Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens
Abstract
1. Introduction
2. Methodology
2.1. Sample Preperation
2.2. Trait Data Acquisition
2.3. Spectral Data Acquisition
2.4. Machine Learning Models
3. Results
3.1. Trait Data
3.2. Spectral Data
3.3. Performance Matrices
3.4. Secondary Metabolite Mapping
4. Discussion
4.1. Data Analysis
4.2. Model Performance
4.3. Challenges and Limitations
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr. 2017, 57, 2730–2736. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.F. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems. Front. Nutr. 2017, 4, 7. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar]
- Guerreiro, S.L.M.; Cabral Júnior, J.F.G.; Eiras, B.J.C.F.; Miranda, B.d.S.; Lopes, P.C.A.; Melo, N.F.A.C.d.; Luz, R.K.; Sterzelecki, F.C.; Palheta, G.D.A. Integrating Aquaponics with Macrobrachium amazonicum (Palaemonidae: Decapoda) Cultivation for the Production of Microgreens: A Sustainable Approach. AgriEngineering 2024, 6, 2718–2731. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; De Pascale, S.; Kyratzis, A.; Rouphael, Y. Microgreens as a component of space life support systems: A cornucopia of functional food. Front. Plant Sci. 2017, 8, 294717. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z.; Nik Ibrahim, N.N.L.; Wayayok, A.; Hashim, N. Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming. Agronomy 2021, 11, 1213. [Google Scholar] [CrossRef]
- Birch, E.L. Food Security. J. Am. Plan. Assoc. 2015, 81, 241–242. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Huang, J.J.; Tan, C.X.; Zhou, W. Universal modeling for optimizing leafy vegetable production in an environment-controlled vertical farm. Comput. Electron. Agric. 2024, 219, 108715. [Google Scholar] [CrossRef]
- Huang, M.; Xu, H.; Zhou, Q.; Xiao, J.; Su, Y.; Wang, M. The nutritional profile of chia seeds and sprouts: Tailoring germination practices for enhancing health benefits–a comprehensive review. Crit. Rev. Food Sci. Nutr. 2024, 1–23. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Reshi, Z.A.; Ahmad, W.; Lukatkin, A.S.; Javed, S.B. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites 2023, 13, 895. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar]
- Ghani, U. Chapter three—Polyphenols. In Alpha-Glucosidase Inhibitors; Elsevier: Amsterdam, The Netherlands, 2020; pp. 61–100. [Google Scholar] [CrossRef]
- Savickiene, N.; Raudone, L. Trends in Plants Phytochemistry and Bioactivity Analysis. Plants 2024, 13, 3173. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Xie, P.J.; Huang, L.X.; Zhang, C.H.; Zhang, Y.L. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar]
- Zhan, X.; Chen, Z.; Chen, R.; Shen, C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. Front. Plant Sci. 2022, 13, 877304. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, J.I.; Kim, S.W.; Kim, S.; Oh, E.; Lee, J.; Lee, E.; An, Y.J.; Han, C.Y.; Lee, H.; et al. Influence of Secondary Metabolites According to Maturation of Perilla (Perilla frutescens) on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell. Int. J. Mol. Sci. 2024, 25, 12119. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Yang, C.; Song, L.; Wei, K.; Gao, C.; Wang, D.; Feng, M.; Zhang, M.; Wang, C.; Xiao, L.; Yang, W.; et al. Study on Hyperspectral Monitoring Model of Total Flavonoids and Total Phenols in Tartary Buckwheat Grains. Foods 2023, 12, 1354. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Alhadrami, H.A.A.; Bhandari, A. Quantification of total phenol, flavonoid content and pharmacognostical evaluation including HPTLC fingerprinting for the standardization of Piper nigrum Linn fruits. Asian Pac. J. Trop. Biomed. 2015, 5, 101–107. [Google Scholar] [CrossRef]
- Sankhalkar, S.; Vernekar, V. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacogn. Res. 2016, 8, 16–21. [Google Scholar] [CrossRef]
- Proestos, C.; Boziaris, I.; Nychas, G.J.; Komaitis, M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 2006, 95, 664–671. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, X.-A.; Sun, D.-W. Recent Developments and Applications of Hyperspectral Imaging for Quality Evaluation of Agricultural Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1744–1757. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Shi, W.; Zhao, W.; Luo, N. Estimation of Protein Content in Plant Leaves using Spectral Reflectance: A Case Study in Euonymus japonica. Anal. Lett. 2014, 47, 517–530. [Google Scholar] [CrossRef]
- Santos, Y.J.S.; Malegori, C.; Colnago, L.A.; Vanin, F.M. Application on infrared spectroscopy for the analysis of total phenolic compounds in fruits. Crit. Rev. Food Sci. Nutr. 2024, 64, 2906–2916. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Qu, J.H.; Liu, D.; Pu, H.; Gao, W.H.; Zeng, X.A. Applications of computer vision for assessing quality of agri-food products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2016, 56, 113–127. [Google Scholar] [CrossRef]
- Li, L.; Jia, X.; Fan, K. Recent advance in nondestructive imaging technology for detecting quality of fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2024, 1–19. [Google Scholar] [CrossRef]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.W.; Allen, P. Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef]
