo fibers were treated to remove hemicellulose and [...] Read more.
Developing sustainable, high-performance biomass composites is crucial for replacing non-renewable structural materials. In this study, a “bamboo steel” composite was fabricated using a multilevel modification strategy involving alkali pretreatment, toughened resin impregnation, and surface functionalization. Bamboo fibers were treated to remove hemicellulose and lignin, enhancing porosity and interfacial bonding. The bamboo scaffold was subsequently impregnated with a thermo-plastic polyurethane-modified epoxy resin to create a robust, interpenetrating network. The optimized composite (treated at 80 °C) exhibited a flexural strength of 443.97 MPa and a tensile strength of 324.14 MPa, demonstrating exceptional stiffness and toughness. Furthermore, a superhydrophobic coating incorporating silica nanoparticles was applied, achieving a water contact angle exceeding 150° and excellent self-cleaning properties. This work presents a scalable strategy for producing bio-based structural materials that balance mechanical strength with environmental durability. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 5561 KB  
Article
Porous Micropillar Arrays with Oil Infusion: Fabrication, Characterisation, and Wettability Analysis
by David Gibbon, Prabuddha De Saram, Azeez Bakare and Navid Kashaninejad
Micromachines 2025, 16(12), 1419; https://doi.org/10.3390/mi16121419 - 17 Dec 2025
Viewed by 380
Abstract
Superhydrophobic micropillar surfaces, inspired by the lotus leaf, have been extensively studied over the past two decades for their self-cleaning, anti-friction, anti-icing, and anti-corrosion properties. In this study, we introduce a simple and effective method for introducing porosity into polydimethylsiloxane (PDMS) micropillar arrays [...] Read more.
Superhydrophobic micropillar surfaces, inspired by the lotus leaf, have been extensively studied over the past two decades for their self-cleaning, anti-friction, anti-icing, and anti-corrosion properties. In this study, we introduce a simple and effective method for introducing porosity into polydimethylsiloxane (PDMS) micropillar arrays using salt templating. We then evaluate the wetting behaviour of these surfaces before and after infusion with perfluoropolyether (PFPE) oil. Apparent contact angle and sliding angle were measured relative to a non-porous control surface. Across five porous variants, the contact angle decreased by approximately 5° (from 157° to 152° on average), while the sliding angle increased by about 3.5° (from 16.5° to 20° on average). Following PFPE infusion, the porous arrays exhibited reduced sliding angles while maintaining superhydrophobicity. These results indicate that introducing porosity slightly reduces water repellency and droplet mobility, whereas PFPE infusion restores mobility while preserving high water repellency. The change in wettability following PFPE infusion highlights the potential of these surfaces to function as robust, self-cleaning materials. Full article
(This article belongs to the Special Issue The New Era of Surface Microfluidics: Advances and Applications)
Show Figures

Figure 1

14 pages, 5045 KB  
Article
Concertation of Anti-Reflective, Superhydrophobic Surface Based on Rational Assembly of Dual-Size Silica
by Lu Xu, Lei Niu, Shuqun Chen, Ting He, Junshu Wu, Jianbo Ai and Yongli Li
Materials 2025, 18(24), 5601; https://doi.org/10.3390/ma18245601 - 12 Dec 2025
Viewed by 381
Abstract
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure [...] Read more.
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure with micro-scale uniformity and nano-scale asperity was constructed. This unique architecture, combined with low surface energy, effectively reduces light scattering and enhances air trapping. Consequently, the coated glass achieves a high optical transmittance of 95.24% with a low haze of 0.97%, alongside a water contact angle of 153° and a sliding angle of 3°. The coating also exhibits distinct anti-reflection (an improvement of ~5.0% relative to the bare substrate) and self-cleaning properties. Furthermore, it demonstrates impressive robustness and durability, withstanding extreme conditions including cryogenic temperatures (−50 °C), hygrothermal environments, and long-term outdoor exposure. This work demonstrates the versatile potential of our strategy for fabricating highly transparent and superhydrophobic surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

