Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = sunflower crop management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4089 KiB  
Article
Remote Sensing Identification of Major Crops and Trade-Off of Water and Land Utilization of Oasis in Altay Prefecture
by Gaowei Yan, Luguang Jiang and Ye Liu
Land 2025, 14(7), 1426; https://doi.org/10.3390/land14071426 - 7 Jul 2025
Viewed by 367
Abstract
The Altay oasis, located at the heart of the transnational ecological conservation zone shared by China, Kazakhstan, Russia, and Mongolia, is a region with tremendous potential for water resource utilization. However, with the continued expansion of agriculture, its ecological vulnerability has become increasingly [...] Read more.
The Altay oasis, located at the heart of the transnational ecological conservation zone shared by China, Kazakhstan, Russia, and Mongolia, is a region with tremendous potential for water resource utilization. However, with the continued expansion of agriculture, its ecological vulnerability has become increasingly pronounced. Within this fragile balance lies a critical opportunity: efficient water resource management could pave the way for sustainable development across the entire arid oasis regions. This study uses a decision tree model based on a feature threshold to map the spatial distribution of major crops in the Altay Prefecture oasis, assess their water requirements, and identify the coupling relationships between agricultural water and land resources. Furthermore, it proposed optimization planting structure strategies under three scenarios: water-saving irrigation, cash crop orientation, and forage crop orientation. In 2023, the total planting area of major crops in Altay Prefecture was 3368 km2, including spring wheat, spring maize, sunflower, and alfalfa, which consumed 2.68 × 109 m3 of water. Although this area accounted for only 2.85% of the land, it consumed 26.23% of regional water resources, with agricultural water use comprising as much as 82.5% of total consumption, highlighting inefficient agricultural water use as a critical barrier to sustainable agricultural development. Micro-irrigation technologies demonstrate significant water-saving potential. The adoption of such technologies could reduce water consumption by 14.5%, thereby significantly enhancing agricultural water-use efficiency. Cropping structure optimization analysis indicates that sunflower-based planting patterns offer notable water-saving benefits. Increasing the area of sunflower cultivation by one unit can unlock a water-saving potential of 25.91%. Forage crop combinations excluding soybean can increase livestock production by 30.2% under the same level of water consumption, demonstrating their superior effectiveness for livestock system expansion. This study provides valuable insights for achieving sustainable agricultural development in arid regions under different development scenarios. Full article
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 609
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 743 KiB  
Article
Effects of Non-Inversion Tillage and Cover Crops on Weed Diversity and Density in Southeastern Romania
by Mădălin Radu, Ciprian Bolohan, Costel Mihalașcu, Andrei Măruțescu, Max John Newbert and Vasileios P. Vasileiadis
Sustainability 2025, 17(13), 6204; https://doi.org/10.3390/su17136204 - 7 Jul 2025
Viewed by 468
Abstract
Conservation agriculture is increasingly recognized as a sustainable alternative to conventional farming in temperate regions due to its benefits in terms of reducing soil erosion, enhancing water retention, and mitigating climate change. Despite these benefits, these practices are not broadly adopted, partially due [...] Read more.
Conservation agriculture is increasingly recognized as a sustainable alternative to conventional farming in temperate regions due to its benefits in terms of reducing soil erosion, enhancing water retention, and mitigating climate change. Despite these benefits, these practices are not broadly adopted, partially due to perceived weed management challenges in conservation systems. This paper explores how a conservation system that uses cover crops and non-inversion tillage (chiselling) influences the weed flora abundance and evolution before cover crop termination and over a complete rotation cycle (sunflower–winter wheat–maize–sunflower) in southeastern Romania when compared to conventional tillage (ploughing). Overall, the conservation system significantly reduced weed density by 31%, preserving a higher diversity and evenness (H′ = 0.75, E = 0.46) by the end of the rotation cycle and an evenly distributed weed community compared to the conventional system, where the opportunistic species Veronica hederifolia exhibited dominance. Full article
(This article belongs to the Special Issue Sustainable Management: Plant, Biodiversity and Ecosystem)
Show Figures

