Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = superconducting magnets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1815 KB  
Article
Modelling, Optimisation, and Construction of a High-Temperature Superconducting Maglev Demonstrator
by Chenxuan Zhang, Qian Dong, Hongye Zhang and Markus Mueller
Machines 2026, 14(1), 108; https://doi.org/10.3390/machines14010108 (registering DOI) - 16 Jan 2026
Abstract
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway [...] Read more.
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway (PMG) configurations were compared, and an optimised PMG Halbach array design was identified that enhances flux concentration and significantly improves levitation performance. To accurately model the electromagnetic interaction between the HTS bulk and the external magnetic field, finite element models based on the H-formulation were established in both two dimensions (2D) and three dimensions (3D). An HTS maglev demonstrator was built using YBCO bulks, and an experimental platform was constructed to measure levitation force. While the 2D model offers fast computation, it shows deviations from the measurements due to geometric simplifications, whereas the 3D model predicts levitation forces for the cylindrical bulk with much higher accuracy, with errors remaining below 10%. The strong agreement between experimental measurements and the 3D simulation across the entire force–height cycle confirms that the proposed model reliably reproduces the electromagnetic coupling and resulting levitation forces in HTS maglev systems. The paper provides a practical and systematic reference for the optimal design and experimental validation of HTS bulk-based maglev systems. Full article
(This article belongs to the Section Vehicle Engineering)
32 pages, 34035 KB  
Review
Irradiation-Induced Defect Engineering in REBCO Coated Conductors: Mechanisms, Effects, and Perspectives
by Yuxiang Li, Ningning Liu, Ziheng Guo, Liangkang Chen, Dongliang Gong, Dongliang Wang and Yanwei Ma
Materials 2026, 19(2), 300; https://doi.org/10.3390/ma19020300 - 12 Jan 2026
Viewed by 111
Abstract
REBa2Cu3O7−δ (REBCO) coated conductors are considered a critical material for next-generation high-field superconducting applications owing to their superior superconducting performance at elevated temperatures and under strong magnetic fields. However, rapid degradation of the critical current density ( [...] Read more.
REBa2Cu3O7−δ (REBCO) coated conductors are considered a critical material for next-generation high-field superconducting applications owing to their superior superconducting performance at elevated temperatures and under strong magnetic fields. However, rapid degradation of the critical current density (Jc) under high-field and high-temperature conditions remains a major limitation for their practical applications. To address this, controlling flux pinning centers has emerged as a crucial strategy to enhance performance. Irradiation techniques, as one of the most commonly employed methods, have attracted considerable attention due to their capability to provide precise control, high reproducibility, and flexibility in tailoring the microstructure. In this review, we focus on the effects of proton, heavy-ion, and neutron irradiation on the microstructure and superconducting properties of REBCO coated conductors. We discuss the underlying mechanisms in terms of defect types and distributions, energy loss processes, flux pinning enhancement, and the evolution of Jc and transition temperature (Tc). Furthermore, we compare different irradiation methods, highlighting their advantages and suitability across diverse temperature and magnetic field conditions. The potential of hybrid irradiation strategies for creating multiscale composite pinning landscapes is also examined. Future efforts should aim to synergistically combine different irradiation mechanisms and optimize defect structures to develop REBCO tapes with highly isotropic and stable flux pinning, which is essential for large-scale applications in fusion energy, high-field magnets, and aerospace electric motors. Full article
Show Figures

