Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Animals
2.2. Anesthesia and Surgical Procedures
2.3. Sectioning of the Tissue Samples and Estimation of the Total Number of UB-ANs
2.4. Immunohistochemical Procedure
2.5. Estimation of the Chemical Coding of the DRG UB-ANs
2.6. Control of Specificity of the Tracer Staining and Immunohistochemical Procedures
3. Results
3.1. Distribution Pattern and Morphometrical Characteristics of FB+ Neurons in the Porcine DRG
3.2. Distribution Pattern and Morphometrical Characteristics of FB+ and PNX-Containing Sensory Neurons in the Porcine DRG
3.2.1. Distribution Pattern of FB+/PNX+ Neurons
3.2.2. Morphometrical Characteristics of FB+/PNX+ Neurons
3.2.3. Intraganglionic Distribution Patterns of FB+/PNX+ Neurons
3.3. Immunohistochemical Characteristic of PNX-Containing UB-ANs in DRG Studied
3.3.1. Sensory Neurons Co-Localizing PNX and SP
3.3.2. Sensory Neurons Co-Localizing PNX and CGRP
3.3.3. Sensory Neurons Co-Localizing PNX and GAL
3.3.4. Sensory Neurons Co-Localizing PNX and PACAP
3.3.5. Sensory Neurons Co-Localizing PNX and nNOS
3.3.6. Sensory Neurons Co-Localizing PNX and CRT
3.3.7. Sensory Neurons Co-Localizing PNX and SOM
3.4. Pattern of Co-Occurrence of Biologically Active Substances in the PNX-Containing UB-ANs of DRG Studied
- (i)
- Almost half of the PNX+/SP+ UB-ANs co-contain PACAP, CGRP or GAL (50.6 ± 4.5%, 46.5 ± 0.9% and 45.9 ± 1.9%, respectively). A much smaller number of such labelled FB-positive sensory neurons contained CRT, nNOS or SOM (9.2 ± 1.9%, 3.8 ± 1.4% and 1.2 ± 1.1%, respectively).
- (ii)
- SP, PACAP and GAL were also very frequently observed (69.8 ± 1.6%, 49.7 ± 2.2% and 47.2 ± 0.9%, respectively) in the PNX+/CGRP+ sensory neurons supplying the urinary bladder, while PNX+/CGRP+ neurons simultaneously containing nNOS, CRT and/or SOM (9.8 ± 1.9%, 8.4 ± 3.6% and 1.4 ± 1.4%, respectively) were observed much less frequently.
- (iii)
- The most numerous subset of PNX+/GAL+ UB-ANs was that simultaneously containing SP, CGRP and/or PACAP (68.2 ± 7.4%, 60.1 ± 7.2% and 49.4 ± 2.7%, respectively). In contrast, FB-positive neurons containing both PNX and GAL rarely colocalized nNOS, CRT or SOM (8.4 ± 2.8%, 8.1 ± 0.6% and 1.9 ± 0.8%, respectively).
- (iv)
- A similar pattern of colocalization was observed for PNX and PACAP-positive UB-ANs, where the vast majority of such encoded sensory neurons contained SP, CGRP and/or GAL (82.1 ± 4.5%, 61.1 ± 2.0% and 49.2 ± 5.1%, respectively), while such labelled neurons, showing immunoreactivity for nNOS, CRT and/or SOM, were observed in much smaller numbers (15.5 ± 5.9%, 8.8 ± 0.3% and 1.9 ± 0.8%, respectively).
- (v)
- The most numerous subpopulations of FB+/PNX+/NOS+ sensory neurons were those that simultaneously contained PACAP, CGRP and/or SP (79.2 ± 12.0%, 64.4 ± 2.0% and 57.9 ± 2.7% respectively). GAL and CRT were observed in a much smaller subset (40.9 ± 2.7% and 25.1 ± 8.9) of these neurons, while SOM was absent from this subpopulation of UB-ANs.
