Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = sulfur-doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 (registering DOI) - 5 Aug 2025
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Viewed by 61
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

45 pages, 1506 KiB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 - 3 Aug 2025
Viewed by 159
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

16 pages, 5483 KiB  
Article
Preparation of S-Doped Ni-Mn-Fe Layered Hydroxide for High-Performance of Oxygen Evolution Reaction
by Jiefeng Wang, Shilin Li, Yifan Guo, Jiaqi Ding and Zhi Lu
Coatings 2025, 15(7), 825; https://doi.org/10.3390/coatings15070825 - 15 Jul 2025
Viewed by 317
Abstract
A novel catalyst with a metal sulfide/hydroxide heterostructure was prepared by introducing sulfur ions into NiMnFe layered hydroxide by a simple hydrothermal method, using a series of characterization methods and electrochemical tests to explore the optimal sulfur ion doping amount. The XPS results [...] Read more.
A novel catalyst with a metal sulfide/hydroxide heterostructure was prepared by introducing sulfur ions into NiMnFe layered hydroxide by a simple hydrothermal method, using a series of characterization methods and electrochemical tests to explore the optimal sulfur ion doping amount. The XPS results show that the introduction of sulfur ions leads to a change in metal electron delocalization, which is conducive to the OER procedure. The newly formed metal sulfide can not only improve the conductivity of NiMnFe LDH/NF electrode materials but also enhance the intrinsic catalytic activity of the materials. The electrochemical performance indicated that the S2-NiMnFe LDH/NF catalyst required only 205 mV overpotential to provide a current density of 10 mA−2, and the Tafel slope was only 45.79 mV dec−1. In addition, the large turnover frequency value (1.2614 S−1) reflects the excellent intrinsic activity of the novel catalytic material. Full article
Show Figures

Figure 1

20 pages, 6146 KiB  
Article
Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field
by Ruofeng Zhang, Jiyuan Guo, Lanqing Chen and Fengjie Tao
Materials 2025, 18(14), 3269; https://doi.org/10.3390/ma18143269 - 10 Jul 2025
Viewed by 401
Abstract
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped [...] Read more.
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped thgraphene as anchoring materials was investigated. The results reveal that pristine and doped substrates have an excellent structural stability, conductivity, and electrochemical activity. In the absence of an electric field, four substrates exhibit a strong anchoring effect on the Li2S cluster, where the adsorption energies fall within 3.10 to 4.48 eV. Even under the external electric field, all substrates exhibit notable structural stability during Li2S adsorption processes and maintain a high electrical conductivity, with adsorption energies exceeding 2.75 eV. Furthermore, it has been observed that the interfacial diffusion energy barriers for Li on all substrates are below 0.35 eV, which effectively enhances Li migration and facilitates reaction kinetics. Additionally, Li2S demonstrates a low decomposition energy barrier (varying from 0.84 to 1.55 eV) on pristine and doped substrates, enabling the efficient regeneration of the active material during the battery cycling. These findings offer a scientific guideline for the design of pristine and doped thgraphene as an excellent anchoring material for advanced lithium–sulfur batteries. Full article
Show Figures

