The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
Abstract
1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Preparation of Composite-Coated Separators
2.3. Preparation of Li-S Battery Cathodes
2.4. Assembly of Li-S Coin Cells
2.5. Material Characterization and Electrochemical Testing
3. Results and Discussion
3.1. Phase Analysis
3.2. Morphology and Structure Analysis
3.3. Electrochemical Performance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, Q.; Zhu, S.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res. 2023, 16, 8097–8138. [Google Scholar] [CrossRef]
- Aslam, M.K.; Jamil, S.; Hussain, S.; Xu, M. Effects of Catalysis and Separator Functionalization on High-Energy Lithium–Sulfur Batteries: A Complete Review. Energy Environ. Mater. 2023, 6, e12420. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Adv. Mater. 2021, 33, 2003666. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Fu, Z.H.; Chen, X.; Zhang, Q. A review on theoretical models for lithium–sulfur battery cathodes. InfoMat 2022, 4, e12304. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, T.; Ali, M.; Meng, Y.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable Batteries for Grid Scale Energy Storage. Chem. Rev. 2022, 122, 16610–16751. [Google Scholar] [CrossRef]
- Wang, T.; He, J.; Zhu, Z.; Cheng, X.B.; Zhu, J.; Lu, B.; Wu, Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. Adv. Mater. 2023, 35, 2303520. [Google Scholar] [CrossRef]
- Yuan, H.; Peng, H.J.; Li, B.Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J.Q.; Zhang, Q. Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1802768. [Google Scholar] [CrossRef]
- Wu, J.; Ye, T.; Wang, Y.; Yang, P.; Wang, Q.; Kuang, W.; Chen, X.; Duan, G.; Yu, L.; Jin, Z.; et al. Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li–S Batteries. ACS Nano 2022, 16, 15734–15759. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, H.; Liu, H.; Zhao, C.Z.; Lu, Y.; Cheng, X.B.; Huang, J.Q.; Zhang, Q. Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2100748. [Google Scholar] [CrossRef]
- Zuo, X.; Zhen, M.; Liu, D.; Yu, H.; Feng, X.; Zhou, W.; Wang, H.; Zhang, Y. A Multifunctional Catalytic Interlayer for Propelling Solid–Solid Conversion Kinetics of Li2S2 to Li2S in Lithium–Sulfur Batteries. Adv. Funct. Mater. 2023, 33, 2214206. [Google Scholar] [CrossRef]
- Xia, Y.; Ren, Q.; Lu, C.; Zhu, J.; Zhang, J.; Liang, C.; Huang, H.; Gan, Y.; He, X.; Zhu, D.; et al. Graphene/TiO2 decorated N-doped carbon foam as 3D porous current collector for high loading sulfur cathode. Mater. Res. Bull. 2021, 135, 111129. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, H.; Liu, Y.; Zhao, F.; Li, J.; He, X. Defective TiO2-graphene heterostructures enabling in-situ electrocatalyst evolution for lithium-sulfur batteries. J. Energy Chem. 2021, 62, 508–515. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.H. Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chem. Eng. J. 2020, 399, 125670. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, W.; Zhao, Y.; Wang, Y.; Bakenov, Z.; Wang, X. Ultra-fine zinc oxide nanocrystals decorated three-dimensional macroporous polypyrrole inverse opal as efficient sulfur hosts for lithium/sulfur batteries. Chem. Eng. J. 2019, 375, 122055. [Google Scholar] [CrossRef]
- Choi, S.; Seo, D.H.; Kaiser, M.R.; Zhang, C.; Van Der Laan, T.; Han, Z.J.; Bendavid, A.; Guo, X.; Yick, S.; Murdock, A.T.; et al. WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J. Mater. Chem. A 2019, 7, 4596–4603. [Google Scholar] [CrossRef]
- Ji, P.; Shang, B.; Peng, Q.; Hu, X.; Wei, J. A-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J. Power Sources 2018, 400, 572–579. [Google Scholar] [CrossRef]
