Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = substance P (SP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1049 KiB  
Article
Cobalt Ion Removal by Activated Carbon and Biochar Derived from Sargassum sp.
by Julie Mallouhi, Emőke Sikora, Kitti Gráczer, Olivér Bánhidi, Sarra Gaspard, Marckens Francoeur, Yeray Alvarez-Galvan, Francesca Goudou, Béla Viskolcz, Emma Szőri-Dorogházi and Béla Fiser
Int. J. Mol. Sci. 2025, 26(16), 7666; https://doi.org/10.3390/ijms26167666 - 8 Aug 2025
Viewed by 164
Abstract
Activated carbon (AC) and biochar (BC) are porous substances derived from any carbonous material known to be highly effective adsorbents, making them valuable for removing pollutants like heavy metals. This study evaluated and compared the potential of AC and BC produced from Sargassum [...] Read more.
Activated carbon (AC) and biochar (BC) are porous substances derived from any carbonous material known to be highly effective adsorbents, making them valuable for removing pollutants like heavy metals. This study evaluated and compared the potential of AC and BC produced from Sargassum sp. by chemical activation and pyrolysis process for heavy metal removal, specifically Co2+ ions, to commercial AC (COMAC). Various techniques were employed to characterize these samples including FTIR, zeta potential, and surface area. Additionally, considering parameters such as pH, initial solution concentration, and the effect of AC/BC dose were investigated. The adsorption isotherm was also assessed. The results showed that a strong dependence of the adsorption capacity on pH was observed with optimal performance at ~6.8. Additionally, the optimal initial solution concentration was determined to be ~2 mmol/L. According to the Langmuir isotherm model, AC derived-Sargassum sp. exhibited maximum uptakes of 468.97 mg/g, higher than COMAC and BC. The experiment at different adsorbent dosages revealed that AC from Sargassum sp. outperformed other samples, with adsorption capacity observed at 94.94% as the dosage increased. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

17 pages, 8134 KiB  
Article
Chronic Low Back Pain in Young Adults: Pathophysiological Aspects of Neuroinflammation and Degeneration
by Natalya G. Pravdyuk, Anastasiia A. Buianova, Anna V. Novikova, Alesya A. Klimenko, Mikhail A. Ignatyuk, Liubov A. Malykhina, Olga I. Patsap, Dmitrii A. Atiakshin, Vitaliy T. Timofeev and Nadezhda A. Shostak
Int. J. Mol. Sci. 2025, 26(15), 7592; https://doi.org/10.3390/ijms26157592 - 6 Aug 2025
Viewed by 278
Abstract
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] [...] Read more.
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] years) with herniated discs and LBP, alongside healthy controls, to investigate changes in the extracellular matrix (ECM) and neurochemical alterations. Disc degeneration was assessed using MRI (Pfirrmann grading) and histology (Sive’s criteria). Histochemical and immunohistochemical methods were used to evaluate aggrecan content, calcification, and the expression of nerve growth factor (NGF), substance P (SP), and S-100 protein. MRI findings included Pfirrmann grades V (30.55%), IV (61.11%), III (5.56%), and II (2.78%). Severe histological degeneration (10–12 points) was observed in three patients. Aggrecan depletion correlated with longer pain duration (r = 0.449, p = 0.031). NGF expression was significantly elevated in degenerated discs (p = 0.0287) and strongly correlated with SP (r = 0.785, p = 5.268 × 10−9). Free nerve endings were identified in 5 cases. ECM calcification, present in 36.1% of patients, was significantly associated with radiculopathy (r = 0.664, p = 0.005). The observed co-localization of NGF and SP suggests a synergistic role in pain development. These results indicate that in young individuals, aggrecan loss, neurochemical imbalance, and ECM calcification are key contributors to DDD and chronic LBP. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Intervertebral Disc Disease)
Show Figures

Figure 1

14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 225
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