Figure 1

6 pages, 678 KiB  
Proceeding Paper
Adsorption of Methylene Blue from an Aqueous Solution by Carbon Materials: A Kinetic Study
by Ivan Bracanović, Ana Kalijadis, Miloš Simić and Aleksandar Krstić
Eng. Proc. 2025, 99(1), 19; https://doi.org/10.3390/engproc2025099019 - 30 Jun 2025
Viewed by 211
Abstract
This study aimed to investigate the kinetic properties of methylene blue adsorption on carbon cryogel samples and nitrogen-doped and nitrogen-and-sulfur-co-doped carbon cryogel. Nitrogen and sulfur were incorporated into the carbon structure to enhance surface, electronic and textural properties. Methylene blue, a widely utilized [...] Read more.
This study aimed to investigate the kinetic properties of methylene blue adsorption on carbon cryogel samples and nitrogen-doped and nitrogen-and-sulfur-co-doped carbon cryogel. Nitrogen and sulfur were incorporated into the carbon structure to enhance surface, electronic and textural properties. Methylene blue, a widely utilized dye in the textile industry, has become one of the most commonly detected substances in water systems. Experimental data were fitted with four kinetic models and showed excellent fits with the linear pseudo-second-order model. The results indicated that doping with nitrogen and sulfur did not significantly affect the adsorption of methylene blue. Full article
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Enhanced Degradation of Phenol in Aqueous Solution via Persulfate Activation by Sulfur-Doped Biochar: Insights into Catalytic Mechanisms and Structural Properties
by Guanyu Wang, Lihong Kou, Chenghao Li, Bing Xu and Yuanfeng Wu
Nanomaterials 2025, 15(13), 979; https://doi.org/10.3390/nano15130979 - 24 Jun 2025
Viewed by 319
Abstract
In this study, sulfur-doped biochar (SBC) was successfully synthesized using peanut shells as the raw material and sulfur powder as the sulfur source. The composition, structural characteristics, and catalytic performance of SBC in the degradation of phenol via persulfate (PDS) activation were systematically [...] Read more.
In this study, sulfur-doped biochar (SBC) was successfully synthesized using peanut shells as the raw material and sulfur powder as the sulfur source. The composition, structural characteristics, and catalytic performance of SBC in the degradation of phenol via persulfate (PDS) activation were systematically investigated. Characterization results demonstrate that the prepared SBC exhibited a typical lamellar structure with abundant pores and fissures on its surface. XPS analysis confirmed the successful incorporation of sulfur into the biochar matrix, primarily in the form of thiophene. Under the optimized condition of a 20% sulfur doping ratio, the SBC exhibited high efficiency in activating PDS, achieving a phenol degradation rate of 97%. Remarkably, the removal rate remained at 81% even after the fifth cycle, indicating excellent cyclic stability. Density functional theory (DFT) calculations and electrochemical impedance spectroscopy (EIS) measurements further revealed that sulfur doping significantly modified the electron density distribution of the biochar, reducing its surface electrochemical impedance from 32.88 Ω to 13.64 Ω. This reduction facilitated efficient electron transfer during the catalytic process. This study provides both experimental and theoretical insights into the charge distribution characteristics of sulfur-doped biochar, offering valuable references for understanding the mechanism of PDS activation by SBC. Full article
Show Figures

Graphical abstract

20 pages, 10830 KiB  
Article
An Experimental Study of Glycerol Carbonate Synthesis over g-C3N4 Catalysts
by Mirna Lea Charif, Dragoș Mihael Ciuparu, Ioana Lavinia Lixandru Matei, Gabriel Vasilievici, Ionuț Banu, Marian Băjan, Dorin Bomboș, Cristina Dușescu-Vasile, Iuliana Veronica Ghețiu, Cașen Panaitescu and Rami Doukeh
Appl. Sci. 2025, 15(11), 6236; https://doi.org/10.3390/app15116236 - 1 Jun 2025
Viewed by 2571
Abstract
This study examines a catalyst based on graphitic carbon nitride (g-C3N4) for synthesizing glycerol carbonate through the coupling reaction of glycerol and CO2. In this research, we focus on simultaneously improving CO2 emission reduction and glycerol [...] Read more.
This study examines a catalyst based on graphitic carbon nitride (g-C3N4) for synthesizing glycerol carbonate through the coupling reaction of glycerol and CO2. In this research, we focus on simultaneously improving CO2 emission reduction and glycerol valorization by co-doping g-C3N4 with phosphorus (P), sulfur (S), magnesium (Mg), and lithium (Li) for a better catalytic performance. The catalysts were prepared through a one-step thermal condensation process and characterized using XRD, SEM, TGA, FTIR, and nitrogen adsorption–desorption techniques. The co-doping further enhanced the surface chemical properties, Lewis acidity, basicity, and thermal stability, evidenced by the lower crystallinity, wider pore, and better catalytic performance as assessed through glycerol carbonylation reaction, optimized using a Box–Behnken design. The MgPSCN catalyst exhibited the highest glycerol conversion (68.72%) and glycerol carbonate yield (44.90%) at 250 °C, using 50 mg catalyst and 10 bar pressure. The model accuracy was validated by ANOVA (R2 > 0.99; p values < 0.0001). The results indicated that doping significantly enhanced the catalytic performance, most likely due to improved electron charge transfer and structural distortions within the g-C3N4 framework. Such a process highlights the potential of co-doped g-C3N4 catalysts for the sustainable glycerol utilization and valorization of CO2 through a scalable pathway toward green chemical synthesis—an approach that comes in line with worldwide decarbonization goals. Full article
Show Figures

