Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = super strain B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4170 KB  
Article
EruA, a Regulator of Adherent-Invasive E. coli, Enhances Bacterial Pathogenicity by Promoting Adhesion to Epithelial Cells and Survival Within Macrophages
by Zeyan Xu, Chuyu Qin, Ruohan Zhang, Mengting Wu, Anqi Cui, Wei Chen, Lu Chen, Daqing Gao and Ruihua Shi
Biomolecules 2026, 16(1), 152; https://doi.org/10.3390/biom16010152 - 14 Jan 2026
Viewed by 313
Abstract
Adherent-invasive E. coli (AIEC) is closely related to inflammatory bowel disease (IBD). However, its pathogenic mechanism has not yet been fully elucidated. Using a BLASTP search, we discovered that the amino acid sequence of a putative protein (UFP37798.1) in the AIEC LF82 strain [...] Read more.
Adherent-invasive E. coli (AIEC) is closely related to inflammatory bowel disease (IBD). However, its pathogenic mechanism has not yet been fully elucidated. Using a BLASTP search, we discovered that the amino acid sequence of a putative protein (UFP37798.1) in the AIEC LF82 strain is highly homologous to some regulators in the SlyA family. We named it EruA. We displayed the secondary structures of EruA using bioinformatics, overexpressed the His6-tagged EruA protein using SDS-PAGE, and dissected the genetic organization of the eruA chromosomal region using 5′RACE. We constructed an eruA deletion mutant (ΔeruA) and a complementary strain (CΔeruA) of the LF82 strain. The transcriptomes of wild-type (WT) and ΔeruA bacteria were compared using RNA sequencing and qRT-PCR, thereby identifying 32 differentially expressed genes (DEGs). Based on YASARA software and EMSA analysis, EruA directly binds to the consensus sequences (PfimA and PtnaB) in the promoter region of the fimA and tnaB genes from these DEGs. By using a super-resolution confocal microscope (SCM), counting CFUs of colonies on plates, indole quantification, and crystal violet staining of biofilms adhered to tubes or 96-well plates, we found that EruA activates the fimA to promote bacterial adhesion to intestinal epithelial cells and activates the tnaB to enhance bacterial indole production and biofilm formation. Moreover, EruA helps AIEC resist environmental stress and enhances bacterial survival within macrophages as well as loading in mouse tissues. Notably, EruA promotes AIEC colonization in the colons of mice and exacerbates intestinal inflammation caused by bacterial infection in mice with DSS-induced inflammatory colitis, manifested by weight loss, colon length shortening, and pathological changes in colon tissues. Therefore, EruA plays a key role in the pathogenicity of AIEC. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Genetics of Bacteria)
Show Figures

Figure 1

15 pages, 3743 KB  
Article
Expression and Antagonistic Activity Against Plant Pathogens of the Phage Tail-like Protein from Burkholderia multivorans WS-FJ9
by Tong-Yue Wen, Xing-Li Xie, Wei-Liang Kong and Xiao-Qin Wu
Microorganisms 2025, 13(4), 853; https://doi.org/10.3390/microorganisms13040853 - 9 Apr 2025
Viewed by 1085
Abstract
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial [...] Read more.
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial activity. However, its function in B. multivorans has not yet been reported. This article explores the ability of B. multivorans WS-FJ9 to antagonise plant pathogenic fungi and oomycetes, screening the potential tailocins in the strain WS-FJ9 and verifying their function, to reveal its novel antimicrobial mechanisms. We found that WS-FJ9 had strong antagonistic effects on the plant pathogenic fungi Phomopsis macrospore and Sphaeropsis sapinea, and the pathogenic oomycete Phytophthora cinnamomi. The phage tail-like protein Bm_67459 was predicted from the WS-FJ9 strain genome. The Bm_67459 cDNA encoded 111 amino acid sequence, and the relative molecular weight was approximately 11.69 kDa, the theoretical isoelectric point (pI) was 5.49, and it was a hydrophilic protein. Bm_67459 had no transmembrane helix region or signal peptide, and it belonged to the Phage_TAC_7 super family. qRT-PCR results showed that Bm_67459 gene expression was significantly upregulated during contact between WS-FJ9 and P. cinnamomi. The purified Bm_67459 protein significantly inhibited P. cinnamomi mycelial growth at 10 μg·mL−1. In summary, the WS-FJ9 strain had broad-spectrum anti-phytopathogenic activity, and the tailocin Bm_67459 was an important effector against the plant pathogen P. cinnamomi, which helps to reveal the antagonistic mechanism of this strain at the molecular level and provides excellent strain resources for the biological control of plant diseases. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