- Yue, X.Y.; Li, X.L.; Meng, J.K.; Wu, X.J.; Zhou, Y.N. Padding molybdenum net with Graphite/MoO3 composite as a multi-functional interlayer enabling high-performance lithium-sulfur batteries. J. Power Sources 2018, 397, 150–156. [Google Scholar] [CrossRef]
- Imtiaz, S.; Ali Zafar, Z.; Razaq, R.; Sun, D.; Xin, Y.; Li, Q.; Zhang, Z.; Zheng, L.; Huang, Y.; Anderson, J.A. Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for Lithium–Sulfur Batteries. Adv. Mater. Interfaces 2018, 5, 1800243. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, X.; Gong, W.; Meng, X.; Chen, C.; Zhou, X.; Wang, M.; Hui, K.N.; Geng, J. Double-shelled ZnS@CoS2 nanocages with heterojunctions for high performance cathodes in lithium−sulfur batteries. J. Energy Storage 2024, 75, 109505. [Google Scholar] [CrossRef]
- Eng, A.Y.S.; Cheong, J.L.; Lee, S.S. Controlled synthesis of transition metal disulfides (MoS2 and WS2) on carbon fibers: Effects of phase and morphology toward lithium–sulfur battery performance. Appl. Mater. Today 2019, 16, 529–537. [Google Scholar] [CrossRef]
- Grace, J.P.; Martha, S.K. Synergistic effect of 3D-electrode architecture and FeS2 decorated graphene sheet as a catalytic cathode in lithium-sulfur battery. J. Energy Storage 2024, 88, 111585. [Google Scholar] [CrossRef]
- Liu, X.; Chen, P.; Wang, W.; Li, W.; Rao, Y.; Wang, Y.; Zhao, J.; Sun, L.; Liu, W.; Cheng, Y. In situ reduction growth Sn-MoS2 on CNFs as advanced separator coating for improved-performance lithium sulfur batteries. J. Alloys Compd. 2024, 979, 173432. [Google Scholar] [CrossRef]
- Lv, P.; Liu, C.; Rao, Z. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renew. Sustain. Energy Rev. 2017, 68, 707–726. [Google Scholar] [CrossRef]
- Su, W.; Luo, C.; Gao, B.; Zhang, X.; Fu, J.; Zheng, Y.; Chu, P.K. Rice husks-derived hierarchical porous SiO2@C as efficient polysulfide mediator for Li-S batteries. Mater. Lett. 2021, 296, 129926. [Google Scholar] [CrossRef]
- Yan, D.; Huang, Y.; Fan, C.; Wang, X.; Yan, J.; Lin, H.; Jia, D.; Zong, J.; Wang, W.; Wu, G. Entrapment of polysulfides by Al2O3 modified separator for high energy Li–S redox flow batteries. J. Alloys Compd. 2019, 770, 1229–1236. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Q.; Li, Z.; Xu, P.; Xiao, H.; Zhang, T.; Liang, X. A rGO-Based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li–S battery. Electrochim. Acta 2020, 343, 136079. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, Z.G.; Zhang, J.L.; Sun, D.H.; Liu, G.X. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions. Appl. Surf. Sci. 2015, 327, 453–461. [Google Scholar] [CrossRef]
- Xie, N.; Niu, J.; Zhong, Y.; Gao, X.; Zhang, Z.; Fang, Y. Development of polyurethane acrylate coated salt hydrate/diatomite form-stable phase change material with enhanced thermal stability for building energy storage. Constr. Build. Mater. 2020, 259, 119714. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, J.; Bong, S.; Jang, B.; Seong, K.D.; Piao, Y. Scalable Synthesis of Few-Layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li- and Na-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2016, 8, 19456–19465. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Wen, J.; Ye, J.; Liu, H.; Lu, L.; Wang, J.; Wang, J.; Pan, F. High performance of Mg2+/Li+ hybrid ion batteries achieved through TiO2-x@TiOF2 heterostructure cathodes: Experimental and computational insights. Appl. Surf. Sci. 2025, 687, 162252. [Google Scholar] [CrossRef]