Figure 1

19 pages, 1022 KiB  
Article
Impact of Biochar Interlayer on Surface Soil Salt Content, Salt Migration, and Photosynthetic Activity and Yield of Sunflowers: Laboratory and Field Studies
by Muhammad Irfan, Gamal El Afandi, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Sustainability 2025, 17(12), 5642; https://doi.org/10.3390/su17125642 - 19 Jun 2025
Viewed by 505
Abstract
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, [...] Read more.
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, which offers additional agronomic and environmental benefits. This study investigates the effectiveness of biochar interlayers in enhancing salt leaching and suppressing upward salt migration through integrated laboratory and field experiments. The effectiveness of varying biochar interlayer application rates was assessed in promoting salt leaching, decreasing soil electrical conductivity (EC), and enhancing crop performance in saline soils through a systematic approach that combines laboratory and field experiments. The biochar treatments included a control (CK) and different applications of 20 (BL20), 40 (BL40), 60 (BL60), and 80 (BL80) tons of biochar per hectare, all applied below a depth of 20 cm, with each treatment replicated three times. The laboratory and field experimental setups maintained consistency in terms of biochar treatments and interlayer placement methodology. During the laboratory column experiments, the soil columns were treated with deionized water, and their leachates were analyzed for EC and major ionic components. The results showed that columns with biochar interlayers exhibited significantly higher efflux rates compared to those of the control and notably accelerated the time required for the effluent EC to decrease to 2 dS m−1. The CK required 43 days for full discharge and 38 days for EC stabilization below 2 dS m−1. In contrast, biochar treatments notably reduced these times, with BL80 achieving discharge in just 7 days and EC stabilization in 10 days. Elution events occurred 20–36 days earlier in the biochar-treated columns, confirming biochar’s effectiveness in enhancing leaching efficiency in saline soils. The field experiment results supported the laboratory findings, indicating that increased biochar application rates significantly reduced soil EC and ion concentrations at depths of 0–20 cm and 20–40 cm, lowering the EC from 7.12 to 2.25 dS m−1 and from 6.30 to 2.41 dS m−1 in their respective layers. The application of biochar interlayers resulted in significant reductions in Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 concentrations across both soil layers. In the 0–20 cm layer, Na+ decreased from 3.44 to 2.75 mg·g−1, K+ from 0.24 to 0.11 mg·g−1, Ca2+ from 0.35 to 0.20 mg·g−1, Mg2+ from 0.31 to 0.24 mg·g−1, Cl from 1.22 to 0.88 mg·g−1, SO42− from 1.91 to 1.30 mg·g−1 and HCO3 from 0.39 to 0.18 mg·g−1, respectively. Similarly, in the 20–40 cm layer, Na+ declined from 3.62 to 3.05 mg·g−1, K+ from 0.28 to 0.12 mg·g−1, Ca2+ from 0.39 to 0.26 mg·g−1, Mg2+ from 0.36 to 0.27 mg·g−1, Cl from 1.18 to 0.80 mg·g−1, SO42− from 1.95 to 1.33 mg·g−1 and HCO3 from 0.42 to 0.21 mg·g−1 under increasing biochar rates. Moreover, the use of biochar interlayers significantly improved the physiological traits of sunflowers, including their photosynthesis rates, stomatal conductance, and transpiration efficiency, thereby boosting biomass and achene yield. These results highlight the potential of biochar interlayers as a sustainable strategy for soil desalination, water conservation, and enhanced crop productivity. This approach is especially promising for managing salt-affected soils in regions like California, where soil salinization represents a considerable threat to agricultural sustainability. Full article
(This article belongs to the Special Issue Sustainable Development and Climate, Energy, and Food Security Nexus)
Show Figures