22 pages, 4700 KB  
Article
Effective Applications of Bacillus subtilis and B. amyloliquefaciens as Biocontrol Agents of Damping-Off Disease and Biostimulation of Tomato Plants
by Dina Fathi Ismail Ali, Sahar El-Nahrawy, Hassan A. H. EL-Zawawy and Alaa El-Dein Omara
Stresses 2025, 5(1), 9; https://doi.org/10.3390/stresses5010009 - 27 Jan 2025
Cited by 4 | Viewed by 5078
Abstract
Using Bacillus species as bioagents for environmentally sustainable and economically viable plant disease management is a viable strategy. Thus, it is important to promote their use in agriculture. In this study, two Bacillus species were isolated from the rhizosphere of tomato plants, while [...] Read more.
Using Bacillus species as bioagents for environmentally sustainable and economically viable plant disease management is a viable strategy. Thus, it is important to promote their use in agriculture. In this study, two Bacillus species were isolated from the rhizosphere of tomato plants, while three fungal species were isolated from samples of tomato plants that were infected with damping-off disease. The Bacillus strains were tested in vitro for their antagonistic activity against fungal species using a dual culture technique. In a greenhouse experiment, the effectiveness of applying antagonistic bacteria with soilborne fungal disease on induced damping-off of tomato (cv. Super Strain B) plants, their physiological attributes, antioxidant enzymes, mineral content, and yield under greenhouse conditions during the 2022 and 2023 seasons were determined. The fungal isolates were identified as Fusarium oxysporum KT224063, Pythium debaryanum OP823136, and Rhizoctonia solani OP823124, while the Bacillus isolates were identified as B. subtilis OP823140 and B. amyloliquefaciens OP823147 on the basis of the rRNA gene sequences. The dual culture test revealed that B. subtilis outperformed B. amyloliquefaciens in resistance to R. solani and F. oxysporum, which were recorded as 28.33 and 33.00 mm, respectivley. In contrast, B. amyloliquefaciens caused the highest antagonistic effect against tested P. debaryanum fungus. Additionally, in a greenhouse experiment, tomato plants treated with each of these antagonistic Bacillus strains significantly suppressed fungal disease, displayed improved plant growth parameters, had an increased content of photosynthetic pigments, antioxidants enzymes, and total phenols, and an increased macronutrient content and yield during the two growing seasons. In conclusion, effective applications of B. subtilis and B. amyloliquefaciens had the potential to mitigate damping-off disease, which is caused by F. oxysporum, P. debaryanum, and R. solani in tomato plants, while simultaneously promoting growth dynamics. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

21 pages, 5974 KB  
Article
The Construction of an Environmentally Friendly Super-Secreting Strain of Bacillus subtilis through Systematic Modulation of Its Secretory Pathway Using the CRISPR-Cas9 System
by Jordi Ferrando, David Miñana-Galbis and Pere Picart
Int. J. Mol. Sci. 2024, 25(13), 6957; https://doi.org/10.3390/ijms25136957 - 25 Jun 2024
Cited by 6 | Viewed by 5154
Abstract
Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks [...] Read more.
Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks within the secretion process one by one, using a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system. The strength of single and tandem promoters was evaluated by measuring the relative α-amylase activity of AmyQ integrated into the B. subtilis chromosome. Once a suitable promoter was selected, the expression levels of amyQ were upregulated through the iterative integration of up to six gene copies, thus boosting the α-amylase activity 20.9-fold in comparison with the strain harboring a single amyQ gene copy. Next, α-amylase secretion was further improved to a 26.4-fold increase through the overexpression of the extracellular chaperone PrsA and the signal peptide peptidase SppA. When the final expression strain was cultivated in a 3 L fermentor for 90 h, the AmyQ production was enhanced 57.9-fold. The proposed strategy allows for the development of robust marker-free plasmid-less super-secreting B. subtilis strains with industrial relevance. Full article
(This article belongs to the Special Issue Recent Advances in Systems Metabolic Engineering Strategies)
Show Figures