- Yuan, F.; Sun, Z.; Li, C.; Tan, Y.; Zhang, X.; Zheng, S. Multi-component design and in-situ synthesis of visible-light-driven SnO2/g-C3N4/diatomite composite for high-efficient photoreduction of Cr(VI) with the aid of citric acid. J. Hazard. Mater. 2020, 396, 122694. [Google Scholar] [CrossRef]
- Di, Y.; Yuan, F.; Ning, X.; Jia, H.; Liu, Y.; Zhang, X.; Li, C.; Zheng, S.; Sun, Z. Functionalization of diatomite with glycine and amino silane for formaldehyde removal. Int. J. Miner. Metall. Mater. 2022, 29, 356–367. [Google Scholar] [CrossRef]
- Guan, S.; Fan, Q.; Shen, Z.; Zhao, Y.; Sun, Y.; Shi, Z. Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A 2021, 9, 5720–5729. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Hu, J.; Song, H.; Shi, Y.; Jiang, Y.; Zhang, D.; Huang, S. Manipulating polysulfide catalytic conversion through edge site construction, hybrid phase engineering, and Se anion substitution for kinetics-enhanced lithium-sulfur battery. Chem. Eng. J. 2023, 471, 144736. [Google Scholar] [CrossRef]
- Sharma, R.B.; Therese, H.A. Capacitive-dominated MoS2@MoO3 composite for lithium-ion battery anodes: A study of electrochemical performance. Mater. Chem. Phys. 2025, 344, 131126. [Google Scholar] [CrossRef]
- Meng, X.; Chen, Z.; Hong, S.; Jin, L.; Liu, H.; He, C.; Che, Y.; Zhang, Z.; Yu, J.; Yang, Z.; et al. TiO2 nanotubes loaded WS2/MoS2 to construct heterostructures to accelerate the conversion of polysulfide in lithium–sulfur batteries. Mater. Today Chem. 2024, 42, 102351. [Google Scholar] [CrossRef]
- Yin, Z.; Pan, S.; Cheng, Q.; Zhang, G.; Yu, X.; Pan, Z.; Rao, H.; Zhong, X. Mild-method synthesised rGO–TiO2 as an effective Polysulphide–Barrier for Lithium–Sulphur batteries. J. Alloys Compd. 2020, 836, 155341. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, K.; Zhang, B.; Wang, Z.; Wang, Y. Unveiling the effects of different component ratios on the structure and electrochemical properties of MoS2/TiO2 composites. Ceram. Int. 2024, 50, 26750–26759. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Z.; Li, X.; Gordon, K.; Aruchamy, K.; Cook, R.; Wortman, P.; Wei, S.; Fei, L. Regulated Li2S deposition and accelerated polysulfide conversion in Li-S batteries enabled by electrospun CoTe2/carbon nanofiber-modified separators. Chem. Eng. J. 2025, 519, 164930. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Guo, W.; Chang, G.; Li, J. Synergistic Capture and Conversion of Soluble Polysulfides in Li–S Batteries with Composite Freestanding Carbonaceous Interlayers. ACS Appl. Mater. Interfaces 2022, 14, 9231–9241. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, W.; Si, Y.; Wang, D.; Fu, Y.; Manthiram, A. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 2021, 12, 3031. [Google Scholar] [CrossRef]
- Zhang, W.; Du, X.; Zhang, M.; Su, K.; Li, S.; Li, Z. Ultra-thin nanosheets decorated in-situ S-doped 3D interconnected carbon network as interlayer modified Li-S batteries separator for accelerating adsorption-catalytic synergistic process of LiPSs. J. Colloid Interface Sci. 2024, 663, 735–748. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, S.; Ayoko, G.A.; Frost, R.L.; Xi, Y. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials. J. Hazard. Mater. 2013, 263, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.H.; Pan, Q.C.; Yang, C.H.; Xiong, X.H.; Ou, X.; Hu, R.Z.; Chen, Y.; Liu, M.L. Sn-MoS2-C@C Microspheres as a Sodium-Ion Battery Anode Material with High Capacity and Long Cycle Life. Chem. Eur. J. 2017, 23, 5051–5058. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, L.; Wu, X.; Lian, L.; Wei, M. Synthesis of MoO2 nanosheets by an ionic liquid route and its electrochemical properties. J. Alloys Compd. 2013, 580, 358–362. [Google Scholar] [CrossRef]
