A 21-Year Study of Virtual Water Trade in Ukraine’s Agricultural Sector: Crop Production and Water Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preparation
2.1.1. Weather Data
2.1.2. Crop Data
2.1.3. Crop Production and Trade Data
2.2. Mathematical Modeling
2.2.1. Crop Evapotranspiration
2.2.2. Calculation of Virtual Water Demand
2.2.3. Calculation of Total Virtual Water
2.2.4. Calculation of Virtual Water Imported and Exported
2.2.5. Calculation of Virtual Water Price
2.2.6. Calculation of Virtual Water Price Imported and Exported
2.3. MATLAB Implementation
2.3.1. Data Input and Initialization
2.3.2. Evapotranspiration (ETc) Calculation
- Initial Stage: Initial constant Kc values are used.
- Development Stage: The Kc values increase proportionally to the crop growth.
- Mid-Season Stage: The peak Kc values are used to represent full crop growth.
- Late Season Stage: The Kc values decrease as the crop matures.
2.3.3. Virtual Water Calculation
2.3.4. Trade and Financial Data Processing
2.3.5. Results Compilation
2.3.6. Validation and Error Handling
3. Results
3.1. Crop Production Trend (2001–2021)
3.2. Virtual Water Productivity and Total Virtual Water Trends (2001–2021)
3.3. Total Virtual Water Consumption Trend (2001–2021)
3.4. Virtual Water Trade and Global Dynamics
3.4.1. Virtual Water Trade Patterns and Global Dynamics
3.4.2. Policy Implications and Recommendations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statistics, UN World Water Development Report. Available online: https://www.unesco.org/reports/wwdr/en/2024/s (accessed on 11 December 2024).
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Statistics, Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/statistics/en (accessed on 11 December 2024).
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s Unsustainable Environmental Footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P. The Myth and Reality of Bottled Water; Pacific Institute: Oakland, CA, USA, 2010. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. The Global Component of Freshwater Demand and Supply: An Assessment of Virtual Water Flows between Nations as a Result of Trade in Agricultural and Industrial Products. Water Int. 2008, 33, 19–32. [Google Scholar] [CrossRef]
- Anderson, K. Agricultural Trade, Policy Reforms, and Global Food Security; Palgrave Studies in Agricultural Economics and Food Policy; Palgrave Macmillan: London, UK; New York, NY, USA, 2016; Volume 1, ISBN 978-1-137-47168-0. [Google Scholar]
- Rockström, J.; Gupta, J.; Qin, D.; Lade, S.J.; Abrams, J.F.; Andersen, L.S.; Armstrong McKay, D.I.; Bai, X.; Bala, G.; Bunn, S.E.; et al. Safe and Just Earth System Boundaries. Nature 2023, 619, 102–111. [Google Scholar] [CrossRef]
- Higazy, N.; Merabet, S.; Khalifa, R.; Saleh, A.; Al-Sayegh, S.; Hosseini, H.; Wahib, S.; Alabsi, R.; Zarif, L.; Mohamed, M.S.; et al. Water Footprint Assessment and Virtual Water Trade in the Globally Most Water-Stressed Country, Qatar. Water 2024, 16, 1185. [Google Scholar] [CrossRef]
- Fu, T.; Xu, C.; Huang, X. Analysis of Virtual Water Trade Flow and Driving Factors in the European Union. Water 2021, 13, 1771. [Google Scholar] [CrossRef]
- Cazcarro, I.; Dilekli, N. Developing the Food, Water, and Energy Nexus for Food and Energy Scenarios with the World Trade Model. Water 2021, 13, 2354. [Google Scholar] [CrossRef]
- FAO. The Dimensions of Water Productivity. In FAO Water Reports 2020 65, Rome; FAO: Rome, Italy, 2020. [Google Scholar]