Figure 1

25 pages, 5482 KB  
Article
Enhancing Water Status and Nutrient Uptake in Drought-Stressed Lettuce Plants (Lactuca sativa L.) via Inoculation with Different Bacillus spp. Isolated from the Atacama Desert
by Christian Santander, Felipe González, Urley Pérez, Antonieta Ruiz, Ricardo Aroca, Cledir Santos, Pablo Cornejo and Gladys Vidal
Plants 2024, 13(2), 158; https://doi.org/10.3390/plants13020158 - 6 Jan 2024
Cited by 21 | Viewed by 7614
Abstract
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil’s bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. [...] Read more.
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil’s bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. The Atacama Desert in Chile, the driest place on earth, harbors a largely unexplored microbial richness. This study aimed to evaluate the ability of various Bacillus sp. from the hyper arid Atacama Desert in the improvement in tolerance to drought stress in lettuce (Lactuca sativa L. var. capitata, cv. “Super Milanesa”) plants. Seven strains of Bacillus spp. were isolated from the rhizosphere of the Chilean endemic plants Metharme lanata and Nolana jaffuelii, and then identified using the 16s rRNA gene. Indole acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were assessed. Lettuce plants were inoculated with Bacillus spp. strains and subjected to two different irrigation conditions (95% and 45% of field capacity) and their biomass, net photosynthesis, relative water content, photosynthetic pigments, nitrogen and phosphorus uptake, oxidative damage, proline production, and phenolic compounds were evaluated. The results indicated that plants inoculated with B. atrophaeus, B. ginsengihumi, and B. tequilensis demonstrated the highest growth under drought conditions compared to non-inoculated plants. Treatments increased biomass production and were strongly associated with enhanced N-uptake, water status, chlorophyll content, and photosynthetic activity. Our results show that specific Bacillus species from the Atacama Desert enhance drought stress tolerance in lettuce plants by promoting several beneficial plant traits that facilitate water absorption and nutrient uptake, which support the use of this unexplored and unexploited natural resource as potent bioinoculants to improve plant production under increasing drought conditions. Full article
(This article belongs to the Special Issue Mechanisms of Crop Growth and Development under Adverse Conditions)
Show Figures

Figure 1

15 pages, 1956 KB  
Article
De Novo Transcriptome Analysis of Solanum lycopersicum cv. Super Strain B under Drought Stress
by Hassan S. Al-Zahrani, Tarek A. A. Moussa, Hameed Alsamadany, Rehab M. Hafez and Michael P. Fuller
Agronomy 2023, 13(9), 2360; https://doi.org/10.3390/agronomy13092360 - 11 Sep 2023
Viewed by 2480
Abstract
Tomato cv. super strain B was widely cultivated in Saudi Arabia under drought stress. Illumina Hiseq-2000 was used to create the transcriptional profile of tomato cultivar super strain B. A total of 98,069 contigs were gathered, with an average length of 766 bp. [...] Read more.
Tomato cv. super strain B was widely cultivated in Saudi Arabia under drought stress. Illumina Hiseq-2000 was used to create the transcriptional profile of tomato cultivar super strain B. A total of 98,069 contigs were gathered, with an average length of 766 bp. Most of the genes in the gene ontology (GO) analysis were categorized into molecular function (MF) of ATP binding (1301 genes), metal ion binding (456 genes), protein kinase activity (392 genes), transferase activity (299 genes), Biological process (BP) of DNA-templated genes (366 genes), and regulation of transcription genes (209 genes), while cellular components (CC) of integral component of membrane (436 genes). The most dominant enzymes expressed were transferases (645 sequences). According to the KEGG pathway database, 15,638 transcripts were interpreted in 125 exclusive pathways. The major pathway groups were metabolic pathways (map01100, 315 genes) and biosynthesis of secondary metabolites (map01110, 188 genes). The total number of variants in the twelve chromosomes of super strain B compared with the tomato genome was 5284. The total number of potential SSRs was 5047 in 4806 unigenes. Trinucleotide repeats (3006, 59.5%) were the most found type in the transcriptome. A total of 4541 SNPs and 744 INDELs in tomato super strain B were identified when compared with the tomato genome. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