Figure 1

10 pages, 3868 KB  
Article
The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method
by Ahmed Al-Mobydeen, Mohammed M. Alawamleh, Sondos Shamha, Ehab AlShamaileh, Iessa Sabbe Moosa, Jamal Rahhal, Mike Haddad, Wala`a Al-Tarawneh, Yousef Al-Dalahmeh and Imad Hamadneh
Inorganics 2026, 14(1), 25; https://doi.org/10.3390/inorganics14010025 - 7 Jan 2026
Viewed by 175
Abstract
This study examines the influence of sintering temperature on the structural and transport properties of GdBa2Cu3O7 (Gd123) superconductors prepared from nano-sized precursors via the co-precipitation method. The metal-oxalate precursor (average particle size < 50 nm) was calcined at [...] Read more.
This study examines the influence of sintering temperature on the structural and transport properties of GdBa2Cu3O7 (Gd123) superconductors prepared from nano-sized precursors via the co-precipitation method. The metal-oxalate precursor (average particle size < 50 nm) was calcined at 900 °C for 12 h, and then the prepared pellets were sintered under an oxygen atmosphere in the range of 920–950 °C for 15 h. All samples showed metallic properties and a sharp superconducting transition. Critical temperatures TC(R=0) were 94–95 K, with higher sintering temperatures steadily boosting critical current density. X-ray diffraction confirmed orthorhombic Gd123 as the dominant phase, with its phase fraction increasing from 92% to 99.8% as the sintering temperature increased. SEM micrographs showed large, densely packed grains, with higher sintering temperatures promoting improved grain connectivity and reduced porosity. The sample sintered at 950 °C exhibited the most favorable transport performance, attributed to enhanced intergranular coupling and the presence of nanoscale secondary phases acting as effective flux-pinning centers. Overall, these results demonstrate that careful control of sintering temperature can significantly optimize the microstructure and superconducting properties of Gd123 materials, supporting their advancement for practical electrical and magnetic applications. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

10 pages, 1501 KB  
Communication
Magnetic Detection of Cancer Cells Using Tumor-Homing Peptide-Modified Magnetic Nanoparticles
by Shengli Zhou, Yuji Furutani, Kei Yamashita, Sakuya Kako, Kazunori Watanabe, Toshihiko Kiwa and Takashi Ohtsuki
Biosensors 2026, 16(1), 45; https://doi.org/10.3390/bios16010045 - 5 Jan 2026
Viewed by 284
Abstract
Magnetic nanoparticles (MNPs) provide a platform for target detection because of their magnetic responsiveness to alternating magnetic fields (AMFs). We developed a detection method using MNPs modified with tumor-homing peptides (THPs), PL1 and PL3, which selectively bind to protein components enriched in malignant [...] Read more.
Magnetic nanoparticles (MNPs) provide a platform for target detection because of their magnetic responsiveness to alternating magnetic fields (AMFs). We developed a detection method using MNPs modified with tumor-homing peptides (THPs), PL1 and PL3, which selectively bind to protein components enriched in malignant tissues. THP-MNPs were synthesized using maleimide-PEG-NHS linkers and characterized using transmission electron microscopy. Human glioblastoma cancer U87MG and normal tissue-derived HEK293 cells were incubated with THP-MNPs, and the magnetic signals were measured using a high-temperature superconducting quantum interference device (SQUID) magnetometer under an AMF (1.06 kHz). Dark-field microscopy confirmed the preferential binding of THP-MNPs to U87MG cells. In the absence of cells, THP-MNPs exhibited AMF-dependent signal enhancement, which correlated with particle size reduction due to THP release. This increase was completely suppressed in the presence of U87MG cells, indicating a strong THP-mediated interaction. PL3-MNPs exhibited superior discrimination between malignant and non-malignant cells. These results demonstrate that SQUID-based magnetic measurements using THP-MNPs enable rapid and label-free cancer cell detection. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring—2nd Edition)
Show Figures

Figure 1

16 pages, 1452 KB  
Review
Research Progress of Epoxy-Based Composites for Insulating Encapsulation of Superconducting Magnets
by Shen Zhao, Zhicong Miao, Zhixiong Wu, Rongjin Huang and Laifeng Li
Cryo 2026, 2(1), 2; https://doi.org/10.3390/cryo2010002 - 5 Jan 2026
Viewed by 139
Abstract
Epoxy-based composites are crucial insulating and structural materials for superconducting magnets, providing mechanical strength, winding fixation, and heat transfer. However, future superconducting devices with higher integration and power will place even higher demands on their toughness, thermal conductivity, electrical insulation, and radiation resistance [...] Read more.
Epoxy-based composites are crucial insulating and structural materials for superconducting magnets, providing mechanical strength, winding fixation, and heat transfer. However, future superconducting devices with higher integration and power will place even higher demands on their toughness, thermal conductivity, electrical insulation, and radiation resistance at low temperatures. Otherwise, problems such as cracking, detachment, and low heat dissipation efficiency will arise, which may lead to quenching of low-temperature superconductors (Nb3Sn, NbTi) and a decline in the performance of high-temperature superconductors (YBCO). Research focuses on summarizing the recent progress in modifying epoxy resin to address these issues. The current strategies include formula optimization using mixed curing and toughening agents to enhance mechanical properties, incorporating functional fillers to improve cryogenic thermal conductivity and reduce the coefficient of thermal expansion. Studies also evaluate cryogenic electrical insulation performance (DC breakdown strength, flashover voltage) and radiation resistance under cryogenic conditions. These advancements aim to develop reliable epoxy composites, ensuring the stability and safety of superconducting magnets in applications such as particle accelerators and fusion reactors. Full article
Show Figures