Figure 1

13 pages, 4213 KiB  
Article
Carbon Nanotubes-Doped Metal Oxides and Metal Sulfides Heterostructure Achieves 3D Morphology Deposition of Li2S and Stable Long-Cycle Lithium–Sulfur Batteries
by Yu-Lin Luo, Hai Huang, Cheng-Wei Zhu, Wen-Qi Lv, Ye Zeng, Gui-Fang Li, Xiao-Hong Fan, Ding-Rong Deng and Qi-Hui Wu
Inorganics 2025, 13(6), 181; https://doi.org/10.3390/inorganics13060181 - 1 Jun 2025
Viewed by 560
Abstract
The “shuttle effect” caused by the shuttling of soluble long-chain polysulfides between the anode and cathode electrodes has persistently hindered lithium–sulfur batteries (LSBs) from achieving stable and high-capacity performance. Numerous materials have been explored to mitigate the adverse effects of this phenomenon, among [...] Read more.
The “shuttle effect” caused by the shuttling of soluble long-chain polysulfides between the anode and cathode electrodes has persistently hindered lithium–sulfur batteries (LSBs) from achieving stable and high-capacity performance. Numerous materials have been explored to mitigate the adverse effects of this phenomenon, among which metal oxides and metal sulfides are regarded as promising solutions due to their strong adsorption capability toward lithium polysulfides (LiPSs). However, the poor electrical conductivity of the metal oxides and sulfides, coupled with their inherent morphological limitations, makes it challenging to sustainably suppress LiPS shuttling. In this study, we designed a heterostructured catalyst composed of a metal oxide–metal sulfide heterostructure integrated with carbon nanotubes (CNTs). This design addresses the low conductivity issue of metal oxides/sulfides while optimizing the material’s morphology, enabling persistent LiPSs adsorption. Furthermore, the composite successfully facilitates three-dimensional (3D) Li2S deposition. The assembled battery exhibits stable and high-capacity performance, delivering an initial discharge capacity of 622.45 mAh g−1 at 2C and retaining 569.5 mAh g−1 after 350 cycles, demonstrating exceptional cycling stability. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Graphical abstract

18 pages, 3754 KiB  
Article
N, S-Doped Carbon Dots (N, S-CDs) for Perfluorooctane Sulfonic Acid (PFOS) Detection
by Hani Nasser Abdelhamid
C 2025, 11(2), 36; https://doi.org/10.3390/c11020036 - 29 May 2025
Cited by 1 | Viewed by 1545
Abstract
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray [...] Read more.
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) confirmed their amorphous nature, nanoscale dimensions (1–8 nm, average particle size of 2.6 nm), and surface chemistry. Optical examination revealed intense and pure blue fluorescence emission under UV excitation, with excitation-dependent emission behavior attributed to surface defects and heteroatom doping. The N, S-CDs were applied as fluorescent probes for detecting perfluorooctanesulfonic acid (PFOS), a notable component of the perfluoroalkyl substances (PFAS) family, demonstrating pronounced and concentration-dependent fluorescence quenching. A linear detection range of 3.33–20 µM and a limit of detection (LOD) of 2 µM were reported using the N, S-CDs probe. UV-Vis spectral shifts and dye-interaction investigations indicated that the sensing mechanism is regulated by non-covalent interactions, primarily electrostatic and hydrophobic forces. These findings confirm the potential of N, S-CDs to be used as effective optical sensors for detecting PFOS in environmental monitoring applications. Full article
Show Figures