19 pages, 5258 KB  
Article
Population Dynamics of Phytophthora infestans in Egypt Reveals Clonal Dominance of 23_A1 and Displacement of 13_A2 Clonal Lineage
by Sherif Mohamed El-Ganainy, Ahmed Mahmoud Ismail, Maali Shaker Soliman, Yosra Ahmed, Muhammad Naeem Sattar, Biju Vadakkemukadiyil Chellappan and David E. L. Cooke
J. Fungi 2023, 9(3), 349; https://doi.org/10.3390/jof9030349 - 13 Mar 2023
Cited by 6 | Viewed by 3322
Abstract
Potato (Solanum tuberosum L.) and tomato (S. lycopersicum L.) are the most economically important vegetable crops in Egypt and worldwide. The winter crop in Egypt is particularly prone to late blight caused by Phytophthora infestans. A total of 152 P. infestans [...] Read more.
Potato (Solanum tuberosum L.) and tomato (S. lycopersicum L.) are the most economically important vegetable crops in Egypt and worldwide. The winter crop in Egypt is particularly prone to late blight caused by Phytophthora infestans. A total of 152 P. infestans isolates were isolated from the 2013, 2014, 2016 and 2018 winter crops with 82 isolates from potato, 69 from tomato and one isolate from eggplant (S. melongena L.). All isolates belonged to the A1 mating type with no evidence of A2 or self-fertile strains. The majority of isolates (53%) were sensitive to metalaxyl, 32% were intermediate and 15% were resistant. Variation in aggressiveness between three P. infestans isolates EG-005 (13_A2) and EG-276 (23_A1) from potato, and EG-237 (23_A1) from eggplant was determined on tuber slices and leaflets of 10 potato cultivars. The eggplant isolate EG-237 showed higher sporulation capacity compared with the other tested isolates and was able to infect potato (Lady Rosetta cv) and tomato (Super Strain B cv). The simple sequence repeat (SSR) genotyping data showed that in contrast to our previous work (3-year period 2010–12) in which the proportion of 13_A2 lineage was 35%, all isolates belonged to the 23_A1 lineage. There was no evidence for the existence of the A2 mating type or 13_A2 lineage even in the destroyed field crops of some cultivars (Cara, Bellini and Valor) that had been reported as resistant to 23_A1. The data have been submitted into the Euroblight database to allow temporal and spatial genetic diversity to be examined in comparison with other regional P. infestans populations. The AVR2 and AVR2-like RXLR effector genes were amplified and sequenced. In the avirulent AVR2 gene, only one heterozygous SNP was detected at position 31 in the N terminus in six isolates out of eleven, whereas two heterozygous SNPs were detected at position 29 in the N-terminus and ninety-two in the C- terminus of the AVR2-like gene. This suggests that changes in the previously reported virulence profile of 23_A1 are not related to commercial cultivars carrying the R2 gene. In addition, this is the first report of P. infestans on eggplant in Egypt. Full article
(This article belongs to the Special Issue Plant Fungi: Impact on Agricultural Production)
Show Figures