Figure 1

18 pages, 3811 KB  
Article
Optimization Design of High-Performance Hybrid Superconducting ECR Ion Source Magnet System Based on Particle Swarm Algorithm
by Manman Xu, Lei Liu, Yongming Liu, Yimin Lu and Huaiyang Wang
Symmetry 2026, 18(1), 82; https://doi.org/10.3390/sym18010082 - 3 Jan 2026
Viewed by 190
Abstract
The development of 18 GHz hybrid superconducting ECR ion sources is constrained by the complex trade-off in magnet system design, where achieving simultaneous excellence in field strength, confinement stability, and resonant coupling remains a formidable challenge. A design automation framework that tightly integrates [...] Read more.
The development of 18 GHz hybrid superconducting ECR ion sources is constrained by the complex trade-off in magnet system design, where achieving simultaneous excellence in field strength, confinement stability, and resonant coupling remains a formidable challenge. A design automation framework that tightly integrates Particle Swarm Optimization (PSO) with COMSOL-based finite element analysis is presented. This synergy enables the global optimization of the permanent magnet hexapole and the superconducting solenoids’ currents as an interconnected system. The optimizer delivers a magnetic field configuration that simultaneously achieves a 2.6 T axial peak, a 4.25 mirror ratio, and a precise minimum-B field of 0.6 T. This synergy creates a stable magnetic cage perfectly resonant at 18 GHz, ensuring superior plasma confinement and efficient microwave-to-plasma energy transfer. This study validates the PSO algorithm as a powerful tool for transcending conventional design paradigms in complex electromagnetic systems. The resulting magnet solution not only meets the stringent demands of next-generation ECR ion sources but also provides a transferable blueprint for optimizing a broad class of symmetric devices governed by multi-physics constraints. Full article
(This article belongs to the Special Issue Meta-Heuristics for Manufacturing Systems Optimization, 3rd Edition)
Show Figures

Figure 1

22 pages, 2126 KB  
Article
Analysis of the Properties of HTS 2G SCS and SF Windings During Failure States of Superconducting Transformers
by Paweł Surdacki and Łukasz Woźniak
Energies 2026, 19(1), 107; https://doi.org/10.3390/en19010107 - 24 Dec 2025
Viewed by 235
Abstract
The article presents a PSpice software-based numerical model of a superconducting transformer with HTS 2G SCS and SF windings for the analysis of electrical circuits, developed using PSpice version 24.1 (Cadence, 2024),which allows for the determination of equivalent parameters and properties of such [...] Read more.
The article presents a PSpice software-based numerical model of a superconducting transformer with HTS 2G SCS and SF windings for the analysis of electrical circuits, developed using PSpice version 24.1 (Cadence, 2024),which allows for the determination of equivalent parameters and properties of such a transformer in the steady state and in emergency states. The model has user-defined ABM (Analogue Behavioural Modelling) computational blocks and avails itself of the level 2 Jiles-Atherton magnetic hysteresis model and Rhyner’s power law describing the E-J relationship of the HTS superconducting tape. This model was experimentally verified by measurements of a real 10 kVA HTS transformer. On this basis, an extensive numerical model of a superconducting transformer with a more complicated winding structure and a higher power of 21 MVA was developed. For such a transformer, power losses were analysed and the time courses of resistance, current and temperature of superconducting windings made of HTS 2G tapes of the SCS type with a copper stabiliser and SF without a stabiliser were examined during emergency states, such as connecting the transformer to the network and operational short circuit. A discussion was carried out on the effectiveness of using both types of HTS tapes to limit the current in emergency situations posing a risk of loss of superconductivity and destruction of superconducting windings. Full article
(This article belongs to the Special Issue Application of the Superconducting Technology in Energy System)
Show Figures

