A Simulation and Experimental Study of the Current Contact Notch Structure on the Fracture Capacity of Pyro-Breakers
Abstract
1. Introduction
2. Materials and Methods
2.1. The Structure of a Pyro-Breaker
2.2. Current Unit Modeling
2.3. Analysis of Numerical Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ongena, J.; Koch, R.; Wolf, R.; Zohm, H. Magnetic-confinement fusion. Nat. Phys. 2016, 12, 398–410. [Google Scholar] [CrossRef]
- Haack, J.; Khatri, B.B. Superconductivity for nuclear fusion: Past, present, and future. Arab. J. Sci. Eng. 2024, 50, 3233–3237. [Google Scholar] [CrossRef]
- Song, Y.T.; Wu, S.T.; Li, J.G.; Wan, B.N.; Wan, Y.X.; Fu, P.; Ye, M.Y.; Zheng, J.X.; Lu, K.; Gao, X.; et al. Concept design of CFETR tokamak machine. IEEE Trans. Plasma Sci. 2014, 42, 503–509. [Google Scholar] [CrossRef]
- Goff, J.; Gascon, J.; Mankani, A.; Song, I. The ITER magnet power supplies and control system. In Proceedings of the 2010 International Conference on Electrical Machines and Systems, Incheon, Republic of Korea, 10–13 October 2010. [Google Scholar]
- Tong, W.; Song, Z.; Fu, P.; Li, H.; Wang, K.; Wang, S.; Zhang, X. Feasibility analysis of 100 kA DC commutation scheme to be applied in the quench protection unit of CFETR. IEEE Trans. Appl. Supercond. 2019, 30, 4700109. [Google Scholar] [CrossRef]
- Tong, W.; Li, H.; Xu, M.; Song, Z.-Q.; Chen, B. Neutron irradiation influence on high-power thyristor device under fusion environment. Nucl. Sci. Tech. 2024, 35, 72. [Google Scholar] [CrossRef]
- Wang, K.; Song, Z.; Fu, P.; Tong, W.; Li, H.; Zhang, X. Structure optimization of fast discharge resistor system for quench protection system. IEEE Access 2019, 7, 52122–52131. [Google Scholar] [CrossRef]
- Xu, M.; Li, H.; Song, Z.; Hu, X.; Tang, C.; Fu, P. The challenge and solution of overvoltage for 100 kA quench protection system in CRAFT project. Fusion Eng. Des. 2022, 175, 113001. [Google Scholar] [CrossRef]
- Fu, P.; Song, Z.Q.; Gao, G.; Tang, L.J.; Wu, Y.B.; Wang, L.S.; Liang, X.Y. Quench protection of the poloidal field superconducting coil system for the EAST tokamak. Nucl. Fusion 2006, 46, S85. [Google Scholar] [CrossRef]
- He, J.; Song, Z.; Tang, C.; Fu, P.; Zhang, J. Designing of cooling water system for a pyro-breaker utilized in superconductive fusion facility. Fusion Eng. Des. 2019, 148, 111294. [Google Scholar] [CrossRef]
- Manzuk, M.; Avanesov, S.; Roshal, A.; Bestuzhev, K.; Nesterenko, A.; Volkov, S. The 70 kA pyrobreaker for ITER magnet back-up protection. Fusion Eng. Des. 2013, 88, 1537–1540. [Google Scholar] [CrossRef]
- Manzuk, M.; Alekseev, D.I.; Krivosheev, S.I.; Magazinov, S.G.; Adamyan, Y.E. Experimental Study of the Deformation Processes of Current-Carrying Elements of Protective Switches for Fusion Application. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Moscow, Russia, 26–29 January 2021; pp. 1476–1479. [Google Scholar]
- Tang, C.W.; Song, Z.; Li, C.; Wang, Z.; Ye, J.; Li, H.; Fu, P. Computational investigation on the explosively actuated switch utilized in quenching protection system. Fusion Eng. Des. 2021, 163, 112157. [Google Scholar] [CrossRef]
- Tang, C.; Li, H.; Song, Z.; Ye, J.; Xu, M.; Hu, X.; Peng, F. Design and Characterisation of the High-current DC Breaker Driven by Explosive. High Volt. 2022, 8, 466–476. [Google Scholar] [CrossRef]
- Gaio, E.; Maistrello, A.; Barp, M.; Perna, M.; Coffetti, A.; Soso, F.; Novello, L.; Matsukawa, M.; Yamauchi, K. Full scale prototype of the JT-60SA quench protection circuits. Fusion Eng. Des. 2013, 88, 563–567. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Guo, Z.; Zhang, S.; Dan, J.; Liu, M.; Tang, T. Effect of pre-shock on the expanding fracture behavior of 1045 steel cylindrical shell under internal explosive loading. Int. J. Impact Eng. 2025, 196, 105183. [Google Scholar] [CrossRef]
- Mao, W.S.; Zhong, M.; Xie, X.; Ma, H.; Yang, G.; Fan, L. Dynamic response of a hollow cylindrical shell subjected to a near-field underwater explosion. J. Appl. Phys. 2024, 135, 224701. [Google Scholar] [CrossRef]
- Huang, X.P.; Zhu, B.; Chen, Y. A rate-dependent peridynamic–SPH coupling model for damage and failure analysis of concrete dam structures subjected to underwater explosions. Int. J. Impact Eng. 2025, 200, 105270. [Google Scholar] [CrossRef]
- Wang, Y.G.; Liao, C.C.; Wang, J.-H.; Jeng, D.-S. Dynamic response of pipelines with various burial depth due to underwater explosion. Ocean. Eng. 2018, 164, 114–126. [Google Scholar] [CrossRef]
- Liu, M.T.; Ren, G.; Fan, C.; Tang, T.; Wang, X.; Hu, H. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder. Int. J. Impact Eng. 2017, 109, 240–252. [Google Scholar] [CrossRef]









| A (MPa) | B (MPa) | R1 | R2 | ω | E |
|---|---|---|---|---|---|
| 5,810,000 | 6800 | 4.1 | 1.0 | 0.35 | 9.0 |
| A (MPa) | B (MPa) | n | C | m |
|---|---|---|---|---|
| 900 | 292 | 0.31 | 0.025 | 1 |
| Form | Simulation Spacing | Test Spacing | Error/% |
|---|---|---|---|
| V-notch | 0.64 cm | 0.61 cm | 4.92 |
| R-notch | 0.94 cm | 0.90 cm | 4.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Wang, G.; Li, H.; Song, Z.; Fu, P. A Simulation and Experimental Study of the Current Contact Notch Structure on the Fracture Capacity of Pyro-Breakers. Modelling 2025, 6, 159. https://doi.org/10.3390/modelling6040159
Ye J, Wang G, Li H, Song Z, Fu P. A Simulation and Experimental Study of the Current Contact Notch Structure on the Fracture Capacity of Pyro-Breakers. Modelling. 2025; 6(4):159. https://doi.org/10.3390/modelling6040159
Chicago/Turabian StyleYe, Jifei, Guanghong Wang, Hua Li, Zhiquan Song, and Peng Fu. 2025. "A Simulation and Experimental Study of the Current Contact Notch Structure on the Fracture Capacity of Pyro-Breakers" Modelling 6, no. 4: 159. https://doi.org/10.3390/modelling6040159
APA StyleYe, J., Wang, G., Li, H., Song, Z., & Fu, P. (2025). A Simulation and Experimental Study of the Current Contact Notch Structure on the Fracture Capacity of Pyro-Breakers. Modelling, 6(4), 159. https://doi.org/10.3390/modelling6040159