- (vi)
- PNX-IR, CRT-positive neurons mainly co-contained SP and CGRP (79.1 ± 1.5%, 54.3 ± 6.9%, respectively), while PACAP, GAL and/or nNOS (39.5 ± 7.3%, 37.8 ± 3.6% and 23.2 ± 3.3%) were observed in a much smaller population of FB+/PNX+/CRT+ perikarya. As in the above-mentioned case, SOM was absent from this subpopulation of UB-ANs.
- (vii)
- All PNX/SOM-positive UB-ANs simultaneously contained SP and CGRP, while more than half of these neurons colocalized with GAL and PACAP (70.3 ± 4.1% and 68.9 ± 5.5%). This population of sensory neurons was devoid of immunoreactivities towards nNOS and CRT.
4. Discussion
4.1. Distribution Pattern and Morphometrical Characteristics of PNX-Containing UB-ANs
4.2. Sensory Neurons Co-Localizing PNX and SP
4.3. Sensory Neurons Co-Localizing PNX and CGRP
4.4. Sensory Neurons Co-Localizing PNX and PACAP
4.5. Sensory Neurons Co-Localizing PNX and GAL
4.6. Sensory Neurons Co-Localizing PNX and nNOS
4.7. Sensory Neurons Co-Localizing PNX and SOM
4.8. Sensory Neurons Co-Localizing PNX and CRT
4.9. Pattern of Co-Occurrence of Biologically Active Substances in the PNX-Containing UB-ANs
4.10. Future Perspective and Clinical Implications
5. Conclusions
- (i)
- PNX occurs in a relatively large population of DRG neurons innervating the porcine urinary bladder, which indicates its participation in regulating and/or modulating the activity of afferent neural pathways co-creating the regulatory loops of micturition and/or reception and transmission of various sensory modalities from the organ wall;
- (ii)
- The surprisingly numerous patterns of co-occurrence of PNX and many substances considered to be sensory transmitters strongly suggest that this peptide may be involved in a wide range of mechanisms regulating the physiological behavior of the organ;
- (iii)
- The multitude of observed patterns of co-occurrence of PNX and other tested transmitters/biologically active substances necessitates further, in-depth studies focusing on the detailed determination of target tissues, the expression patterns of types and subtypes of receptors, and the undisputed indication of the functions performed by individual subsets of differently coded DRG cells.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BDNF | brain-derived neurotrophic factor |
Cd | caudal domain |
CGRP | calcitonin gene-related peptide |
Cn | central domain |
Cq | coccygeal |
Cr | cranial domain |
CRT | calretinin |
CY3 | conjugated streptavidin |
DH | dorsal horn |
DRG | dorsal root ganglia |
DRGs | dorsal root ganglia neurons |
EFS | electric field stimulation |
FB | fluorescent retrograde tracer Fast Blue |
FITC | fluorescein isothiocyanate |
FSH | follicle stimulating hormone |
GAL | galanin |
GnRH | Gonadotropin-releasing hormone |
GPR173 | G protein-coupled receptor 173 |
IgG | immunoglobulin G |
IR | immunoreactive |
L | lumbar |
LH | luteinizing hormone |
Md | middle ganglion area |
nNOS | neuronal nitric oxide synthase |
NO | nitric oxide |
OCT | the ‘optimal cutting temperature’ compound medium |
P | peripheral domain |
PACAP | pituitary adenylate cyclase-activating polypeptide |
PBS | phosphate-buffered saline |
PNS | peripheral nervous system |
PNX | phoenixin |
S | sacral |
SD | standard deviation |
SOM | somatostatin |