- Walsh, P. Operationalizing the Incentive Theory: Modernizing U.S. Bureaucracy to Effectively Predict and Prevent War. Mil. L. Rev. 2016, 224, 87. [Google Scholar]
- Suweis, S.; Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Structure and Controls of the Global Virtual Water Trade Network. Geophys. Res. Lett. 2011, 38, L10403. [Google Scholar] [CrossRef]
- Tamea, S.; Allamano, P.; Carr, J.A.; Claps, P.; Laio, F.; Ridolfi, L. Local and Global Perspectives on the Virtual Water Trade. Hydrol. Earth Syst. Sci. 2013, 17, 1205–1215. [Google Scholar] [CrossRef]
- Deng, G.; Di, K. A Study on the Characteristics and Influencing Factors of the Global Grain Virtual Water Trade Network. Water 2025, 17, 288. [Google Scholar] [CrossRef]
- Deng, G.; Di, K. A Study of Virtual Water Trade among G20 Countries from a Value-Added Trade Perspective. Water 2024, 16, 2808. [Google Scholar] [CrossRef]
- Tette, A.S.K.; Odey, G.; Ahmad, M.J.; Adelodun, B.; Choi, K.-S. Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture. Water 2024, 16, 2077. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Tu, C.; Rulli, M.C.; D’Odorico, P. Global Unsustainable Virtual Water Flows in Agricultural Trade. Environ. Res. Lett. 2019, 14, 114001. [Google Scholar] [CrossRef]
- Yang, X.; Zhuo, L.; Xie, P.; Huang, H.; Feng, B.; Wu, P. Physical versus Economic Water Footprints in Crop Production: A Spatial and Temporal Analysis for China. Hydrol. Earth Syst. Sci. 2021, 25, 169–191. [Google Scholar] [CrossRef]
- Tamea, S.; Carr, J.A.; Laio, F.; Ridolfi, L. Drivers of the Virtual Water Trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the Global Virtual Water Trade Network. Proc. Natl. Acad. Sci. USA 2012, 109, 5989–5994. [Google Scholar] [CrossRef]
- Tayia, A.; Collins, A.M.; Gilmont, M. The Role of Virtual-Water Decoupling in Achieving Food–Water Security: Lessons from Egypt, 1962–2013. Water Int. 2022, 47, 1118–1139. [Google Scholar] [CrossRef]
- Wally, A.; Akingbe, O. Egypt: Decline in Ukraine Wheat Imports Drives Egypt to Diversify Its Suppliers|USDA Foreign Agricultural Service. Available online: https://fas.usda.gov/data/egypt-decline-ukraine-wheat-imports-drives-egypt-diversify-its-suppliers (accessed on 11 December 2024).
- Sunduk, A. Cost Characteristics of Water Resources of Ukraine in the Measurement of the Market Economy. Ann. Univ. Paedagog. Cracoviensis. Stud. Ad Didact. Biol. Pertinentia 2016, 4, 139–146. [Google Scholar]
- Barrett, T.; Feola, G.; Khusnitdinova, M.; Krylova, V. Adapting Agricultural Water Use to Climate Change in a Post-Soviet Context: Challenges and Opportunities in Southeast Kazakhstan. Hum. Ecol. 2017, 45, 747–762. [Google Scholar] [CrossRef]
- Hellegers, P.; Van Halsema, G. SDG Indicator 6.4.1 “Change in Water Use Efficiency over Time”: Methodological Flaws and Suggestions for Improvement. Sci. Total Environ. 2021, 801, 149431. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Cao, X. Water Use Efficiency and Sensitivity Assessment for Agricultural Production System from the Water Footprint Perspective. Sustainability 2020, 12, 9665. [Google Scholar] [CrossRef]
- Afifi, A.S.; Kim, A.S. GitHub Repositories. Available online: https://github.com/ASAfifi/Virtual-Water-calculating-MATLAB-codes/ (accessed on 10 April 2025).
- Climate Engine—Democratizing Space-Borne Data and Analytics. Available online: https://www.climateengine.org/ (accessed on 23 January 2025).