Figure 1

20 pages, 7982 KB  
Article
Mycotoxins from Tomato Pathogenic Alternaria alternata and Their Combined Cytotoxic Effects on Human Cell Lines and Male Albino Rats
by Ahmed Mahmoud Ismail, Eman Said Elshewy, Sherif Mohamed El-Ganainy, Donato Magistà, Ahlam Farouk Hamouda, Khalid A. Alhudaib, Weaam Ebrahim and Mustafa I. Almaghasla
J. Fungi 2023, 9(3), 282; https://doi.org/10.3390/jof9030282 - 21 Feb 2023
Cited by 15 | Viewed by 4120
Abstract
The Alternaria species are considered to produce a plethora of several mycotoxins constituting a risk factor for both human and animal health. This work aimed mainly to explore the cytotoxicity of a combined mixture of altenuene (ALT), alternariol (AOH), tenuazonic acid (TeA), and [...] Read more.
The Alternaria species are considered to produce a plethora of several mycotoxins constituting a risk factor for both human and animal health. This work aimed mainly to explore the cytotoxicity of a combined mixture of altenuene (ALT), alternariol (AOH), tenuazonic acid (TeA), and altenuisol (AS) toxins produced by pathogenic A. alternata toward human oral epithelial cells (PCS-200-014), lung fibroblast cells (WI-38), and male albino rats. The sequencing of the multi-locus, RNA polymerase second largest subunit (rpb2), glyceraldehyde-3-phosphate dehydrogenase (gapdh), and Alternaria major allergen gene (Alt a 1) was performed to infer relationships among isolated Alternaria species. The phylogenetic analysis of gapdh, rpb2, and Alt-a 1 sequence data indicated that all isolates resided in A. alternata. The pathogenic potentiality of A. alternata was investigated on tomato plants cv. super strain B under greenhouse conditions, and all isolates were pathogenic to tomato plants, with significant (p < 0.05) variations. The ability of A. alternata isolates to produce mycotoxins was also explored using high-performance liquid chromatography (HPLC). All tested isolates were able to produce at least one of the assessed mycotoxins—ALT, AOH, TeA, and AS—and ALT was reported as the dominant mycotoxin, produced by 80% of A. alternata isolates. The cytotoxic properties of the combined mixture of ALT, AOH, TeA, and AS at concentrations of 31.25, 62.50, 125, 250, and 500 µg/mL were assessed via the MTT assay method after exposure for 24 h versus the control. The treatment of both cell lines with combined mixtures of ALT, AOH, TeA, and AS showed a dose-dependent decrease in cell viability. The highest concentrations tested at 62.50, 125, 250, and 500 µg/mL significantly decreased cell viability and caused cell damage compared to the lowest concentration of 31.25 µg/mL and the control. The cytotoxicity and genotoxicity of the combined mixtures of ALT, AOH, TeA, and AS on male albino rats were also investigated via the gene expression of (TNF-α) and using hematological (CBC), chemical (alanine aminotransferase (ALT), aspartate aminotransferase (AST) and urea and creatinine), and histopathological analyses. A marked increase was observed in the levels of ALT, AST, urea and creatinine, TNF-α gene expression, red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), and packed cell volume % (PCV) after 28 days of exposure relative to the untreated control. Pathological alterations were also observed in the liver and kidney tissues of rats. Conclusively, this work provides a new understanding on the cytotoxicity and genotoxicity of mycotoxins of pathogenic A. alternata from tomatoes. Full article
(This article belongs to the Special Issue Toxic Effects Induced by Exposure to Mycotoxins)
Show Figures

Figure 1

16 pages, 2769 KB  
Article
Implementation of Biopolymeric Nanomaterials to Reduce the Negative Impacts of Salinity on Tomato Quantity and Quality
by Shreen S. Ahmed, Thana K. Khan, Gehan H. Abd El-Aziz, Tahsin Shoala, Hoda A. S. El-Garhy and Ashraf H. Fahmy
Molecules 2023, 28(4), 1594; https://doi.org/10.3390/molecules28041594 - 7 Feb 2023
Cited by 5 | Viewed by 2609
Abstract
Sustainable waste reduction strategies and innovative waste reduction concepts, as well as their application in the creation of compounds and products with added value, can benefit the economy while reducing environmental pressures. This research aimed to use biopolymeric nanomaterials to reduce the negative [...] Read more.
Sustainable waste reduction strategies and innovative waste reduction concepts, as well as their application in the creation of compounds and products with added value, can benefit the economy while reducing environmental pressures. This research aimed to use biopolymeric nanomaterials to reduce the negative effects of salinity on tomato yield and quality. Three types of biopolymers (cellulose, pectin, and starch) were synthesized and characterized using natural materials such as rice straw, orange peel, and potato peel. The polymer’s ability to retain sodium ions was investigated. A greenhouse experiment was conducted to assess the potential of natural polymers (cellulose, starch, and pectin individually or in combination) to reduce the salinity side effects on tomato plants (Solanum Lycopersicon L.) cultivar (Super Strain B). Tomato seeds were germinated on soil bits for 20 days before planting five seedlings in each pot (20 cm diameter) with three replicates and filling each pot with sandy loam soil, with or without natural polymers at a rate of 2 g/Kg. The results revealed that all the polymers utilized had a superlative capability to hold sodium ions for both soluble and exchanged sodium. The use of various natural polymer hydrogels increased the number and fresh weight of tomato fruits. Data showed that using biopolymers hydrogels reduced salinity stress by rising the content of phenol, flavonoid, and antioxidant enzymes such as catalase and peroxidase. The use of natural biopolymers significantly improved total soluble solids, pH, and juice substance. Implementing biopolymeric materials could reduce environmental pressures while increasing farm income. Innovative waste reduction strategies, such as the creation of value-added products, will benefit the economy, and this work is a good start in that direction. Full article
Show Figures