SP | substance P |
UB-ANs | urinary bladder afferent neurons |
References
- Yosten, G.L.C.; Lyu, R.M.; Hsueh, A.J.W.; Avsian-Kretchmer, O.; Chang, J.K.; Tullock, C.W.; Dun, S.L.; Dun, N.; Samson, W.K. A Novel Reproductive Peptide, Phoenixin. J. Neuroendocrinol. 2013, 25, 206. [Google Scholar] [CrossRef] [PubMed]
- Treen, A.K.; Luo, V.; Belsham, D.D. Phoenixin Activates Immortalized GnRH and Kisspeptin Neurons Through the Novel Receptor GPR173. Mol. Endocrinol. 2016, 30, 872–888. [Google Scholar] [CrossRef]
- McIlwraith, E.K.; Zhang, N.; Belsham, D.D. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. J. Endocr. Soc. 2022, 6, bvab192. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhao, Q.; Lv, S.; Ji, X. Regulation and Physiological Functions of Phoenixin. Front. Mol. Biosci. 2022, 9, 956500. [Google Scholar] [CrossRef]
- Lyu, R.M.; Huang, X.F.; Zhang, Y.; Dun, S.L.; Luo, J.J.; Chang, J.K.; Dun, N.J. Phoenixin: A Novel Peptide in Rodent Sensory Ganglia. Neuroscience 2013, 250, 622. [Google Scholar] [CrossRef]
- Mazur, U.; Lepiarczyk, E.; Janikiewicz, P.; Łopieńska-Biernat, E.; Majewski, M.K.; Bossowska, A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int. J. Mol. Sci. 2023, 23, 16647. [Google Scholar] [CrossRef] [PubMed]
- Bossowska, A.; Crayton, R.; Radziszewski, P.; Kmieć, Z.; Majewski, M. Distribution and neurochemical characterization of sensory dorsal root ganglia neurons supplying porcine urinary bladder. J. Physiol. Pharmacol. 2009, 60, 77–81. [Google Scholar]
- Dalmose, A.L.; Hvistendahl, J.J.; Olsen, L.H.; Eskild-Jensen, A.; Djurhuus, J.C.; Swindle, M.M. Surgically Induced Urologic Models in Swine. J. Investig. Surg. 2000, 13, 133–145. [Google Scholar] [CrossRef]
- Kuzmuk, K.N.; Schook, L.B. Pigs as a Model for Biomedical Sciences. In The Genetics of the Pig, 2nd ed.; CABI Digital: Oxfordshire, UK, 2011; pp. 426–444. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in Biomedical Research and Toxicology Testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Purves-Tyson, T.D.; Keast, J.R. Rapid actions of estradiol on cyclic amp response-element binding protein phosphorylation in dorsal root ganglion neurons. Neuroscience 2004, 129, 629–637. [Google Scholar] [CrossRef]
- Koszykowska, M.; Całka, J.; Gańko, M.; Jana, B. Long-term estradiol-17β administration reduces population of neurons in the sympathetic chain ganglia supplying the ovary in adult gilts. Exp. Mol. Pathol. 2011, 91, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Bossowska, A.; Majewski, M. The influence of resiniferatoxin on the chemical coding of neurons in dorsal root ganglia supplying the urinary bladder in the female pig. Pol. J. Vet. Sci. 2012, 15, 135–142. [Google Scholar] [CrossRef]
- Bossowska, A.; Lepiarczyk, E.; Mazur, U.; Janikiewicz, P.; Markiewicz, W. Botulinum toxin type A induces changes in the chemical coding of substance P-immunoreactive dorsal root ganglia sensory neurons supplying the porcine urinary bladder. Toxins 2015, 7, 4797–4816. [Google Scholar] [CrossRef]