Figure 1

33 pages, 2145 KB  
Article
Deep Learning Fractal Superconductivity: A Comparative Study of Physics-Informed and Graph Neural Networks Applied to the Fractal TDGL Equation
by Călin Gheorghe Buzea, Florin Nedeff, Diana Mirilă, Maricel Agop and Decebal Vasincu
Fractal Fract. 2025, 9(12), 810; https://doi.org/10.3390/fractalfract9120810 - 11 Dec 2025
Viewed by 382
Abstract
The fractal extension of the time-dependent Ginzburg–Landau (TDGL) equation, formulated within the framework of Scale Relativity, generalizes superconducting dynamics to non-differentiable space–time. Although analytically well established, its numerical solution remains difficult because of the strong coupling between amplitude and phase curvature. Here we [...] Read more.
The fractal extension of the time-dependent Ginzburg–Landau (TDGL) equation, formulated within the framework of Scale Relativity, generalizes superconducting dynamics to non-differentiable space–time. Although analytically well established, its numerical solution remains difficult because of the strong coupling between amplitude and phase curvature. Here we develop two complementary deep learning solvers for the fractal TDGL (FTDGL) system. The Fractal Physics-Informed Neural Network (F-PINN) embeds the Scale-Relativity covariant derivative through automatic differentiation on continuous fields, whereas the Fractal Graph Neural Network (F-GNN) represents the same dynamics on a sparse spatial graph and learns local gauge-covariant interactions via message passing. Both models are trained against finite-difference reference data, and a parametric study over the dimensionless fractality parameter D quantifies its influence on the coherence length, penetration depth, and peak magnetic field. Across multivortex benchmarks, the F-GNN reduces the relative L2 error on ψ2 from 0.190 to 0.046 and on Bz from approximately 0.62 to 0.36 (averaged over three seeds). This ≈4× improvement in condensate-density accuracy corresponds to a substantial enhancement in vortex-core localization—from tens of pixels of uncertainty to sub-pixel precision—and yields a cleaner reconstruction of the 2π phase winding around each vortex, improving the extraction of experimentally relevant observables such as ξeff, λeff, and local Bz peaks. The model also preserves flux quantization and remains robust under 2–5% Gaussian noise, demonstrating stable learning under experimentally realistic perturbations. The D—scan reveals broader vortex cores, a non-monotonic variation in the penetration depth, and moderate modulation of the peak magnetic field, while preserving topological structure. These results show that graph-based learning provides a superior inductive bias for modeling non-differentiable, gauge-coupled systems. The proposed F-PINN and F-GNN architectures therefore offer accurate, data-efficient solvers for fractal superconductivity and open pathways toward data-driven inference of fractal parameters from magneto-optical or Hall-probe imaging experiments. Full article
Show Figures

Figure 1

31 pages, 5710 KB  
Review
Recent Progress in the Theory of Flat Bands and Their Realization
by Izumi Hase
Condens. Matter 2025, 10(4), 64; https://doi.org/10.3390/condmat10040064 - 5 Dec 2025
Viewed by 1449
Abstract
Flat electronic bands, characterized by a nearly dispersionless energy spectrum, have emerged as fertile ground for exploring strong correlation effects, unconventional magnetism, and topological phases. This review paper provides an overview of the theoretical basis, material realization, and emergent phenomena associated with flat [...] Read more.
Flat electronic bands, characterized by a nearly dispersionless energy spectrum, have emerged as fertile ground for exploring strong correlation effects, unconventional magnetism, and topological phases. This review paper provides an overview of the theoretical basis, material realization, and emergent phenomena associated with flat bands. We begin by discussing the geometric and topological origins of flat bands in lattice systems, emphasizing mechanisms such as destructive interference and compact localized states. We will also explain the relationship between quantum metrics and flat bands, which are recent theoretical findings. We then survey various classes of materials—ranging from engineered lattices and Moiré structures to transition metal compounds—where flat bands have been theoretically predicted or experimentally observed. The interplay between flat-band physics and strong correlations is explored through recent developments in ferromagnetism, superconductivity, and various Hall effects. Finally, we outline open questions and potential directions for future research, including the quest for ideal flat-band systems, the role of spin–orbit coupling, and the impact of disorder. This review aims to bridge fundamental concepts with cutting-edge advances, highlighting the rich physics and material prospects of flat bands. Full article
Show Figures