Figure 1

20 pages, 2764 KiB  
Article
Beyond Macronutrients Supply: The Effect of Bio-Based Fertilizers on Iron and Zinc Biofortification of Crops
by Juan Nieto-Cantero, Ana M. García-Lopez, Ramiro Recena, Jose M. Quintero and Antonio Delgado
Agronomy 2025, 15(6), 1388; https://doi.org/10.3390/agronomy15061388 - 5 Jun 2025
Viewed by 582
Abstract
Iron (Fe) and Zinc (Zn) deficiencies in crops pose indirect problems for human health. The risk of these deficiencies increases with high doses of phosphate fertilizers. Fertilizers obtained through recycling—so-called bio-based fertilizers (BBFs)—can contain significant amounts of Fe and Zn, which can contribute [...] Read more.
Iron (Fe) and Zinc (Zn) deficiencies in crops pose indirect problems for human health. The risk of these deficiencies increases with high doses of phosphate fertilizers. Fertilizers obtained through recycling—so-called bio-based fertilizers (BBFs)—can contain significant amounts of Fe and Zn, which can contribute to crop biofortification. Although the use of some organic BBFs has been shown to improve biofortification, an in-depth study on this effect and on the effect of P on Fe and Zn nutrition with the use of different kinds of bio-based P fertilizers is still lacking. A pot experiment with 11 different BBFs was conducted using two soils with different physicochemical properties that affect P, Fe, and Zn dynamics (one rich in CaCO3 and the other rich in Fe oxides) to assess their biofortification effects on wheat and sunflower. Although some BBFs increased Fe concentration in the edible parts, the overall trend was towards an increased P:Fe ratio (up to 62%), which decreased Fe digestibility. On the other hand, all BBFs led to Zn biofortification, with a 27% decrease in the P:Zn ratio in the CaCO3-rich soil, while in the Fe oxide-rich soil, the decrease was up to 61%. The supply of Zn and organic C, as well as the dominant P forms in BBFs, were the main factors explaining Zn biofortification. Bio-based fertilizers also decreased the antagonism between P and Zn and between Fe and Zn. The results demonstrated that the inclusion of BBFs in agrosystems management can contribute to improving the quality of human diets, at least with regard to Zn intake, while also contributing to more sustainable fertilization practices. Full article
Show Figures

Figure 1

23 pages, 3008 KiB  
Article
Prediction of Crops Cycle with Seasonal Forecasts to Support Decision-Making
by Daniel Garcia, Nicolas Silva, João Rolim, Antónia Ferreira, João A. Santos, Maria do Rosário Cameira and Paula Paredes
Agronomy 2025, 15(6), 1291; https://doi.org/10.3390/agronomy15061291 - 24 May 2025
Viewed by 749
Abstract
Climate variability, intensified by climate change, poses significant challenges to agriculture, affecting crop development and productivity. Integrating seasonal weather forecasts (SWF) into crop growth modelling tools is therefore essential for improving agricultural decision-making. This study assessed the uncertainties of raw (non-bias-corrected) temperature forecasts [...] Read more.
Climate variability, intensified by climate change, poses significant challenges to agriculture, affecting crop development and productivity. Integrating seasonal weather forecasts (SWF) into crop growth modelling tools is therefore essential for improving agricultural decision-making. This study assessed the uncertainties of raw (non-bias-corrected) temperature forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 seasonal (seven-month forecasts) to estimate the spring–summer maize, melon, sunflower, and tomato crops cycle from 2013 to 2022 in the Caia Irrigation Scheme, southern Portugal. AgERA5 reanalysis data, after simple bias correction using local weather station data, was used as a reference. The growing degree-day (GDD) approach was applied to estimate the crop cycle duration, which was then validated against ground truth and satellite data. The results show that SWF tend to underestimate maximum temperatures and overestimate minimum temperatures, with these biases partially offsetting to improve mean temperature accuracy. Forecast skill decreased non-linearly with lead time, especially after the second month; however, in some cases, longer lead times outperformed earlier ones. Temperature forecast biases affected GDD-based crop cycle estimates, resulting in a slight underestimation of all crop cycle durations by around a week. Nevertheless, the forecasts captured the overall increasing temperature trend, interannual variability, and anomaly signals, but with marginal added value over climatological data. This study highlights the potential of integrating ground truth and Earth observation data, together with reanalysis data and SWF, into GDD tools to support agricultural decision-making, aiming at enhancing yield and resources management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