- Janikiewicz, P.; Wasilewska, B.; Mazur, U.; Franke-Radowiecka, A.; Majewski, M.; Bossowska, A. The Influence of an Adrenergic Antagonist Guanethidine (GUA) on the Distribution Pattern and Chemical Coding of Dorsal Root Ganglia (DRG) Neurons Supplying the Porcine Urinary Bladder. Int. J. Mol. Sci. 2021, 24, 13399. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.; Lyu, R.M.; Chen, Y.H.; Dun, S.L.; Chang, J.K.; Dun, N.J. Phoenixin: A candidate pruritogen in the mouse. Neuroscience 2015, 310, 541–548. [Google Scholar] [CrossRef]
- Honda, C.N. Differential distribution of calbindin-D28k and parvalbumin in somatic and visceral sensory neurons. Neuroscience 1995, 68, 883–892. [Google Scholar] [CrossRef]
- Jongsma Wallin, H.; Danielsen, N.; Johnston, J.M.; Gratto, K.A.; Karchewski, L.A.; Verge, V.M.K. Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. Eur. J. Neurosci. 2001, 14, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.W.; Bano, F.; Rashid, F.; Mehboob, R.; Kurdi, M.; Bamaga, A.; Aldardeir, N.; Nasief, H.; Moshref, L.H.; Alsinani, T.; et al. Substance P/Neurokinin-1 Receptor, Trigeminal Ganglion, Latency, and Coronavirus Infection-Is There Any Link? Front. Med. 2021, 8, 727593. [Google Scholar] [CrossRef]
- Severini, C.; Improta, G.; Falconieri-Erspamer, G.; Salvadori, S.; Erspamer, V. The tachykinin peptide family. Pharmacol. Rev. 2002, 54, 285–322. [Google Scholar] [CrossRef]
- Mersdorf, A.; Schmidt, R.A.; Kaula, N.; Tanagho, E.A. Intrathecal administration of substance P in the rat: The effect on bladder and urethral sphincteric activity. Urology 1992, 40, 87–96. [Google Scholar] [CrossRef]
- Nicoll, R.A.; Schenker, C.; Leeman, S.E. Substance P as a transmitter candidate. Ann. Rev. Neurosci. 1980, 3, 227–268. [Google Scholar] [CrossRef] [PubMed]
- Holzmann, B. Modulation of immune responses by the neuropeptide CGRP. Amino Acids 2011, 45, 1–7. [Google Scholar] [CrossRef]
- Cernuda-Morollón, E.; Larrosa, D.; Ramón, C.; Vega, J.; Martínez-Camblor, P.; Pascual, J. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology 2013, 81, 1191–1196. [Google Scholar] [CrossRef]
- Renganathan, M.; Cummins, T.R.; Hormuzdiar, W.N.; Black, J.A.; Waxman, S.G. Nitric oxide is an autocrine regulator of Na+ currents in axotomized C-type DRG neurons. J. Neurophysiol. 2000, 83, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Le Greves, P.; Nyberg, F.; Terenius, L.; Hokfelt, T. Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur. J. Pharmacol. 1985, 115, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Garry, M.G.; Hargreaves, K.M. Enhanced release of immunoreactive CGRP and substance P from spinal dorsal horn slices occurs during carrageenan inflammation. Brain Res. 1992, 582, 139–142. [Google Scholar] [CrossRef]
- Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.C.; Hashimoto, H.; Galas, L.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharm. Rev. 2009, 61, 283–357. [Google Scholar] [CrossRef]
- Christensen, C.E.; Ashina, M.; Amin, A.M. Calcitonin Gene-Related Peptide (CGRP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Migraine Pathogenesis. Pharmaceuticals 2022, 15, 1189. [Google Scholar] [CrossRef]
- Hoffmann, J.; Miller, S.; Martins-Oliveira, M.; Akerman, S.; Supronsinchai, W.; Sun, H.; Shi, L.; Wang, J.; Zhu, D.; Lehto, S.; et al. PAC1 receptor blockade reduces central nociceptive activity: New approach for primary headache? Pain 2020, 161, 1670–1681. [Google Scholar] [CrossRef]