Graphical abstract

19 pages, 3527 KiB  
Article
One-Step Synthesis of In Situ Sulfur-Doped Porous Carbons for Efficient CO2 Adsorption
by Jiang Guo, Yun-Peng Ma, Wen-Jun Wu, Xue-Fang Cao and Yu-Ping Fu
Sustainability 2025, 17(11), 4952; https://doi.org/10.3390/su17114952 - 28 May 2025
Viewed by 544
Abstract
Porous carbons for CO2 capture were synthesized from a sulfur-rich bituminous coal via a one-step method concurrently including carbonization and KOH activation. The activation parameters were controlled by varying KOH/coal mass ratios (1:1, 2:1, and 3:1) and temperatures (700 °C, 800 °C, [...] Read more.
Porous carbons for CO2 capture were synthesized from a sulfur-rich bituminous coal via a one-step method concurrently including carbonization and KOH activation. The activation parameters were controlled by varying KOH/coal mass ratios (1:1, 2:1, and 3:1) and temperatures (700 °C, 800 °C, and 900 °C) to optimize their CO2 capture performance. The surface physicochemical structural properties of these porous carbons were characterized by applying a Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The results show that the SBET of sample SCC-800-3 is as high as 2209 m2/g, the CO2 adsorption capacity of sample SCC-700-2 at normal temperature and pressure reaches 3.46 mmol/g, and the CO2/N2 selectivity of sample SCC-700-1 reaches 24. The synergistic effect of moderate activation conditions ensures optimal pore evolution without compromising sulfur species retention. Furthermore, these porous carbons also demonstrate excellent cycling stability and thermal stability. The fitting of the adsorption isotherm model for all samples were further conducted. Adsorption isotherm modeling demonstrated superior fitting accuracy with the dual-parameter Freundlich and tri-parametric Redlich–Peterson formulations across all samples, indicating that the CO2 capture by high-sulfur coal-based porous carbons belongs to multilayer adsorption and the carbon surface is heterogeneous. The CO2 adsorption on porous carbon exhibits spontaneous, exothermic behavior according to the thermodynamic data. These findings confirm the great potential of high-sulfur coal-based porous carbons on the capture of CO2. The presenting research provides a strategy that leverages the synergistic effect of in situ sulfur doping and milder activation conditions, achieving the high-efficiency utilization of high-sulfur coal resources and developing low-cost CO2 capture materials. Full article
(This article belongs to the Special Issue CO2 Capture and Utilization: Sustainable Environment)
Show Figures

Figure 1

14 pages, 3682 KiB  
Article
Bismuth(III) Sulfide Films by Chemical Bath Deposition Method Using L-Cysteine as a Novel Sulfur Source
by Aistis Melnikas, Remigijus Ivanauskas, Skirma Zalenkiene and Marius Mikolajūnas
Crystals 2025, 15(6), 515; https://doi.org/10.3390/cryst15060515 - 28 May 2025
Viewed by 467
Abstract
Thin films of bismuth(III) sulfide (Bi2S3) on fluorine doped tin oxide (FTO) coated glass slides were successfully formed by the chemical bath deposition (CBD) method. In this work, a new sulfur precursor L-cysteine was used instead of the typical [...] Read more.
Thin films of bismuth(III) sulfide (Bi2S3) on fluorine doped tin oxide (FTO) coated glass slides were successfully formed by the chemical bath deposition (CBD) method. In this work, a new sulfur precursor L-cysteine was used instead of the typical sulfur precursors, such as urea, thiosulfate, or thioacetamide, used for the formation of the Bi2S3 films by the CBD method. The synthesized Bi2S3 thin film on the FTO substrate was subjected to characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and UV–Visible spectroscopy analysis. An X-ray diffraction analysis showed that, initially, Bi2S3 films of an amorphous structure with elemental sulfur impurities were formed on the FTO surface. During the annealing of the samples, amorphous Bi2S3 was transformed into its crystalline phase with an average crystallite size of about 22.06 nm. The EDS studies confirmed that some of the sulfur that was not part of the Bi2S3 was removed from the films during annealing. The influence of the morphology of Bi2S3 films on their optical properties was confirmed by studies in the UV-visible range. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 3353 KiB  
Article
N-S Co-Doped WC Nanoparticles Show High Catalytic Activity in Hydrogen Evolution Reaction
by Zhaobin Lu, Baoxin Wang, Shengtao Li, Feiyan Pan, Xuewei Zhu and Xiaofeng Wei
Coatings 2025, 15(6), 630; https://doi.org/10.3390/coatings15060630 - 24 May 2025
Viewed by 349
Abstract
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as [...] Read more.
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as the tungsten source and, through a facile one-step method in molten salt, fabricated a biomass carbon-based nanocatalyst featuring carbon flakes adorned with tungsten carbide (WC) nanoparticles. Dicyandiamide and cysteine were introduced as nitrogen and sulfur sources, respectively, to explore the impacts of N-S elemental doping on the structure, composition, and HER performance of the WC/C catalyst. The experimental results showed that N-S doping changed the electronic structure of WC and increased the electrochemically active surface area, resulting in a significant increase in the HER activity of WC/C@N-S catalysts. The WC/C@N-S catalyst was evaluated with hydrogen evolution performance in a 0.5 mol/L H2SO4 solution. When the cathodic current density reached 10 mA/cm2, the overpotential was 158 mV, and the Tafel slope was 68 mV/dec, underscoring its excellent HER performance. The outcomes offer novel insights into the high-value utilization of agricultural biomass resources, and pave the way for the development of cost-effective, innovative hydrogen evolution catalysts. Full article
Show Figures