21 pages, 3041 KiB  
Article
Optimizing Subsurface Drainage Pipe Layout Parameters in Southern Xinjiang’s Saline–Alkali Soils: Impacts on Soil Salinity Dynamics and Oil Sunflower Growth Performance
by Guangning Wang, Han Guo, Qing Zhu, Dong An, Zhenliang Song and Liang Ma
Sustainability 2025, 17(11), 4797; https://doi.org/10.3390/su17114797 - 23 May 2025
Viewed by 481
Abstract
This study addresses secondary soil salinization driven by shallow groundwater in the Yanqi Basin of southern Xinjiang, focusing on subsurface drainage system (SDS) optimization for salt regulation and oil sunflower productivity improvement in severe saline–alkali soils. Through controlled field experiments conducted (May–October 2024), [...] Read more.
This study addresses secondary soil salinization driven by shallow groundwater in the Yanqi Basin of southern Xinjiang, focusing on subsurface drainage system (SDS) optimization for salt regulation and oil sunflower productivity improvement in severe saline–alkali soils. Through controlled field experiments conducted (May–October 2024), we evaluated five SDS configurations: control (CK, no drainage) and four drain spacing/depth combinations (20/40 m × 1.2/1.5 m). Comprehensive monitoring revealed distinct spatiotemporal patterns, with surface salt accumulation (0–20 cm: 18.59–32.94 g·kg−1) consistently exceeding subsurface levels (>20–200 cm: 6.79–17.69 g·kg−1). The A3 configuration (20 m spacing, 1.5 m depth) demonstrated optimal root zone desalination (0–60 cm: 14.118 g·kg−1), achieving 39.02% salinity reduction compared to CK (p < 0.01). Multivariate analysis revealed strong depth-dependent inverse correlations between groundwater level and soil salinity (R2 = 0.529–0.919), with burial depth exhibiting 1.7-fold greater regulatory influence than spacing parameters (p < 0.01). Crop performance followed salinity gradients (A3 > A1 > A4 > A2 > CK), showing significant yield improvements across all SDS treatments versus CK (p < 0.05). Multi-criteria optimization integrating TOPSIS modeling and genetic algorithms identified A3 as the Pareto-optimal solution. The optimized configuration (20 m spacing, 1.5 m depth) effectively stabilized aquifer dynamics, reduced topsoil salinization (0–60 cm), and enhanced crop adaptability in silt loam soils. This research establishes an engineering framework for sustainable saline–alkali soil remediation in arid basin agroecosystems, providing critical insights for water–soil management in similar ecoregions. Full article
Show Figures