- Yu, X.Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X.W.; Paik, U. Formation of Ni-Co-MoS2 Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Adv. Mater. 2016, 28, 9006–9011. [Google Scholar] [CrossRef]
- Nde, D.T.; Vadapalli, H.; Roy, N.; Venkatesan, R.; Li, X.; El-Marghany, A.; Arla, S.K.; Boya, V.K.N.; Joo, S.W. Flower-like microstructures of Co@MoS2@N-RGO: A promising platform for solar-driven water splitting through engineering 1T phase MoS2 and N-RGO integration. Electrochim. Acta 2025, 525, 146115. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Li, Z.; Li, W.; Lv, G.; Liao, L. Tubular clay of halloysites as separator modification layers enabling effective polysulfide fixing and robust Li-S batteries. Appl. Mater. Today 2025, 44, 102677. [Google Scholar] [CrossRef]
- Pundir, A.C.; Sil, A. Synergetic effect of 2D-MoS2 nanoflakes functionalised separator supported by hierarchical porous carbon/sulfur nanoparticle composite cathode for improved polysulfide conversion in Li-S battery. J. Energy Storage 2025, 112, 115594. [Google Scholar] [CrossRef]
- He, J.; Li, W.; Pang, R.; Lu, P.; Zhang, M.; Feng, R.; Yang, B. Regulating pore structure of aramid nanofiber (ANF) separators for lithium–sulfur (Li–S) batteries. Mater. Today Energy 2024, 44, 101640. [Google Scholar] [CrossRef]
- Tu, C.; Zhang, Z.; Qi, X.; Wang, F.; Yang, Z. Heteroelectrocatalyst MoS2@CoS2 modified separator for Li-S battery: Unveiling superior polysulfides conversion and reaction kinetics. Chem. Eng. J. 2024, 499, 155915. [Google Scholar] [CrossRef]
- Gui, Y.; Chen, P.; Liu, D.; Fan, Y.; Zhou, J.; Zhao, J.; Liu, H.; Guo, X.; Liu, W.; Cheng, Y. TiO2 nanotube/RGO modified separator as an effective polysulfide-barrier for high electrochemical performance Li-S batteries. J. Alloys Compd. 2022, 895, 162495. [Google Scholar] [CrossRef]
- Liu, S.; Li, C.; Liu, D. Modified Separator Based on mesoporous carbon/TiO2 composites as Advanced Polysulfide Adsorber for High Electrochemical Performance Li-S Batteries. J. Alloys Compd. 2021, 862, 158381. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, H.; Wang, S.; Deng, Y.; Qin, X.; Qin, X.; Chen, G. N-doped carbon-coated hollow carbon nanofibers with interspersed TiO2 for integrated separator of Li-S batteries. Electrochim. Acta 2019, 297, 641–649. [Google Scholar] [CrossRef]
Materials | I (cm2 s−1) | II (cm2 s−1) | III and IV (cm2 s−1) |
---|---|---|---|
PP | (1.24 ± 0.01) × 10−10 | (4.71 ± 0.02) × 10−10 | (5.69 ± 0.05) × 10−10 |
DE/MoS2/NCNF | (1.38 ± 0.01) × 10−9 | (3.05 ± 0.05) × 10−10 | (8.35 ± 1.31) × 10−10 |
TiO2/MoS2/NCNF | (1.25 ± 0.001) × 10−9 | (2.33 ± 0.02) × 10−10 | (5.96 ± 0.04) × 10−10 |
DE/TiO2/MoS2/NCNF | (2.85 ± 0.001) × 10−9 | (3.71 ± 0.04) × 10−10 | (1.01 ± 0.01) × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.; Xiao, W.; Liu, J.; Yang, C.; Liu, S.; Cai, Z. The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries. Materials 2025, 18, 3654. https://doi.org/10.3390/ma18153654
Zhong W, Xiao W, Liu J, Yang C, Liu S, Cai Z. The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries. Materials. 2025; 18(15):3654. https://doi.org/10.3390/ma18153654
Chicago/Turabian StyleZhong, Wei, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu, and Zhenyang Cai. 2025. "The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries" Materials 18, no. 15: 3654. https://doi.org/10.3390/ma18153654
APA StyleZhong, W., Xiao, W., Liu, J., Yang, C., Liu, S., & Cai, Z. (2025). The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries. Materials, 18(15), 3654. https://doi.org/10.3390/ma18153654