17 pages, 1066 KiB  
Article
Comparative Study of the Microalgae-Based Wastewater Treatment, in an Oil Refining Industry Cogeneration Concept
by Ena Pritišanac, Maja Fafanđel, Ines Haberle, Sunčana Geček, Marinko Markić, Nenad Bolf, Jela Vukadin, Goranka Crnković, Tin Klanjšček, Luka Žilić and Maria Blažina
Water 2025, 17(15), 2217; https://doi.org/10.3390/w17152217 - 24 Jul 2025
Viewed by 413
Abstract
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. [...] Read more.
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. MK568070 were examined for cultivation potential in oil refinery WW. Their performance was evaluated in terms of growth dynamics, lipid productivity, and toxicity reduction, with a focus on their suitability for largescale industrial use. N. gaditana demonstrated the highest growth rate and lipid content (37% d.w.) as well as lipid productivity (29.45 mg/(Lday)) with the N-uptake rate of 0.698 mmol/(gday). The highest specific DIN uptake rate was observed inn P. wilhelmii (0.895 mmol/(gday) along with the highest volumetric productivity (93.9 mg/L/day) and WW toxicity removal (76.5%), while Synechococcus sp. MK568070 demonstrated lower performance metrics. A simple numerical model was applied to calculate continuous operation based on empirical results of batch experiments. Sustainability of the microalgae-based WW remediation under the conditions of optimized lipid biomass production was estimated, regarding 2019–2022–2025 cost dynamics. Parameters for optimum open raceway pond cultivation were calculated, and the biomass production accumulation was estimated, with the highest biomass production noted in P. wilhelmii (171.38 t/year). Comparison of treatment costs, production costs and revenue showed that the best candidate for WW remediation is N. gaditana. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 384
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 403 KiB  
Article
Long-Term Evolution of Chronic Neuropathic Ocular Pain and Dry Eye Following Corneal Refractive Surgery
by Cristina Valencia-Sandonís, Amanda Vázquez, Laura Valencia-Nieto, Elena Martínez-Plaza, Marta Blanco-Vázquez, Eva M. Sobas, Margarita Calonge, Enrique Ortega, Amalia Enríquez-de-Salamanca and María J. González-García
J. Clin. Med. 2025, 14(13), 4406; https://doi.org/10.3390/jcm14134406 - 20 Jun 2025
Viewed by 748
Abstract
Background/Objectives: Chronic neuropathic ocular pain (NOP) can manifest concurrently with dry eye (DE) symptoms following ocular surgical procedures. Due to its low prevalence, NOP remains an underrecognized and underdiagnosed postoperative complication, leading to suboptimal management. This study evaluated the long-term evolution of [...] Read more.
Background/Objectives: Chronic neuropathic ocular pain (NOP) can manifest concurrently with dry eye (DE) symptoms following ocular surgical procedures. Due to its low prevalence, NOP remains an underrecognized and underdiagnosed postoperative complication, leading to suboptimal management. This study evaluated the long-term evolution of symptoms, signs, and tear biomarkers in patients with NOP and DE after corneal refractive surgery (RS). Methods: Patients with chronic NOP and persistent DE-related symptoms after corneal RS were assessed in two visits (V1 and V2), at least two years apart. Symptoms (DE, pain, anxiety, and depression) were measured with specific questionnaires. Clinical examination included a slit-lamp ocular surface evaluation, corneal sensitivity measurement, and subbasal corneal nerve plexus evaluation. Basal tear samples were collected, and a 20-plex cytokine panel and Substance P (SP) were assayed. Results: Twenty-three patients (35.57 ± 8.43 years) were included, with a mean time between visits of 4.83 ± 1.10 years. DE symptoms, measured with the Ocular Surface Disease Index questionnaire, improved at V2 (p < 0.001), along with a reduction in anxiety and depression levels, measured with the Hospital Anxiety and Depression Scale (p = 0.027). Corneal staining also decreased (p < 0.001), while subbasal nerve plexus parameters and corneal sensitivity remained unchanged. Tear analysis revealed increased concentrations of fractalkine/CX3CL1 (p = 0.039), interleukin (IL)-1 receptor antagonist (Ra) (p = 0.025), IL-10 (p = 0.002), and SP (p < 0.001). Conclusions: Symptom improvement may result from better control of underlying pathologies or natural disease progression. However, the increased levels of SP and fractalkine/CX3CL1 suggest sustained neurogenic inflammation, while elevated IL-1Ra and IL-10 indicate a potential compensatory anti-inflammatory response. Full article
(This article belongs to the Special Issue Advances in Dry Eye Disease Treatment: 2nd Edition)
Show Figures