Figure 1

24 pages, 2819 KiB  
Article
Challenges in Precision Sunflower Cultivation: The Impact of the Agronomic Environment on the Quality of Precision Sowing Techniques and Yield Parameters
by Mihály Zalai, Csaba Bojtor, János Nagy, Adrienn Széles, Szabolcs Monoki and Árpád Illés
AgriEngineering 2025, 7(5), 145; https://doi.org/10.3390/agriengineering7050145 - 6 May 2025
Viewed by 814
Abstract
Precision agriculture and advanced sowing technologies, including variable sowing rates, can be used to optimise sunflower yields by ensuring a uniform plant distribution, efficient resource utilisation, and adaptation to soil variability. These agronomic and technological innovations help mitigate field heterogeneity effects, enhancing sunflower [...] Read more.
Precision agriculture and advanced sowing technologies, including variable sowing rates, can be used to optimise sunflower yields by ensuring a uniform plant distribution, efficient resource utilisation, and adaptation to soil variability. These agronomic and technological innovations help mitigate field heterogeneity effects, enhancing sunflower establishment, growth, and overall yield stability. The main goal of this research was to analyse the interactions among management, soil, and environmental variables and their effects on the sowing quality and yield in the case of precision sunflower production. A sowing field experiment was set up in the period between 2021 and 2023 to identify these effects and their complex interactions, which were evaluated with the aim of improving the sowing and yield parameters, while also understanding the importance of each different parameter. As a key outcome for precision sowing, this research demonstrates that the variability in sowing parameters—such as double and missing sowing rates, as well as sowing uniformity—was significantly influenced by the field conditions, productivity zones, and nominal crop density. These findings underscore the importance of implementing site-specific management strategies to optimise sunflower production and maximise yields. Overall, of the various factors influencing sunflower production, the crop year proved to be more significant than the soil parameters due to the strong influence of annual climatic variability. The field zone was also identified as a more critical determinant of sowing and yield variability than crop density, highlighting the importance of spatial management within fields, and also marking possible directions for future research. Full article
Show Figures

Figure 1

26 pages, 3161 KiB  
Article
A 21-Year Study of Virtual Water Trade in Ukraine’s Agricultural Sector: Crop Production and Water Use
by Ahmed S. Afifi and Albert S. Kim
Water 2025, 17(8), 1231; https://doi.org/10.3390/w17081231 - 21 Apr 2025
Viewed by 716
Abstract
This study quantitatively evaluates Ukraine’s agricultural virtual water footprint over two decades (2001–2021), focusing on ten representative crops with varying water demands. We assess the environmental and economic implications of virtual water flows and emphasize the need for more sustainable agricultural water management. [...] Read more.
This study quantitatively evaluates Ukraine’s agricultural virtual water footprint over two decades (2001–2021), focusing on ten representative crops with varying water demands. We assess the environmental and economic implications of virtual water flows and emphasize the need for more sustainable agricultural water management. Our findings reveal a shift in Ukraine toward water-intensive crops despite their high-water requirements, highlighting critical trends in production and trade. While crops like sunflowers and maize generate higher economic returns per unit of weight, less water-intensive crops such as wheat and barley exhibit greater profitability per unit of water consumed, albeit with lower trade volumes. These insights challenge prevailing agricultural practices and underscore the necessity for a more strategic approach that balances economic productivity with responsible water stewardship. Our study provides a data-oriented framework for optimizing water use in Ukrainian agriculture, offering essential guidance for policy interventions and sustainable development. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

15 pages, 1431 KiB  
Article
Sunflower and Sunn Hemp Potential as Summer Cover Crops in Southern Texas
by Dileep Kumar Alapati, Veronica Ancona, Mamoudou Sétamou, Consuelo Donato, Shad D. Nelson and Joel Reyes-Cabrera
Agronomy 2025, 15(4), 986; https://doi.org/10.3390/agronomy15040986 - 20 Apr 2025
Viewed by 456
Abstract
The strategic incorporation of low-cost management practices, such as cover crops (CCs), to citrus production in southern Texas could add valuable ecosystem services that increase trees’ resilience to changing climatic conditions. To provide insight into how producers can manage CCs to optimize ecosystem [...] Read more.
The strategic incorporation of low-cost management practices, such as cover crops (CCs), to citrus production in southern Texas could add valuable ecosystem services that increase trees’ resilience to changing climatic conditions. To provide insight into how producers can manage CCs to optimize ecosystem services, we conducted a study in controlled conditions to examine the potential of adding three annual summer CCs species: common buckwheat (Fagopyrum esculentum), sunflower (Helianthus annuus L.), and sunn hemp (Crotalaria juncea L.) as monocultures growing in two representative soil types of the citrus region in Texas, and receiving one of these irrigation volumes based on calculated daily water losses [i.e., evapotranspiration (ET)] corresponding to 100, 75, 50, and 25% field capacity replenishment. Sunflower and sunn hemp produced the highest aboveground dry matter, which was on average 338 and 342% greater than buckwheat. Sunn hemp emerged faster than the other CCs, and mortality was relatively uniform across CCs, but buckwheat exhibited the highest sensitivity to drought and heat distress. Sunn hemp exhibited superior aboveground biomass accumulation, height, and chlorophyll content. All CCs performed similarly in both experimental soils, under native fertility conditions, and without the addition of mineral fertilizers. Irrigation at 75 and 100% ET levels were conducive to enhanced plant growth, which indicates that a minimum of 86.4 mm (75% ET) is required during CCs lifespan, but sunn hemp and sunflower were also capable of tolerating medium (50% ET) drought stress. Overall, our findings suggest that sunflower and sunn hemp exhibited traits desirable for incorporation as CCs to a perennial citrus production system. The primary benefit was the addition of organic matter with minimum management; however, both CCs’ performance was dependent on planting timing, successful early establishment, and favorable environmental conditions. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