Figure 1

15 pages, 2919 KB  
Article
Coherent-Phase Optical Time Domain Reflectometry for Monitoring High-Temperature Superconducting Magnet Systems
by Matthew Leoschke, William Lo, Victor Yartsev, Steven Derek Rountree, Steve Cole and Federico Scurti
Sensors 2025, 25(23), 7368; https://doi.org/10.3390/s25237368 - 3 Dec 2025
Viewed by 569
Abstract
High-temperature superconductor (HTS) magnet systems, especially those designed for fusion reactors, require effective and reliable monitoring to avoid damaging anomalies. In tokamaks, some of the magnetic coils are time-dependent, which causes strain and large inductive voltages within the magnet, rendering detection of incipient [...] Read more.
High-temperature superconductor (HTS) magnet systems, especially those designed for fusion reactors, require effective and reliable monitoring to avoid damaging anomalies. In tokamaks, some of the magnetic coils are time-dependent, which causes strain and large inductive voltages within the magnet, rendering detection of incipient quench challenging. Ionizing radiation can also create material defects and lead to non-uniform degradation of conductors. The resulting decrease in critical current uniformity across the magnet, along with manufacturing defects, such as failure of structural materials or cooling systems, can all potentially initiate a quench. HTS magnets have a lower normal zone propagation velocity than low-temperature superconductors, and this causes normal zones to be localized, increasing the risk of permanent damage. Fiber optic sensors have several qualities that are essential in fusion systems. Unlike traditional voltage-based sensors, fiber optic cables are immune to the large electromagnetic fields present. This study presents and validates a fiber optic interrogation technique for monitoring magnetic confinement fusion and other high-temperature superconducting magnet systems. Coherent-phase optical time domain reflectometry (OTDR) allows for the high sampling rates (tens of kHz) necessary to quickly detect and mitigate quench events over the long distances required to monitor fusion magnet systems. This technique was demonstrated to successfully detect localized thermal transients at cryogenic temperatures as low as 6 K. These outcomes were also demonstrated using fibers embedded in HTS magnet coils at 77 K, verifying the potential for this interrogation technique’s use for failure detection in HTS coils. Full article
(This article belongs to the Special Issue Advances and Innovations in Optical Fiber Sensors)
Show Figures

Figure 1

11 pages, 3494 KB  
Article
A Simulation and Experimental Study of the Current Contact Notch Structure on the Fracture Capacity of Pyro-Breakers
by Jifei Ye, Guanghong Wang, Hua Li, Zhiquan Song and Peng Fu
Modelling 2025, 6(4), 159; https://doi.org/10.3390/modelling6040159 - 3 Dec 2025
Viewed by 294
Abstract
The current contact of pyro-breakers must rapidly interrupt current when the superconducting magnet loses its superconductivity. To enhance the microsecond-scale current-breaking capability of pyro-breakers in nuclear fusion devices, this study investigates the impact of current contact notch structures on dynamic fracture behavior. Through [...] Read more.
The current contact of pyro-breakers must rapidly interrupt current when the superconducting magnet loses its superconductivity. To enhance the microsecond-scale current-breaking capability of pyro-breakers in nuclear fusion devices, this study investigates the impact of current contact notch structures on dynamic fracture behavior. Through multi-physics field modeling and controlled explosive testing, it is revealed for the first time that the rectangular-notch structure demonstrates enhanced fracture performance relative to the V-notch configuration under explosive impact loading conditions, achieving a 27.3% reduction in fracture initiation time alongside a 47.5% increase in crack propagation width. These findings provide a robust theoretical basis for designing pyro-breakers with enhanced fast-break capabilities in fusion devices. Full article
Show Figures