Figure 1

17 pages, 3106 KiB  
Article
Integrative Transcriptomics and Metabolomics Reveal the Key Metabolic Pathways in Endophyte-Infected Rice Seedlings Resistance to Na2CO3 Stress
by Xinnan Wang, Yanan Li, Hefei Sun, Lihong Zhang and Xuemei Li
Plants 2025, 14(10), 1524; https://doi.org/10.3390/plants14101524 - 19 May 2025
Viewed by 644
Abstract
Soil saline-alkalization is a key factor affecting rice growth and physiological metabolism, which leads to reduced yields. Endophyte EF0801 significantly promoted growth and improved its saline-alkali resistance. We investigated growth parameters and physiological indices of endophyte EF0801-infected and control rice seedlings under sodium [...] Read more.
Soil saline-alkalization is a key factor affecting rice growth and physiological metabolism, which leads to reduced yields. Endophyte EF0801 significantly promoted growth and improved its saline-alkali resistance. We investigated growth parameters and physiological indices of endophyte EF0801-infected and control rice seedlings under sodium carbonate (Na2CO3) stress. The results showed that endophyte-infected rice seedlings showed plant height increase by 1.25-fold, root length shortening by 0.79-fold, sucrose synthase (SS), sucrose phosphosynthase (SPS), hexokinase (HXK), and α-glucosidase (α-GC) activities increased by 0.15-fold, 0.29-fold, 0.06-fold, and 1.45-fold, respectively, and β-glucosidase (β-GC) activity decreased by 0.12-fold. Utilizing gas chromatography and mass spectrometry (GC-MS) technology and RNA sequencing (RNA-seq) technology, we identified 419 differentially expressed genes (DEGs) and 37 differentially accumulated metabolites (DAMs). Comprehensive enrichment analysis of DAMs and DEGs showed that 6 DEGs and 6 DAMs were strongly correlated with the mitigating effects of endophytes on rice leaves under Na2CO3 treatment, highlighting the co-enrichment in starch and sucrose metabolism, as well as alanine, aspartate, and glutamate metabolism. The gene encoding HXK was found to be upregulated in endophyte-infected rice seedlings under Na2CO3 stress. HXK plays a key role in the conversion of fructose and glucose to fructose 6-phosphate (F-6-P) and glucose 6-phosphate (G-6-P), which are important intermediates in cellular energy metabolism and glycolytic pathways, providing energy and biosynthesis of precursor substances. Our findings provide a potential perspective for unraveling the molecular response of endophyte-mediated saline-alkali resistance in rice leaves and a theoretical rationale for exploring the mechanisms of growth-promoting effects by endophytes. Full article
Show Figures