13 pages, 6074 KiB  
Article
Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens
by Pawita Boonrat, Manish Patel, Panuwat Pengphorm, Preeyabhorn Detarun and Chalongrat Daengngam
AgriEngineering 2025, 7(4), 107; https://doi.org/10.3390/agriengineering7040107 - 7 Apr 2025
Cited by 2 | Viewed by 898
Abstract
This study investigates the application of hyperspectral imaging (HSI) combined with machine learning (ML) models for the dynamic mapping of total phenolic content (TPC) and total flavonoid content (TFC) in sunflower microgreens. Spectral data were collected across different cultivation durations (Days 5, 6, [...] Read more.
This study investigates the application of hyperspectral imaging (HSI) combined with machine learning (ML) models for the dynamic mapping of total phenolic content (TPC) and total flavonoid content (TFC) in sunflower microgreens. Spectral data were collected across different cultivation durations (Days 5, 6, and 7) to assess the secondary metabolite distribution in leaves and stems. Overall, the results indicate that TFC in leaves peaked on Day 5, followed by a decline on Days 6 and 7, while stems exhibited an opposite trend. However, TPC did not show a consistent pattern. Spectral reflectance analysis revealed higher near-infrared reflectance in leaves compared to stems. The variation in trait and spectral data among the collected samples was sufficient to develop models predicting the TPC and TFC content. K-nearest neighbours provided the highest predictive accuracy for TPC (R2 = 0.95 and 1.6 mg GAE/100 g) and ridge regression performed best for TFC (R2 = 0.97 and 6.1 mg QE/100 g). Dimensionality reduction via principal component analysis (PCA) proved effective for TPC and TFC prediction, with PC1 alone achieving performance comparable to the full spectral dataset. This integrated HSI-ML approach offers a non-destructive, real-time method for monitoring bioactive compounds, supporting sustainable agricultural practices, optimising harvest timing, and enhancing crop management. The findings can be further developed for smart microgreen farming to enable real-time secondary metabolite quantification, with future research recommended to explore other microgreen varieties for broader applicability. Full article
Show Figures