20 pages, 4688 KB  
Article
One-Stage Synthesis of Superhydrophobic SiO2 Particles for Struvite-Based Dry Powder Coating of Extinguishing Agent
by Igor Valtsifer, Yan Huo, Valery Zamashchikov, Artem Shamsutdinov, Ekaterina Saenko, Natalia Kondrashova, Anastasiia Averkina and Viktor Valtsifer
Nanomaterials 2025, 15(24), 1859; https://doi.org/10.3390/nano15241859 - 11 Dec 2025
Viewed by 359
Abstract
Methods for the one-stage superhydrophobic silica synthesis with high textural characteristics and a contact angle of up to 163° as a promising functional additive for struvite-based fire extinguishing powder compositions with complex gas-generating effects have been presented. In this work the sequence of [...] Read more.
Methods for the one-stage superhydrophobic silica synthesis with high textural characteristics and a contact angle of up to 163° as a promising functional additive for struvite-based fire extinguishing powder compositions with complex gas-generating effects have been presented. In this work the sequence of components’ introduction into the reaction medium and the water amount influence during the one-stage synthesis of hydrophobic silicon dioxide on its textural, structural, morphological features and water-repellent properties were investigated. Rheological studies and assessment of the hydrophobic properties of fire extinguishing compositions, obtained with the synthesized silicon dioxide particles, allowed determining the optimal characteristics of a functional additive for compositions with struvite. The developed functional additive made it possible to implement the use of crystalline hydrates (struvite) in a fire extinguishing composition. Its inhibitory effect on flames is no less than two times greater than for widely used ammonium phosphates. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

19 pages, 1863 KB  
Article
Degradable Polymer-Based Oil–Water Separation Materials Prepared by High Internal Phase Emulsion Templating Method and Silica-Modification
by Yunpeng Hu, Jianqiao Lu, Maoning Li, Qingyuan Du, Jing Zhao, Dandan Li, Xiangrui Meng, Yu Nan, Zhi Zhang and Dazhi Sun
Polymers 2025, 17(24), 3254; https://doi.org/10.3390/polym17243254 - 6 Dec 2025
Viewed by 473
Abstract
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from [...] Read more.
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from degradable poly(ε-caprolactone-co-2-ethylhexyl acrylate) using a high internal phase emulsion templating technique. The foam was subsequently modified through in situ silica (SiO2) deposition via a sol–gel process, followed by grafting with hydrophobic hexadecyltrimethoxysilane (HDTMS) to produce the final oil–water separation porous materials. Various characterization results showed that the optimized material featured a hierarchical pore structure in micro scales and the porosity of the foam remained ~90% even after the 2-step modification. Mechanical tests indicate that the modified material exhibited significantly enhanced compressive strength and the water contact angle measurements revealed a superhydrophobic surface with a value of approximately 156°. The prepared material demonstrated excellent oil/water separation performance with notable absorption capacities ranging from 4.11 to 4.90 g/g for oils with different viscosity. Additionally, the porous material exhibited exceptional cyclic stability, maintaining over 90% absorption capacity after 10 absorption-desorption cycles. Moreover, the prepared material achieved a mass loss of approximately 30% within the first 3 days under alkaline hydrolysis conditions (pH 12, 25 °C), which further escalated to ~70% degradation within four weeks. The current work establishes a feasible strategy for developing sustainable, high-performance oil–water separation materials through rational structural design and surface engineering. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