Figure 1

15 pages, 531 KiB  
Review
The Role of Substance P in Corneal Homeostasis
by Irmina Jastrzębska-Miazga, Bartosz Machna, Dorota Wyględowska-Promieńska and Adrian Smędowski
Biomolecules 2025, 15(5), 729; https://doi.org/10.3390/biom15050729 - 16 May 2025
Viewed by 993
Abstract
The cornea, a highly innervated and avascular ocular tissue, relies on intricate neuro-immune interactions to maintain homeostasis. Among key neuromediators, substance P (SP)—a neuropeptide belonging to the tachykinin family—plays a dual role in corneal physiology and pathology. This review synthesizes current knowledge on [...] Read more.
The cornea, a highly innervated and avascular ocular tissue, relies on intricate neuro-immune interactions to maintain homeostasis. Among key neuromediators, substance P (SP)—a neuropeptide belonging to the tachykinin family—plays a dual role in corneal physiology and pathology. This review synthesizes current knowledge on SP’s involvement in corneal innervation, epithelial homeostasis, immune regulation, neovascularization, and wound healing, while highlighting its dichotomous effects in both promoting tissue repair and exacerbating inflammation. SP, primarily signaling through the neurokinin-1 receptor (NK1R), influences corneal epithelial proliferation, barrier function, and wound healing by modulating cytokines, chemokines, and growth factors. However, its overexpression is linked to pain sensitization, inflammatory keratitis, and corneal neovascularization, driven by interactions with immune cells (e.g., mast cells, neutrophils) and pro-angiogenic factors (e.g., VEGF). Clinical studies demonstrate altered SP levels in dry eye disease, neurotrophic keratitis, and post-refractive surgery, correlating with nerve damage and ocular surface dysfunction. Emerging therapies targeting SP pathways- such as NK1R antagonists (e.g., fosaprepitant) and SP-IGF-1 combinations-show promise for treating neurotrophic ulcers but face challenges due to SP’s context-dependent actions. Future research should clarify the roles of NK2R/NK3R receptors and optimize SP-based interventions to balance its reparative and inflammatory effects. Understanding SP’s multifaceted mechanisms could advance the development of therapies for corneal diseases, particularly those involving sensory neuropathy and immune dysregulation. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

19 pages, 1435 KiB  
Article
The Effect of Combined Extracts from By-Products, Seaweed, and Pure Phenolics on the Quality of Vacuum-Packed Fish Burgers
by Vida Šimat, Danijela Skroza, Roberta Frleta Matas, Dilajla Radelić, Tanja Bogdanović and Martina Čagalj
Appl. Sci. 2025, 15(10), 5508; https://doi.org/10.3390/app15105508 - 14 May 2025
Viewed by 449
Abstract
The objective of the present study was to determine the effect of mixed plant extracts on chemical (pH, total volatile base nitrogen (TVB-N), trimethylamine nitrogen (TMA), thiobarbituric acid reactive substances (TBARS), biogenic amines, relative fatty acid composition) and microbiological quality indicators of vacuum-packed [...] Read more.
The objective of the present study was to determine the effect of mixed plant extracts on chemical (pH, total volatile base nitrogen (TVB-N), trimethylamine nitrogen (TMA), thiobarbituric acid reactive substances (TBARS), biogenic amines, relative fatty acid composition) and microbiological quality indicators of vacuum-packed fish burgers stored at 0 ± 2 °C over 13 days. Three mixtures of common juniper by-product and blackberry leaves extracts (JB), Padina pavonica and prickly juniper needles extracts (PCJ), and blackberry leaves extract with catechin and vanillic (BCV) were tested. At the end of storage, TVB-N (15.38–20.03 mg/100 g) and TMA (10.64–15.63 mg/100 g) of burgers with extracts were significantly lower than those of the control group (22.77 mg TVB-N/100 g, 18.37 mg TMA/100 g). The TBARS values in the control burger reached 2.62 ± 0.02 µmol malondialdehyde (MDA)/100 g, while in burgers with extracts, final values were in the range of 0.62 ± 0.01 to 0.80 ± 0.02 µmol MDA/100 g. The extracts showed no effect on biogenic amine formation (tryptamine, putrescine, and cadaverine levels increased during the storage, being the lowest in BCV) or microbial counts, with the exception of the Pseudomonas sp. counts that were significantly lower in JB and PCJ in comparison to the control, reaching 4.1, 4.1, and 5.0 log CFU/g in JB, PCJ, and control, respectively. Full article
(This article belongs to the Special Issue New Technologies for Marine Foods and Products)
Show Figures