Figure 1

17 pages, 9346 KB  
Article
Fluorine-Free, Highly Durable Waterproof and Breathable Fibrous Membrane with Self-Clean Performance
by Jinchao Zhao, Teng Zhang, Youmu Li, Leping Huang and Youhong Tang
Nanomaterials 2023, 13(3), 516; https://doi.org/10.3390/nano13030516 - 27 Jan 2023
Cited by 29 | Viewed by 4751
Abstract
Lightweight, durable waterproof and breathable membranes with multifunctional properties that mimic nature have great potential for application in high-performance textiles, efficient filtering systems and flexible electronic devices. In this work, the fluoride-free triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) fibrous membrane with excellent elastic performance was [...] Read more.
Lightweight, durable waterproof and breathable membranes with multifunctional properties that mimic nature have great potential for application in high-performance textiles, efficient filtering systems and flexible electronic devices. In this work, the fluoride-free triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) fibrous membrane with excellent elastic performance was prepared using electrospinning. According to the bionics of lotus leaves, a coarse structure was built onto the surface of the SBS fiber using dip-coating of silicon dioxide nanoparticles (SiO2 NPs). Polydopamine, an efficient interfacial adhesive, was introduced between the SBS fiber and SiO2 NPs. The hydrophobicity of the modified nanofibrous membrane was highly improved, which exhibited a super-hydrophobic surface with a water contact angle large than 160°. The modified membrane retained super-hydrophobic properties after 50 stretching cycles under 100% strains. Compared with the SBS nanofibrous membrane, the hydrostatic pressure and WVT rate of the SBS/PDA/SiO2 nanofibrous membrane improved simultaneously, which were 84.2 kPa and 6.4 kg·m−2·d−1 with increases of 34.7% and 56.1%, respectively. In addition, the SBS/PDA/SiO2 nanofibrous membrane showed outstanding self-cleaning and windproof characteristics. The high-performance fibrous membrane provides a new solution for personal protective equipment. Full article
(This article belongs to the Special Issue Advanced Bioinspired Nanomaterials with Superwettability)
Show Figures