Figure 1

21 pages, 7557 KiB  
Article
Typical Crop Classification of Agricultural Multispectral Remote Sensing Images by Fusing Multi-Attention Mechanism ResNet Networks
by Zongpu Li, Zhiyun Xiao, Yulong Zhou and Tengfei Bao
Sensors 2025, 25(7), 2237; https://doi.org/10.3390/s25072237 - 2 Apr 2025
Cited by 2 | Viewed by 598
Abstract
Traditional crop classification methods have three critical limitations: (1) dependency on labor-intensive field surveys with limited spatial coverage, (2) susceptibility to human subjectivity during manual data collection, and (3) the inability to capture fine-grained spectral variations due to the lack of multispectral analysis. [...] Read more.
Traditional crop classification methods have three critical limitations: (1) dependency on labor-intensive field surveys with limited spatial coverage, (2) susceptibility to human subjectivity during manual data collection, and (3) the inability to capture fine-grained spectral variations due to the lack of multispectral analysis. This research introduces an enhanced crop classification and identification model based on a residual ResNet network. This model leverages multispectral remote sensing images from unmanned aerial vehicles (UAVs) to accurately classify complex crop planting structures. The research focuses on four typical crops: sunflower, corn, beet, and pepper. By acquiring and preprocessing multispectral remote sensing image data, an improved ResNet50 model integrating the ACmix self-attention module and a coordinate attention mechanism is developed to enhance the classification and recognition accuracy of these crops. Experimental results demonstrate that the improved model achieves a classification accuracy of 97.8% on multispectral images, outperforming both RGB images and traditional methods. This research highlights the potential of combining UAV multispectral remote sensing technology with deep learning for precise crop classification, offering valuable technical support for precision agriculture management. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 2861 KiB  
Article
Within-Field Temporal and Spatial Variability in Crop Productivity for Diverse Crops—A 30-Year Model-Based Assessment
by Ixchel Manuela Hernández-Ochoa, Thomas Gaiser, Kathrin Grahmann, Anna Maria Engels and Frank Ewert
Agronomy 2025, 15(3), 661; https://doi.org/10.3390/agronomy15030661 - 6 Mar 2025
Cited by 1 | Viewed by 1342
Abstract
Within-field soil physical and chemical heterogeneity may affect spatio-temporal crop performance. Managing this heterogeneity can contribute to improving resource use and crop productivity. A simulation experiment based on comprehensive soil and crop data collected at the patchCROP landscape laboratory in Tempelberg, Brandenburg, Germany, [...] Read more.
Within-field soil physical and chemical heterogeneity may affect spatio-temporal crop performance. Managing this heterogeneity can contribute to improving resource use and crop productivity. A simulation experiment based on comprehensive soil and crop data collected at the patchCROP landscape laboratory in Tempelberg, Brandenburg, Germany, an area characterized by heterogeneous soil conditions, was carried out to quantify the impact of within-field soil heterogeneities and their interactions with interannual weather variability on crop yield variability in summer and winter crops. Our hypothesis was that crop–soil water holding capacity interactions vary depending on the crop, with some crops being more sensitive to water stress conditions. Daily climate data from 1990 to 2019 were collected from a nearby station, and crop management model inputs were based on the patchCROP management data. A previously validated agroecosystem model was used to simulate crop growth and yield for each soil auger profile over the 30-year period. A total of 49 soil auger profiles were classified based on their plant available soil water capacity (PAWC), and the seasonal rainfall by crop was also classified from lowest to highest. The results revealed that the spatial variability in crop yield was higher than the temporal variability for most crops, except for sunflower. Spatial variability ranged from 17.3% for rapeseed to 45.8% for lupine, while temporal variability ranged from 10.4% for soybean to 36.8% for sunflower. Maize and sunflower showed a significant interaction between soil PAWC and seasonal rainfall, unlike legume crops lupine and soybean. As for winter crops, the interaction was also significant, except for wheat. Grain yield variations tended to be higher in years with low seasonal rainfall, and crop responses under high seasonal rainfall were more consistent across soil water categories. The simulated results can contribute to cropping system design for allocating crops and resources according to soil conditions and predicted seasonal weather conditions. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 2526 KiB  
Article
Exploring Climate-Driven Mismatches Between Pollinator-Dependent Crops and Honeybees in Asia
by Ehsan Rahimi and Chuleui Jung
Biology 2025, 14(3), 234; https://doi.org/10.3390/biology14030234 - 25 Feb 2025
Cited by 1 | Viewed by 1174
Abstract
In Asia, Apis cerana (native) and Apis mellifera (introduced) are the primary managed honeybee species, vital for pollination and honey production. However, climate change and other threats are driving pollinator declines, while research on their ecology in Asia remains limited. Bridging these knowledge [...] Read more.
In Asia, Apis cerana (native) and Apis mellifera (introduced) are the primary managed honeybee species, vital for pollination and honey production. However, climate change and other threats are driving pollinator declines, while research on their ecology in Asia remains limited. Bridging these knowledge gaps is crucial for developing conservation strategies to sustain pollination services and agricultural systems in the region. In this study, we evaluated the potential impacts of climate change on the spatial interactions between two honeybee species (A. cerana and A. mellifera) and 20 pollinator-dependent crops across 23 countries in Asia. We used species distribution models (SDMs) to generate habitat suitability maps for both honeybees and crops under current and future climate scenarios (SSP585 for 2070). Schoener’s D statistic was employed to quantify the spatial overlap, and a novel spatial approach was applied to create mismatch maps that identified areas of increased or decreased interactions. We found that, on average, A. cerana demonstrated higher overlap with 12 crops compared to 8 for A. mellifera in future projections. Key crops like sesame, eggplant, and mango retained strong overlaps with both pollinators, while mismatches were more pronounced for A. cerana, particularly with watermelon, strawberry, and buckwheat. In contrast, A. mellifera showed greater stability and resilience in spatial overlaps with crops such as soybean and sunflower. Overall, A. cerana is expected to face more significant spatial mismatches, highlighting its vulnerability to climate-induced changes and the critical need for targeted conservation efforts. This study highlights the urgent need for region-specific conservation strategies by identifying areas at risk of losing critical pollination services. Our results provide a crucial framework for informed management and policy interventions to safeguard pollination-dependent agricultural systems and biodiversity in Asia amidst accelerating environmental challenges. Full article
Show Figures