- Figueiredo, C.A.; Düsedau, H.P.; Steffen, J.; Ehrentraut, S.; Dunay, M.P.; Toth, G.; Reglödi, D.; Heimesaat, M.M.; Dunay, I.R. The neuropeptide PACAP alleviates T. gondii infection-induced neuroinflammation and neuronal impairment. J. Neuroinflamm. 2022, 19, 274. [Google Scholar] [CrossRef]
- Frechilla, D.; Garcia-Osta, A.; Palacios, S.; Cenarruzabeitia, E.; Del Rio, J. BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. NeuroReport 2001, 12, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Tamas, A.; Reglodi, D.; Tizabi, Y. PACAP protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: Implication for Parkinson’s disease. Neurotox. Res. 2014, 26, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Braas, K.M.; May, V.; Zvara, P.; Nausch, B.; Kliment, J.; Dunleavy, J.D.; Nelson, M.T.; Vizzard, M.A. Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R951–R962. [Google Scholar] [CrossRef]
- Hernández, M.; Barahona, M.V.; Recio, P.; Benedito, S.; Martinez, A.C.; Rivera, L.; García-Sacristán, A.; Prieto, D.; Orensanz, L.M. Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck. Br. J. Pharmacol. 2006, 149, 100–109. [Google Scholar] [CrossRef]
- Yau, W.M.; Dorsett, J.A.; Youther, M.L. Evidence for galanin as an inhibitory neuropeptide on myenteric cholinergic neurons in the guinea pig small intestine. Neurosci. Lett. 1986, 72, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.A.; Santicioli, P.; Patacchini, R.; Turini, D.; Barbanti, G.; Beneforti, P.; Giuliani, S.; Meli, A. Galanin: A potent modulator of excitatory neurotransmission in the human urinary bladder. Eur. J. Pharmacol. 1987, 143, 135–137. [Google Scholar] [CrossRef]
- Honda, M.; Yoshimura, N.; Inoue, S.; Hikita, K.; Muraoka, K.; Saito, M.; Chancellor, M.B.; Takenaka, A. Inhibitory role of the spinal galanin system in the control of micturition. Urology 2013, 82, 1188.e9–1188.e14. [Google Scholar] [CrossRef]
- Zvarova, K.; Murray, E.; Vizzard, M.A. Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury. J. Comp. Neurol. 2004, 475, 590–603. [Google Scholar] [CrossRef]
- Wiesenfeld-Hallin, Z.; Bartfai, T.; Hökfelt, T. Galanin in sensory neurons in the spinal cord. Front. Neuroendocrinol. 1992, 13, 319–343. [Google Scholar]
- Xu, X.J.; Wiesenfeld-Hallin, Z.; Villar, M.J.; Hökfelt, T. Intrathecal galanin antagonizes the facilitatory effect of substance P on the nociceptive flexor reflex in the rat. Acta Physiol. Scand. 1989, 137, 463–464. [Google Scholar] [CrossRef]
- Jimenez-Andrade, J.M.; Zhou, S.; Du, J.; Yamani, A.; Grady, J.J.; Castaneda-Hernandez, G.; Carlton, S.M. Pronociceptive role of peripheral galanin in inflammatory pain. Pain 2004, 110, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.A.; Kanai, A.J.; de Groat, W.C.; Kiss, S.; Nealen, M.L.; Burke, N.E.; Dineley, K.E.; Watkins, S.; Reynolds, I.J.; Caterina, M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA 2001, 98, 13396–13401. [Google Scholar] [CrossRef] [PubMed]
- Aley, K.O.; Mc Carter, G.; Levine, J.D. Nitric oxide signaling in pain and nociceptor sensitization in the rat. J. Neurosci. 1998, 18, 7008–7014. [Google Scholar] [CrossRef]
- Cury, Y.; Picolo, G.; Gutierrez, V.P.; Ferreira, S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011, 25, 243–254. [Google Scholar]