Figure 1

26 pages, 7471 KiB  
Article
Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater
by Yihuan She, Yimin Zhang, Qiushi Zheng, Zhenlei Cai, Yue Wang and Nannan Xue
Microorganisms 2025, 13(5), 1003; https://doi.org/10.3390/microorganisms13051003 - 27 Apr 2025
Viewed by 422
Abstract
Recirculation in vanadium mining enhances resource efficiency but risks ammonia nitrogen (NH3-N) accumulation, severely compromising leaching yields. To address this bottleneck, we developed a bioaugmentation strategy using Pseudomonas sp. S.P-1 acclimated to vanadium stress. Under optimized conditions (sodium citrate as a [...] Read more.
Recirculation in vanadium mining enhances resource efficiency but risks ammonia nitrogen (NH3-N) accumulation, severely compromising leaching yields. To address this bottleneck, we developed a bioaugmentation strategy using Pseudomonas sp. S.P-1 acclimated to vanadium stress. Under optimized conditions (sodium citrate as a carbon source, C/N = 5, 5% inoculum, and pH = 8), the strain achieved exceptional NH3-N (2000 mg·L−1) removal (>99.25% within 16 days; residual NH4+ < 15 mg·L−1), 12.7% higher than the original bacteria. Mechanistic studies revealed that vanadium exposure triggered dual adaptive responses: enhanced biosorption via the stimulated synthesis of extracellular polymeric substances (EPS) enriched with negatively charged functional groups (C=O, -COOH-, and C-N), improving NH4+ adsorption capacity, and metabolic activation via an elevated transmembrane electrochemical potential and an accelerated substrate uptake due to cell membrane permeability, while up-regulation of ammonia monooxygenase (AMO) activity (123.11%) facilitated efficient NH4+→NH2OH conversions. Crucially, this bio-process enabled simultaneous NH3-N degradation (89.2% efficiency) and vanadium recovery, demonstrating its dual role in pollution control and critical metal recycling. By integrating microbial resilience with circular economy principles, our strategy offers a scalable prototype for sustainable vanadium extraction, aligning with low-carbon metallurgy demands in clean energy transitions. This study investigated the ability of vanadium stress to enhance microbial ammonia nitrogen metabolism, and by acclimatizing S.P-1 to vanadium-containing solutions, we aimed to address the dual problems of NH3-N accumulation and vanadium toxicity in wastewater recirculation. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

14 pages, 5785 KiB  
Article
Optimization of Squalene Production by Pseudozyma sp. P4-22
by Chen Huang, Xiaojin Song, Jingyi Li, Qiu Cui, Pengfei Gu and Yingang Feng
Molecules 2025, 30(7), 1646; https://doi.org/10.3390/molecules30071646 - 7 Apr 2025
Viewed by 617
Abstract
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with [...] Read more.
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with enhanced squalene-producing ability, was obtained through atmospheric and room temperature plasma mutagenesis of the previously screened squalene-producing yeast Pseudozyma sp. SD301. The P4-22 strain demonstrated the ability to produce squalene using various carbon and nitrogen sources. We optimized the culture conditions by employing cost-effective corn steep liquor as the nitrogen source, and the optimal pH and sea salt concentration of the medium were determined to be 5.5 and 5 g/L, respectively. Under optimal cultivation conditions, the biomass and squalene production reached 64.42 g/L and 2.06 g/L, respectively, in a 5 L fed-batch fermentation. This study highlights the potential of Pseudozyma sp. P4-22 as a promising strain for commercial-scale production of squalene. Full article
(This article belongs to the Special Issue Biomanufacturing of Natural Bioactive Compounds)
Show Figures