Figure 1

21 pages, 6029 KiB  
Article
Exploring Perhydro-Benzyltoluene Dehydrogenation Using Sulfur-Doped PtMo/Al2O3 Catalysts
by Kevin Alconada, Fatima Mariño, Ion Agirre and Victoria Laura Barrio
Catalysts 2025, 15(5), 485; https://doi.org/10.3390/catal15050485 - 16 May 2025
Viewed by 651
Abstract
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct [...] Read more.
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct formation, specifically methylfluorene, through sulfur doping. Catalysts with low platinum content (<0.3 wt.%) were synthesized using the wet impregnation method by varying sulfur concentrations to study their impact on catalytic activity. Characterization techniques, including CO–DRIFT and CO–TPD, revealed the role of sulfur in selectively blocking low-coordinated Pt sites, thus improving selectivity and maintaining high dispersion. Catalytic tests revealed that samples with ≥0.1 wt.% sulfur achieved up to a threefold reduction in methylfluorene formation compared to the unpromoted PtMo/Al2O3 sample, with a molar fraction below 2% at 240 min. In parallel, these samples reached a degree of dehydrogenation (DoD) above 85% within 240 min, demonstrating that improved selectivity can be achieved without compromising catalytic performance. Full article
(This article belongs to the Special Issue Catalysts for Energy Storage)
Show Figures

Graphical abstract

24 pages, 6987 KiB  
Review
Advances in Carbon-Based Aerogels for CO2 Capture: Fundamental Design Strategies and Technological Progress
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Gazi A. K. M. Rafiqul Bari
Gels 2025, 11(5), 361; https://doi.org/10.3390/gels11050361 - 14 May 2025
Viewed by 967
Abstract
Carbon-based aerogels have garnered significant attention for CO2 capture owing to their low-cost precursors, tunable structures, and high porosity. Their performance in CO2 adsorption is intricately linked to their microstructural and textural features, including pore size distribution, surface area, and surface [...] Read more.
Carbon-based aerogels have garnered significant attention for CO2 capture owing to their low-cost precursors, tunable structures, and high porosity. Their performance in CO2 adsorption is intricately linked to their microstructural and textural features, including pore size distribution, surface area, and surface chemistry. Micropores (<2 nm) are particularly effective due to their size compatibility with CO2 molecules, while surface functional groups enhance adsorption through hydrogen bonding and electrostatic interactions. Strategic design approaches have focused on tailoring these properties to optimize CO2 uptake under realistic conditions. This review provides a comprehensive overview of recent advancements in the structural engineering of carbon aerogels, emphasizing the role of hierarchical porosity and heteroatom doping (nitrogen, oxygen, sulfur, etc.) in enhancing adsorption capacity and selectivity. Experimental and theoretical studies have highlighted how the synergistic control of microstructure and surface chemistry leads to superior adsorption performance. Furthermore, this review identifies current challenges, such as limited structural stability and insufficient mechanistic understanding, which hinder further progress. Future research directions are proposed, including advanced pore architecture control, functional group engineering, and the integration of in situ characterization techniques. Overall, this review serves as a guide for the rational design of next-generation carbon-based aerogels tailored for efficient and scalable CO2 capture technologies. Full article
(This article belongs to the Special Issue Aerogels: Recent Progress in Novel Applications)
Show Figures

Figure 1

Back to TopTop