Figure 1

16 pages, 3143 KB  
Article
Multi-Objective Structural Optimization of a 10 kV/1 MVar Superconducting Toroidal Air-Core Reactor
by Qingchuan Xu, Haoyang Tian, Honglei Li, Lei Su, Bengang Wei, Shuhao Peng, Jie Sheng and Zhijian Jin
Energies 2025, 18(23), 6261; https://doi.org/10.3390/en18236261 - 28 Nov 2025
Viewed by 264
Abstract
With the increase in urban cableization rate and cable length, the overvoltage problem caused by the capacitive effect becomes more and more serious. To limit overvoltage and achieve regional reactive power balance, shunt reactors are installed in substations. Based on a series of [...] Read more.
With the increase in urban cableization rate and cable length, the overvoltage problem caused by the capacitive effect becomes more and more serious. To limit overvoltage and achieve regional reactive power balance, shunt reactors are installed in substations. Based on a series of previous research, a type of superconducting toroidal air-core reactor is presented in this paper. The aim is to improve the power density of reactive power compensation and reduce magnetic leakage and noise pollution. In this paper, the structural optimized design of a 10 kV/1 MVar reactor is carried out based on COMSOL and MATLAB. In consideration of the usage of high-temperature superconducting tapes and AC loss of the reactor, combined with critical current, this paper uses corresponding finite element method (FEM) models and the optimal solution set is obtained via multi-objective genetic algorithm (MOGA). Finally, the solutions are analyzed economically and the set of solutions with the lowest cost is obtained, which provides a reference for the actual fabrication of a toroidal reactor in Shanghai, and can be used in the design of superconducting reactors at higher voltage levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 3214 KB  
Review
Superconductivity and Cryogenics in Medical Diagnostics and Treatment: An Overview of Selected Applications
by Oleksandr Boiko and Henryka Danuta Stryczewska
Appl. Sci. 2025, 15(23), 12579; https://doi.org/10.3390/app152312579 - 27 Nov 2025
Viewed by 647
Abstract
This article presents a comprehensive overview of the current and emerging roles of cryogenics and superconductivity in medical diagnostics, imaging, and therapy. Beginning with the historical foundations of both fields and their technological maturation, this review emphasizes how cryogenic engineering and superconducting materials [...] Read more.
This article presents a comprehensive overview of the current and emerging roles of cryogenics and superconductivity in medical diagnostics, imaging, and therapy. Beginning with the historical foundations of both fields and their technological maturation, this review emphasizes how cryogenic engineering and superconducting materials have become indispensable to modern medical systems. Cryogenic technologies are highlighted in applications such as cryosurgery, cryotherapy, cryostimulation, and cryopreservation, all of which rely on controlled exposure to extremely low temperatures for therapeutic or biological preservation purposes. This article outlines the operating principles of cryomedical devices, the refrigerants and cooling methods used, and the technological barriers. This paper reviews the latest applications of superconductivity phenomena in medicine and identifies those that could be used in the future. These include cryogenic therapy, radiotherapy (cyclotrons, particle accelerators, synchrotron radiation generation, isotope production, and proton and ion beam delivery), magnetic resonance imaging (MRI), nuclear magnetic resonance spectroscopy (NMR), positron emission tomography (PET), and ultra-sensitive magnetic signal transducers based on SQUIDs for detecting ultra-low bio-signals emitted by human body organs. CT, MRI/NMR, and PET features are compared using the operation principle, specific applications, safety, contraindications for patients, examination time, and additional valued peculiarities. This article outlines the prospects for the development of superconducting and cryogenic materials and technologies in medical applications. Advances in diagnostic imaging are reviewed, with particular attention on the progression from conventional MRI scanners to ultra-high-field (UHF) systems exceeding 7–10.5 T, culminating in the 11.7 T Iseult whole-body MRI magnet. Another important application area described in this article includes biofunctionalized magnetic nanoparticles and superconducting quantum interference devices (SQUIDs), which enable the ultrasensitive detection of biomagnetic fields and targeted cancer diagnostics. Finally, this article identifies future directions of development in superconducting and cryogenic technologies for medicine. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 5502 KB  
Article
Levitation Characteristics of an Aged Superconducting Magnetic Bearing
by Tilo Espenhahn, Marcus Dietzel and Ruben Hühne
Appl. Sci. 2025, 15(23), 12563; https://doi.org/10.3390/app152312563 - 27 Nov 2025
Viewed by 426
Abstract
Superconducting magnetic bearings are friction-free devices and therefore in principle suitable for long-term operation, as no wear is observed. However, other degradation mechanisms can influence the operation. Up to now, it has not been clear to what extent degradation of either the bulk [...] Read more.
Superconducting magnetic bearings are friction-free devices and therefore in principle suitable for long-term operation, as no wear is observed. However, other degradation mechanisms can influence the operation. Up to now, it has not been clear to what extent degradation of either the bulk superconductors or the permanent magnets impacts the overall bearing performance on long timescales. Therefore, we studied the bearing properties of a 20-year-old rotational superconducting magnetic bearing, which was cooled down occasionally in an open liquid nitrogen bath for presentation. Otherwise, the bearing was stored under ambient conditions. To characterize the current status, we measured the bearing’s static and dynamic stiffness in radial and axial directions. Comparing our results to the values measured after the setup of the bearing revealed a stiffness degradation of up to 77%. This decrease is mainly attributed to the degradation of the bearing’s superconducting bulks and the permanent magnets. Analysis of both components showed clear signs of degradation. The permanent magnetic rotor’s magnetic field is around 19% smaller compared to the original state. The superconducting bulks now only inhomogeneously trap magnetic flux. Critical current calculation based on this data revealed a significant reduction compared to the original measurements. Nonetheless, the bearing allows for a stable levitation. Full article
(This article belongs to the Special Issue Applied Superconductivity: Material, Design, and Application)
Show Figures