13 pages, 1414 KB  
Article
Wettability-Controlled Hydrophobic Coating of CMP Component Using PTFE and DLC for Mitigating Slurry Agglomeration and Contamination
by Eunseok Lee, Kyoungjun Sun, Yuhan So, Jaewoo Baek, Jun Hyuk Shin, Hae Dong Kim, Yeo Bin Youn and Min-Woo Kim
Micromachines 2025, 16(12), 1382; https://doi.org/10.3390/mi16121382 - 5 Dec 2025
Viewed by 472
Abstract
The chemical mechanical polishing (CMP) process in semiconductor fabrication faces challenges such as slurry agglomeration, scratches, and contamination, which degrade process reliability and device quality. To mitigate these challenges, this study investigated the application of hydrophobic surface coatings on CMP components. Polytetrafluorothylene (PTFE) [...] Read more.
The chemical mechanical polishing (CMP) process in semiconductor fabrication faces challenges such as slurry agglomeration, scratches, and contamination, which degrade process reliability and device quality. To mitigate these challenges, this study investigated the application of hydrophobic surface coatings on CMP components. Polytetrafluorothylene (PTFE) was deposited onto stainless steel substrates, while diamond-like carbon (DLC) films were coated on PEEK-based retainer rings, with material selection guided by their surface energy characteristics and mechanical robustness. The hydrophobic performance of the coatings was systematically evaluated through contact angle measurements and surface roughness analysis (Ra, Rpk, Sa, Spk). Under oxide CMP conditions, 60 h reliability tests using non-patterned wafers demonstrated that PTFE-coated stainless-steel surfaces significantly reduced slurry-induced particle accumulation and suppressed scratches compared with uncoated substrates. In addition, PTFE provided stable hydrophobicity and effective scratch resistance, while DLC exhibited superhydrophobic behavior with contact angles exceeding 160°, offering potential for even greater protection against surface damage. The wettability of DLC coatings was further tunable via sp3/sp2 carbon bonding ratios and surface roughness, consistent with the predictions of the Cassie–Baxter and Wenzel models. These findings establish a framework for surface modification of CMP hardware. The integration of PTFE and DLC coatings effectively enhances hydrophobicity, suppresses slurry contamination, and improves scratch reliability, thereby offering a practical route for designing hydrophobic CMP components that strengthen process stability and extend equipment lifetime in advanced semiconductor manufacturing. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 3526 KB  
Article
Hydrophobic Properties of Pine Wood Coatings Based on Epoxy Varnish and (Fluoro)Alkyl Methacrylate Copolymers
by Viktor V. Klimov, Vladislav V. Arkhipov, Olga V. Klimova, Manh D. Le, Evgeny V. Bryuzgin and Alexander V. Navrotskii
Polymers 2025, 17(23), 3172; https://doi.org/10.3390/polym17233172 - 28 Nov 2025
Viewed by 367
Abstract
This study presents water-repellent coatings for pine wood surfaces based on epoxy varnish modified with glycidyl methacrylate–(fluoro)alkyl methacrylate copolymers, achieving superhydrophobic properties with contact angles up to 155° while maintaining the natural texture of the wood. The influence of the application method on [...] Read more.
This study presents water-repellent coatings for pine wood surfaces based on epoxy varnish modified with glycidyl methacrylate–(fluoro)alkyl methacrylate copolymers, achieving superhydrophobic properties with contact angles up to 155° while maintaining the natural texture of the wood. The influence of the application method on the microtexture and water-repellent properties of the coatings has been demonstrated. Incorporating functional copolymers considerably improves water resistance: after 60 days of immersion, water absorption is reduced more than threefold compared to coatings made with unmodified epoxy varnish. Furthermore, the coatings maintain their water-repellent properties and preserve the wood’s appearance even after six months of exposure to the tropical climate of South Vietnam. Full article
Show Figures

Graphical abstract

2 pages, 136 KB  
Retraction
RETRACTED: Wahby et al. Curing of Functionalized Superhydrophobic Inorganic/Epoxy Nanocomposite and Application as Coatings for Steel. Coatings 2021, 11, 83
by Mohamed H. Wahby, Ayman M. Atta, Yasser M. Moustafa, Abdelrahman O. Ezzat and Ahmed I. Hashem
Coatings 2025, 15(12), 1369; https://doi.org/10.3390/coatings15121369 - 24 Nov 2025
Viewed by 290
Abstract
Following publication, concerns were brought to the attention of the Editorial Office regarding the scientific accuracy of the data presented in the published paper [...] Full article
Back to TopTop