Figure 1

15 pages, 3925 KB  
Article
CDT of Clostridioides difficile Induces MLC-Dependent Intestinal Barrier Dysfunction in HT-29/B6 Epithelial Cell Monolayers
by Lucas Heils, Martina Schneemann, Ralf Gerhard, Jörg-Dieter Schulzke and Roland Bücker
Toxins 2023, 15(1), 54; https://doi.org/10.3390/toxins15010054 - 7 Jan 2023
Cited by 6 | Viewed by 3894
Abstract
Background: Clostridioides difficile binary toxin (CDT) defines the hypervirulence of strains in nosocomial antibiotic-induced colitis with the highest mortality. The objective of our study was to investigate the impact of CDT on the intestinal epithelial barrier and to enlighten the underlying molecular mechanisms. Methods: [...] Read more.
Background: Clostridioides difficile binary toxin (CDT) defines the hypervirulence of strains in nosocomial antibiotic-induced colitis with the highest mortality. The objective of our study was to investigate the impact of CDT on the intestinal epithelial barrier and to enlighten the underlying molecular mechanisms. Methods: Functional measurements of epithelial barrier function by macromolecular permeability and electrophysiology were performed in human intestinal HT-29/B6 cell monolayers. Molecular analysis of the spatial distribution of tight junction protein and cytoskeleton was performed by super-resolution STED microscopy. Results: Sublethal concentrations of CDT-induced barrier dysfunction with decreased TER and increased permeability for 332 Da fluorescein and 4 kDa FITC-dextran. The molecular correlate to the functional barrier defect by CDT was found to be a tight junction protein subcellular redistribution with tricellulin, occludin, and claudin-4 off the tight junction domain. This redistribution was shown to be MLCK-dependent. Conclusions: CDT compromised epithelial barrier function in a human intestinal colonic cell model, even in sublethal concentrations, pointing to barrier dysfunction in the intestine and leak flux induction as a diarrheal mechanism. However, this cannot be attributed to the appearance of apoptosis and necrosis, but rather to an opening of the paracellular leak pathway as the result of epithelial tight junction alterations. Full article
(This article belongs to the Special Issue Enterotoxins and Mucosal Pathomechanisms)
Show Figures

Figure 1

18 pages, 3796 KB  
Article
Strain Versus 2D Shear-Wave Elastography Parameters—Which Score Better in Predicting Thyroid Cancer?
by Andreea Borlea, Ioan Sporea, Alexandru Popa, Mihnea Derban, Laura Taban and Dana Stoian
Appl. Sci. 2022, 12(21), 11147; https://doi.org/10.3390/app122111147 - 3 Nov 2022
Cited by 3 | Viewed by 4718
Abstract
The aim of this study is to assess the diagnostic performance of strain elastography (SE) versus 2D shear-wave elastography (2D-SWE) by providing a head-to-head comparison of the two methods. Ninety-four thyroid nodules were evaluated using conventional ultrasound (B-mode) and SE, namely, real-time elastography [...] Read more.
The aim of this study is to assess the diagnostic performance of strain elastography (SE) versus 2D shear-wave elastography (2D-SWE) by providing a head-to-head comparison of the two methods. Ninety-four thyroid nodules were evaluated using conventional ultrasound (B-mode) and SE, namely, real-time elastography (RTE) with a Hitachi Preirus machine (Hitachi Inc., Tokyo, Japan) and consecutively, 2D-SWE with SuperSonic Mach30 equipment (Supersonic Imagine, Aix-en-Provence, France). The results were compared in all cases to the pathology reports. Out of the 94 nodules, 29 (30.9%) were malignant. Both SE and 2D-SWE parameters proved to have excellent diagnostic quality, with comparable results. The mean elasticity index was the best parameter for the 2D-SWE (AUC 0.912); for a cut-off value of 30.5 kPa, it predicts thyroid malignancy with a sensitivity of 79.3%, specificity of 95.38%, NPV of 91.2% and PPV of 88.5%. The best parameter for SE was the strain ratio (cutoff > 3.9; sensitivity 82.7%; specificity 92.3%; AUC 0.905). When integrated in the ultrasound risk algorithm, both elastography methods improved the diagnostic performance: AUC 0.764 vs. 0.886 vs. 0.861 for B-modes: B-mode + 2D-SWE vs. B-mode + SE. We concluded that elastography adds diagnostic value in predicting malignancy, both when Hitachi RTE and SuperSonic 2D-SWE were used. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