Figure 1

16 pages, 490 KiB  
Article
Valorisation of Sunflower Crop Residue as a Potentially New Source of Bioactive Compounds
by Ivona Veličković, Stevan Samardžić, Marina T. Milenković, Miloš Petković and Zoran Maksimović
Horticulturae 2025, 11(2), 206; https://doi.org/10.3390/horticulturae11020206 - 15 Feb 2025
Cited by 1 | Viewed by 1051
Abstract
Reducing agricultural waste through reuse has become one of the most important strategies to minimise impact on the environment—an emerging global issue. Sunflower ranks fourth in the world in the production of vegetable oilseeds and therefore generates large amounts of agricultural waste. The [...] Read more.
Reducing agricultural waste through reuse has become one of the most important strategies to minimise impact on the environment—an emerging global issue. Sunflower ranks fourth in the world in the production of vegetable oilseeds and therefore generates large amounts of agricultural waste. The aim of this study was to investigate the phytochemical composition and bioactivity of sunflower crop residues in order to open up new opportunities for waste management. TPC and TFC were determined spectrophotometrically, while the dominant compounds were identified by LC-DAD-ESI-MS as ent-kaur-16-en-19-oic acid (KA) and 6Ac-7OH-dimethylchromone (DMC). Both compounds were present in higher concentrations in the ethyl acetate fraction (245.5 and 16.8 mg/g, respectively) than in the ethanol extract. None of the tested samples showed antimicrobial effects in the microdilution test. DMC showed remarkable antioxidant activity by DPPH, ABTS, FRAP and TRC in vitro assays, while both compounds proved to be promising enzyme inhibitory agents, being particularly efficient in inhibiting anti-neurodegenerative enzymes (IC50 values of DMC and KA were 1.20/1.37 mg/mL and 1.44/1.63 mg/mL for AChE/BChE, respectively) and tyrosinase. The results presented indicate that sunflower crop residues are a good candidate for the extraction of bioactive compounds with potential application in the food, pharmaceutical and cosmetic industries. Full article
Show Figures

Graphical abstract

Back to TopTop