Figure 1

18 pages, 2599 KiB  
Article
Association of Stress and Inflammatory Diseases with Serum Ferritin and Iron Concentrations in Neonatal Calves
by Marlene Sickinger, Jessica Jörling, Kathrin Büttner, Joachim Roth and Axel Wehrend
Animals 2025, 15(7), 1021; https://doi.org/10.3390/ani15071021 - 2 Apr 2025
Viewed by 696
Abstract
This study investigated the effects of iron supplementation and inflammatory disease on cortisol, white blood cell (WBC) count, total protein (TP), lactate, interleukin 1 β (IL1β), interleukin 6 (IL6), substance P (SP), hepcidin, haptoglobin, and ferric-reducing ability of plasma (FRAP) in calves. Correlation [...] Read more.
This study investigated the effects of iron supplementation and inflammatory disease on cortisol, white blood cell (WBC) count, total protein (TP), lactate, interleukin 1 β (IL1β), interleukin 6 (IL6), substance P (SP), hepcidin, haptoglobin, and ferric-reducing ability of plasma (FRAP) in calves. Correlation analyses for the aforementioned parameters with serum iron and ferritin were performed in 40 neonatal calves over the first 10 days of life. Neither iron supplementation, disease status, nor sex had statistically significant effects on the areas under the curve of ferritin, WBC, TP, IL1β, IL6, SP, hepcidin, haptoglobin, or FRAP. However, cortisol concentrations were influenced by disease development. Cortisol concentrations were higher at birth (44.1 ± 1.95 ng/mL) than on day 2 (38.8 ± 1.87 ng/mL) (p = 0.0477), and healthy animals exhibited lower cortisol concentrations than diseased calves (p = 0.0028). Correlation analyses indicated weak positive correlations between ferritin and IL1β (p = 0.0015; ρ = 0.49) and IL6 (p = 0.0011; ρ = 0.50), respectively. The clinical significance of these findings and resulting therapeutic consequences, especially with respect to iron supplementation, should be further investigated in calves and adult cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Graphical abstract

21 pages, 3913 KiB  
Article
Chronic Administration with FAD012 (3,5-Dimethyl-4-hydroxycinnamic Acid) Maintains Cerebral Blood Flow and Ameliorates Swallowing Dysfunction After Chronic Cerebral Hypoperfusion in Rats
by Takashi Asano, Hirokazu Matsuzaki, Meiyan Xuan, Bo Yuan, Jun Takayama, Takeshi Sakamoto and Mari Okazaki
Int. J. Mol. Sci. 2025, 26(7), 3277; https://doi.org/10.3390/ijms26073277 - 1 Apr 2025
Viewed by 555
Abstract
Dysphagia is a serious complication of stroke, yet effective pharmacological treatments remain limited. This study investigated the effects of FAD012 (3,5-dimethyl-4-hydroxy cinnamic acid), a synthetic derivative of ferulic acid (FA), on cerebral damage and swallowing dysfunction in a rat model of bilateral common [...] Read more.
Dysphagia is a serious complication of stroke, yet effective pharmacological treatments remain limited. This study investigated the effects of FAD012 (3,5-dimethyl-4-hydroxy cinnamic acid), a synthetic derivative of ferulic acid (FA), on cerebral damage and swallowing dysfunction in a rat model of bilateral common carotid artery occlusion (2VO). Sprague–Dawley rats were orally administered FAD012 (3 or 10 mg/kg), FA (10 mg/kg), or 0.5% carboxymethyl cellulose (CMC, suspension vehicle) starting one week before 2VO. Two weeks after 2VO surgery, which was performed under isoflurane anesthesia, reflex swallowing was assessed by electromyographic recordings of the mylohyoid muscle under urethane anesthesia. Two weeks after 2VO, cerebral blood flow (CBF) declined to approximately 40% of baseline, and the number of reflex swallowing responses was significantly reduced in the CMC group. Additionally, 2VO induced O2 production, apoptotic cell death in the striatum, and a reduction in tyrosine hydroxylase expression. Substance P (SP) levels in the laryngopharyngeal mucosa, positively regulated by dopaminergic signaling in the basal ganglia, also decreased. FAD012 (10 mg/kg) effectively prevented the 2VO-induced reduction in CBF, enhanced the reflex swallowing, and preserved the dopamine-SP system. Notably, FAD012 exerted significantly stronger effects than FA at the same dose. These findings suggest that FAD012 maintains CBF under cerebral hypoperfusion and enhances the swallowing reflex by maintaining neuronal function in the striatal and laryngopharyngeal regions of 2VO rats. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Graphical abstract