18 pages, 4078 KB  
Article
Leaf Extracts from Resistant Wild Tomato Can Be Used to Control Late Blight (Phytophthora infestans) in the Cultivated Tomato
by Ramadan A. Arafa, Said M. Kamel, Dalia I. Taher, Svein Ø. Solberg and Mohamed T. Rakha
Plants 2022, 11(14), 1824; https://doi.org/10.3390/plants11141824 - 12 Jul 2022
Cited by 19 | Viewed by 5164
Abstract
Late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is one of the most challenging diseases threatening tomato production and other Solanaceae crops. Resistance to late blight is found in certain wild species, but the mechanism behind the resistance is not fully [...] Read more.
Late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is one of the most challenging diseases threatening tomato production and other Solanaceae crops. Resistance to late blight is found in certain wild species, but the mechanism behind the resistance is not fully understood. The aim of this study was to examine the metabolic profiles in the leaf tissue of late blight-resistant wild tomato and to investigate if leaf extracts from such genotypes could be used to control late blight in tomato production. We included three recognized late blight-resistant wild tomato accessions of Solanum habrochaites (LA1777, LA2855, and LA1352) and two recognized highly susceptible genotypes, S. lycopersicum (‘Super Strain B’) and S. pimpinellifolium (LA0375). The metabolic profiles were obtained in both inoculated and non-inoculated plants by analyzing leaf extracts using high-resolution gas chromatography-mass spectrometry (GC-MS) with three replicate analyses of each genotype. We focused on volatile organic compounds (VOCs) and identified 31 such compounds from the five genotypes with a retention time ranging from 6.6 to 22.8 min. The resistant genotype LA 1777 produced the highest number of VOCs (22 and 21 in the inoculated and control plants, respectively), whereas the susceptible genotype ‘Super Strain B’ produced the lowest number of VOCs (11 and 13 in the respective plants). Among the VOCs, 14 were detected only in the resistant genotypes, while two were detected only in the susceptible ones. In vitro trials, with the use of a detached leaflet assay and whole-plant approach, were conducted. We revealed promising insights regarding late blight management and showed that metabolic profiling may contribute to a better understanding of the mechanisms behind P. infestans resistance in tomato and its wild relatives. Full article
(This article belongs to the Special Issue Biological Control of Plant Diseases)
Show Figures

Figure 1

12 pages, 2194 KB  
Article
Phylogenetic and Expression Studies of Small GTP-Binding Proteins in Solanum lycopersicum Super Strain B
by Hassan S. Al-Zahrani, Tarek A. A. Moussa, Hameed Alsamadany, Rehab M. Hafez and Michael P. Fuller
Plants 2022, 11(5), 641; https://doi.org/10.3390/plants11050641 - 26 Feb 2022
Cited by 3 | Viewed by 3060
Abstract
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were [...] Read more.
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were aligned using Clustal Omega and the analysis of phylogeny was performed with the MEGA7 package. Protein alignments were applied for all studied species. Three-dimensional models of RABA2, ROP9, and ROP10 from Solanum lycopersicum “Super strain B” were performed. The levels of mRNA of the Rab, Arf, Rop, and Ran subfamilies were detected in aerial tissues vs. roots. Significant divergences were found in the number of members and groups comprising each subfamily of the small GTPases and Glycine max had the highest count. High expression of Rab and Arf proteins was shown in the roots of legumes whilst in non-legume plants, the highest values were recorded in aerial tissues. S. lycopersicum super strain B had the highest expression of Rab and Arf proteins in its aerial tissues, which may indicate that diazotroph strains have supreme activities in the aerial tissues of strain B and act as associated N-fixing bacteria. The phylogenies of the small GTPase superfamily of the studied plants did not reveal asymmetric evolution of the Ra, Arf, Rop, and Ran subfamilies. Multiple sequence alignments derived from each of the Rab, Arf, and Rop proteins of S. lycopersicum super strain B showed a low frequency of substitutions in their domains. GTPases superfamily members have definite functions during infection, delivery, and maintenance of N2-fixing diazotroph but show some alterations in their function among S. lycopersicum super strain B, and other species. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 9791 KB  
Article
Lactobacillus rhamnosus Ameliorates Multi-Drug-Resistant Bacillus cereus-Induced Cell Damage through Inhibition of NLRP3 Inflammasomes and Apoptosis in Bovine Endometritis
by Ning Liu, Xue Wang, Qiang Shan, Le Xu, Yanan Li, Bingxin Chu, Lan Yang, Jiufeng Wang and Yaohong Zhu
Microorganisms 2022, 10(1), 137; https://doi.org/10.3390/microorganisms10010137 - 10 Jan 2022
Cited by 12 | Viewed by 3510
Abstract
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment [...] Read more.
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

Back to TopTop