- Garg, P.K. 10—Effect of contamination and adjacency factors on snow using spectroradiometer and hyperspectral images. In Hyperspectral Remote Sensing; Pandey, P.C., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P., Eds.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–196. [Google Scholar]
- Cruz-Carrasco, C.; Díaz-Álvarez, J.; Chávez de la O, F.; Sánchez-Venegas, A.; Villegas Cortez, J. Detection of Aspergillus flavus in Figs by Means of Hyperspectral Images and Deep Learning Algorithms. AgriEngineering 2024, 6, 3969–3988. [Google Scholar] [CrossRef]
- Gowen, A.; Odonnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Q.; Qian, J.; Li, J.; Lin, X.; Liu, Z.; Fan, N.; Ma, W. Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging. AgriEngineering 2024, 6, 52–63. [Google Scholar] [CrossRef]
- Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Front. Ecol. Evol. 2018, 6, 64. [Google Scholar] [CrossRef]
- Herawati, N.; Wijayanti, A.; Sutrisno, A.; Nusyirwan; Misgiyati. The Performance of Ridge Regression, LASSO, and Elastic-Net in Controlling Multicollinearity: A Simulation and Application. J. Mod. Appl. Stat. Methods 2024, 23, 4. [Google Scholar] [CrossRef]
- Simske, S. Introduction, overview, and applications. In Meta-Analytics; Morgan Kaufmann: Cambridge, MA, USA, 2019; pp. 1–98. [Google Scholar] [CrossRef]
- Nnaji, C.; Nwodo, U. Predicting Customer Churn In The Telecommunication Industry Using Machine Learning Algorithms: Performance Comparison with Logistic Regression, Random Forest, and Gradient Boosting Techniques. Mach. Learn. 2022, 22, 3–66. [Google Scholar]
- Shi, Y.; Yang, K.; Yang, Z.; Zhou, Y. (Eds.) Primer on artificial intelligence. In Mobile Edge Artificial Intelligence; Academic Press: Cambridge, MA, USA, 2022; pp. 7–36. [Google Scholar] [CrossRef]
- Owolabi, I.O.; Saibandith, B.; Wichienchot, S.; Yupanqui, C.T. Nutritional compositions, polyphenolic profiles and antioxidant properties of pigmented rice varieties and adlay seeds enhanced by soaking and germination conditions. Funct. Foods Health Dis. 2018, 8, 561–578. [Google Scholar] [CrossRef]
- Meilawati, L.; Ernawati, T.; Dewi, R.T.; Meilawati, S.L. Study of Total Phenolic, Total Flavonoid, Scopoletin Contents and Antioxidant Activity of Extract of Ripened Noni Juice. Indones. J. Appl. Chem. 2021, 23, 55–62. [Google Scholar] [CrossRef]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- De la Cruz Chacón, I.; Riley Saldaña, A.; González-Esquinca, A.R. Secondary metabolites during early development in plants. Phytochem. Rev. 2012, 12, 47–64. [Google Scholar] [CrossRef]
- Castro, K.L.; Sanchez-Azofeifa, G.A. Changes in Spectral Properties, Chlorophyll Content and Internal Mesophyll Structure of Senescing Populus balsamifera and Populus tremuloides Leaves. Sensors 2008, 8, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liang, J.; Lu, J.; Zhao, X. An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 2017, 251, 26–34. [Google Scholar] [CrossRef]
- Awodeyi, A.I.; Ibok, O.A.; Omokaro, I.; Ekwemuka, J.U.; Ighofiomoni, M.O. Effective preprocessing techniques for improved facial recognition under variable conditions. Frankl. Open 2025, 10, 100225. [Google Scholar] [CrossRef]
- Demircioğlu, A. The effect of preprocessing filters on predictive performance in radiomics. Eur. Radiol. Exp. 2022, 6, 40. [Google Scholar] [CrossRef]
- Pane, C.; Nicastro, N.; Manganiello, G.; Carotenuto, F.; Pallottino, F.; Costa, C. Hyperspectral imaging to oversee the status of baby leaf vegetable crops: The Agrofiliere Project results. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 501–505. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Xiang, Y.; Tang, Z.; Huang, X.; Shi, H.; Sun, T.; Yang, W.; Cui, S.; Chen, G.; et al. Estimation of Winter Wheat Chlorophyll Content Based on Wavelet Transform and the Optimal Spectral Index. Agronomy 2024, 14, 1309. [Google Scholar] [CrossRef]
- Ullah, F.; Kumar, K.; Rahim, T.; Khan, J.; Jung, Y. A new hybrid image denoising algorithm using adaptive and modified decision-based filters for enhanced image quality. Sci. Rep. 2025, 15, 8971. [Google Scholar] [CrossRef]
- Wang, N.; Yang, A.; Cui, Z.; Yao, D.; Xue, Y.; Su, Y. Capsule Attention Network for Hyperspectral Image Classification. Remote Sens. 2024, 16, 4001. [Google Scholar] [CrossRef]
Point | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
TPC (mg GAE/100 g) | 17.57 | 17.57 | 17.57 | 17.57 | 10.59 | 8.87 | 5.90 |
TFC (mg QE/100 g) | 46.78 | 41.90 | 42.42 | 44.87 | 37.37 | 37.51 | 36.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonrat, P.; Patel, M.; Pengphorm, P.; Detarun, P.; Daengngam, C. Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens. AgriEngineering 2025, 7, 107. https://doi.org/10.3390/agriengineering7040107
Boonrat P, Patel M, Pengphorm P, Detarun P, Daengngam C. Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens. AgriEngineering. 2025; 7(4):107. https://doi.org/10.3390/agriengineering7040107
Chicago/Turabian StyleBoonrat, Pawita, Manish Patel, Panuwat Pengphorm, Preeyabhorn Detarun, and Chalongrat Daengngam. 2025. "Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens" AgriEngineering 7, no. 4: 107. https://doi.org/10.3390/agriengineering7040107
APA StyleBoonrat, P., Patel, M., Pengphorm, P., Detarun, P., & Daengngam, C. (2025). Hyperspectral Imaging for the Dynamic Mapping of Total Phenolic and Flavonoid Contents in Microgreens. AgriEngineering, 7(4), 107. https://doi.org/10.3390/agriengineering7040107