Figure 1

19 pages, 930 KB  
Review
de Gennes–Suzuki–Kubo Quantum Ising Mean-Field Dynamics: Applications to Quantum Hysteresis, Heat Engines, and Annealing
by Soumyaditya Das, Soumyajyoti Biswas, Muktish Acharyya and Bikas K. Chakrabarti
Condens. Matter 2025, 10(4), 58; https://doi.org/10.3390/condmat10040058 - 20 Nov 2025
Viewed by 685
Abstract
We briefly review the early development of the mean-field dynamics for cooperatively interacting quantum many-body systems, mapped to pseudo-spin (Ising-like) systems. We start with (Anderson, 1958) pseudo-spin mapping the BCS (1957) Hamiltonian of superconductivity, reducing it to a mean-field Hamiltonian of the XY [...] Read more.
We briefly review the early development of the mean-field dynamics for cooperatively interacting quantum many-body systems, mapped to pseudo-spin (Ising-like) systems. We start with (Anderson, 1958) pseudo-spin mapping the BCS (1957) Hamiltonian of superconductivity, reducing it to a mean-field Hamiltonian of the XY (or effectively Ising) model in a transverse field. Then, we obtain the mean-field estimate for the equilibrium gap in the ground-state energy at different temperatures (gap disappearing at the transition temperature), which fits Landau’s (1949) phenomenological theory of superfluidity. We then present in detail a general dynamical extension (for non-equilibrium cases) of the mean-field theory of quantum Ising systems (in a transverse field), following de Gennes’ (1963) decomposition of the mean field into the orthogonal classical cooperative (longitudinal) component and the quantum (transverse) component, with each of the component following Suzuki–Kubo (1968) mean-field dynamics. Next, we discuss its applications to quantum hysteresis in Ising magnets (in the presence of an oscillating transverse field), to quantum heat engines (employing the transverse Ising model as a working fluid), and to the quantum annealing of the Sherrington–Kirkpatrick (1975) spin glass by tuning down (to zero) the transverse field, which provides us with a very fast computational algorithm, leading to ground-state energy values converging to the best-known analytic estimate for the model. Finally, we summarize the main results obtained and draw conclusions about the effectiveness of the de Gennes–Suzuki–Kubo mean-field equations for the study of various dynamical aspects of quantum condensed matter systems. Full article
Show Figures

Figure 1

Back to TopTop