24 pages, 3208 KiB  
Article
Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder
by Paweł Janikiewicz, Urszula Mazur, Piotr Holak, Nastassia Karakina, Kamil Węglarz, Mariusz Krzysztof Majewski and Agnieszka Bossowska
Cells 2025, 14(7), 516; https://doi.org/10.3390/cells14070516 - 31 Mar 2025
Viewed by 514
Abstract
The present study was designed to establish the distribution pattern and immunohistochemical characteristics of phoenixin-immunoreactive (PNX-IR) urinary bladder afferent neurons (UB-ANs) of dorsal root ganglia (DRG) in female pigs. The sensory neurons investigated were visualized with a retrograde tracing method using Fast Blue [...] Read more.
The present study was designed to establish the distribution pattern and immunohistochemical characteristics of phoenixin-immunoreactive (PNX-IR) urinary bladder afferent neurons (UB-ANs) of dorsal root ganglia (DRG) in female pigs. The sensory neurons investigated were visualized with a retrograde tracing method using Fast Blue (FB), while their chemical profile(s) were identified using double-labelling immunohistochemistry with antibodies against PNX, calcitonin gene-related peptide (CGRP), calretinin (CRT), galanin (GAL), neuronal nitric oxide synthase (nNOS), pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin (SOM) and substance P (SP). Nearly half of UB-ANs contained PNX (45%), and the majority of such encoded sensory neurons were small in size (66%). The most numerous subpopulation of FB/PNX-positive neurons were those containing SP (71%). CGRP, GAL or PACAP were observed in a smaller number of PNX-containing UB-ANs (50%, 30% or 25%, respectively), while PNX-positive sensory neurons simultaneously immunostained with nNOS, CRT or SOM constituted a small fraction of all retrogradely-traced DRG neurons (DRGs; 15%, 6.5% or 1.6%, respectively). Furthermore, the numerical analysis of neurons expressing individual antigens, performed on 10 μm-thick consecutive sections, allows us to state that studied sensory neurons can be classified as neurons “coded” either by the simultaneous presence of SP/CGRP/PACAP/GAL, SP/CGRP/PACAP/NOS, SP/CGRP/PACAP/NOS/CRT and/or SP/CGRP/GAL/PACAP, or, as a separate population, those capable of SOM synthesis (SP/CGRP/SOM/PACAP/GAL-positive neurons). The present study reveals the extensive expression of PNX in the DRGs supplying to the urinary bladder, indicating an important regulatory role of this neuropeptide in the control of physiological function(s) of this organ. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

13 pages, 1151 KiB  
Article
The Cryoprotectant Effects of Safflower Polysaccharides on the Quality of Frozen–Thawed Boar Sperm
by Jingchun Li, Yingying Dong, Hechuan Wang, Qun Zhang, Qing Guo and Yanbing Li
Animals 2025, 15(6), 843; https://doi.org/10.3390/ani15060843 - 15 Mar 2025
Cited by 1 | Viewed by 770
Abstract
The low resistance of boar sperm to cryopreservation dictates that adding antioxidants and energetic substances to the diluent to improve sperm quality is necessary. This study is designed to assess the impact of various concentrations of safflower polysaccharides (SPSs; 0, 0.5, 1.0, 1.5, [...] Read more.
The low resistance of boar sperm to cryopreservation dictates that adding antioxidants and energetic substances to the diluent to improve sperm quality is necessary. This study is designed to assess the impact of various concentrations of safflower polysaccharides (SPSs; 0, 0.5, 1.0, 1.5, and 2.0 g/L) on the quality of boar sperm following freezing and thawing. The results of the study showed that the supplementation of 1.5 g/L SPS significantly enhanced the motility, average path velocity, straight-line velocity, curvilinear velocity, beat cross frequency, acrosome integrity, plasma membrane integrity, mitochondrial activity, and DNA integrity compared with the control group (p < 0.05). In addition, the supplementation of 1.5 g/L SPS significantly enhanced the total antioxidant capacity, superoxide dismutase activity, glutathione peroxidase activity, and catalase activity while significantly decreasing malondialdehyde and hydrogen peroxide content (p < 0.05). Therefore, the supplement SPS has potentially positive implications for improving the quality of cryopreserved boar sperm, and the recommended concentration is 1.5 g/L SPS. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

Back to TopTop