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Allan, R.; Pereira; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Tarantino, E.; Onofrii, M. Determinazione Dei Coefficienti Colturali Mediante Lisimetri. Bonifica 1991, 9, 119–136. [Google Scholar]
Variable | Units | Water-Intensive (Percentage of Total) | Non-Water-Intensive (Percentage of Total) |
---|---|---|---|
Total Production | [tonnes] | 1,358,778,820 (67.37%) | 658,109,957 (32.63%) |
Total Land Area | [ha] | 230,220,055 (51.68%) | 215,271,767 (48.32%) |
Total VW Consumption | [m3] | 665,998,601,560 (95.48%) | 31,520,476,106 (4.52%) |
Irrigation VW Consumption | [m3] | 347,374,766,866 (99.98%) | 64,624,630 (0.02%) |
Precipitation VW Consumption | [m3] | 318,623,834,693 (91.01%) | 31,455,851,476 (8.99%) |
Average Yield | [tonnes/ha] | 5.90 | 3.06 |
Average VW Productivity | [m3/tonne] | 490.15 | 47.90 |
Variables | Units | All Crops | Water-Intensive | Non-Water-Intensive |
---|---|---|---|---|
Imports to Ukraine | ||||
Total Weight | [tonnes] | 6,300,447.56 | 1,977,236.89 | 4,323,210.67 |
Avg. Weight | [USD/tonne] | 910.63 | 2490.06 | 188.27 |
Total VW | [m3] | 1,206,948,284.85 | 1,066,283,249.22 | 140,665,035.63 |
Avg. VW | [USD/m3] | 4.75 | 4.62 | 5.79 |
Total Irr. VW | [m3] | 574,368,670.11 | 573,288,889.07 | 1,079,781.04 |
Avg. Irr. VW | [USD/m3] | 3.90 | 3.90 | 2.18 |
Total Prec. VW | [m3] | 632,579,614.74 | 492,994,360.16 | 139,585,254.59 |
Avg. Prec. VW | [USD/m3] | 5.53 | 5.45 | 5.81 |
Exports from Ukraine | ||||
Total Weight | [tonnes] | 555,402,453.57 | 270,287,450.55 | 285,115,003.02 |
Avg. Weight | [USD/tonne] | 191.00 | 204.88 | 177.85 |
Total VW | [m3] | 114,081,239,682.16 | 100,476,739,619.28 | 13,604,500,062.88 |
Avg. VW | [USD/m3] | 0.93 | 0.55 | 3.73 |
Total Irr. VW | [m3] | 55,806,491,944.13 | 55,774,134,147.46 | 32,357,796.67 |
Avg. Irr. VW | [USD/m3] | 0.42 | 0.42 | 4.80 |
Total Prec. VW | [m3] | 58,274,747,738.03 | 44,702,605,471.82 | 13,572,142,266.21 |
Avg. Prec. VW | [USD/m3] | 1.42 | 0.72 | 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afifi, A.S.; Kim, A.S. A 21-Year Study of Virtual Water Trade in Ukraine’s Agricultural Sector: Crop Production and Water Use. Water 2025, 17, 1231. https://doi.org/10.3390/w17081231
Afifi AS, Kim AS. A 21-Year Study of Virtual Water Trade in Ukraine’s Agricultural Sector: Crop Production and Water Use. Water. 2025; 17(8):1231. https://doi.org/10.3390/w17081231
Chicago/Turabian StyleAfifi, Ahmed S., and Albert S. Kim. 2025. "A 21-Year Study of Virtual Water Trade in Ukraine’s Agricultural Sector: Crop Production and Water Use" Water 17, no. 8: 1231. https://doi.org/10.3390/w17081231
APA StyleAfifi, A. S., & Kim, A. S. (2025). A 21-Year Study of Virtual Water Trade in Ukraine’s Agricultural Sector: Crop Production and Water Use. Water, 17(8), 1231. https://doi.org/10.3390/w17081231