- Russo, D.; Clavenzani, P.; Mazzoni, M.; Chiocchetti, R.; Guardo, G.D.; Lalatta-Costerbosa, G. Immunohistochemical characterization of TH13-L2 spinal ganglia neurons in sheep (Ovis aries). Micros. Res. Technol. 2010, 73, 128–139. [Google Scholar] [CrossRef]
- Morton, C.R.; Hutchison, W.D.; Hendry, I.A. Release of immunoreactive somatostatin in the spinal dorsal horn of the cat. Neuropeptides 1988, 12, 189–197. [Google Scholar] [CrossRef]
- Sandkühler, J.; Fu, Q.G.; Helmchen, C. Spinal somatostatin superfusion in vivo affects activity of cat nociceptive dorsal horn neurons: Comparison with spinal morphine. Neuroscience 1990, 34, 565–576. [Google Scholar] [CrossRef]
- Helyes, Z.; Than, M.; Oroszi, G.; Pinter, E.; Nemeth, J.; Keri, G.; Szolcsanyi, J. Anti-nociceptive effect induced by somatostatin released from sensory nerve terminals and by synthetic somatostatin analogues in the rat. Neurosci. Lett. 2000, 278, 185–188. [Google Scholar] [CrossRef]
- Than, M.; Nemeth, J.; Szilvassy, Z.; Pinter, E.; Helyes, Z.; Szolcsanyi, J. Systemic anti-inflammatory effect of somatostatin released from capsaicin-sensitive vagal and sciatic sensory fibers of the rat and guinea-pig. Eur. J. Pharmacol. 2000, 399, 251–258. [Google Scholar] [CrossRef]
- Rogers, J.H. Calretinin: A gene for a novel calcium-binding protein expressed principally in neurons. J. Cell Biol. 1987, 105, 1343–1353. [Google Scholar] [CrossRef]
- Hua, R.; Wang, X.; Chen, X.; Wang, X.; Huang, P.; Li, P.; Mei, W.; Li, H. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr. Biol. 2018, 28, 3948–3959.e4. [Google Scholar] [CrossRef] [PubMed]
- Tóth, K.; Eross, L.; Vajda, J.; Halász, P.; Freund, T.F.; Maglóczky, Z. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 2010, 133, 2763–2777. [Google Scholar] [CrossRef] [PubMed]
- Freund, T.F.; Maglóczky, Z. Early degeneration of calretinin-containing neurons in the rat hippocampus after ischemia. Neuroscience 1993, 56, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.D.; Jessberger, S.; Steiner, B.; Kronenberg, G.; Reuter, K.; Bick-Sander, A.; von der Behrens, W.; Kempermann, G. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci. 2003, 24, 603–613. [Google Scholar] [CrossRef]
- Smith, K.M.; Boyle, K.A.; Madden, J.F.; Dickinson, S.A.; Jobling, P.; Callister, R.J.; Hughes, D.I.; Graham, B.A. Functional heterogeneity of calretinin-expressing neurons in the mouse superficial dorsal horn: Implications for spinal pain processing. J. Physiol. 2015, 19, 4319–4339. [Google Scholar] [CrossRef]
Antigen | Code | Dilution | Host | Supplier |
---|---|---|---|---|
Primary antibodies | ||||
CGRP | PC205L | 1:9000 | Rabbit | Merck Millipore, Temecula, CA, USA |
CRT | 6B3 | 1:2000 | Mouse | SWANT, Burgdorf, Switzerland |
GAL | AB5909 | 1:4000 | Rabbit | Merck Millipore, Temecula, CA, USA |
nNOS | N2280 | 1:200 | Mouse | Sigma-Aldrich, St. Louis, MO, USA |
PACAP | T-4465 | 1:15,000 | Rabbit | Peninsula, San Carlos, CA, USA, |
PNX | H-079-01 | 1:7000 | Rabbit | Phoenix Pharmaceuticals Inc., Burlingame, CA, USA |
SOM | MAB 354 | 1:50 | Rat | Merck Millipore, Temecula, CA, USA |
SP | 8450-0004 | 1:200 | Rat | Bio-Rad, Kidlington, UK |
Secondary reagents | ||||
Biotinylated anti-rabbit immunoglobulins | E 0432 | 1:1000 | Goat | Dako, Hamburg, Germany |
CY3-conjugated streptavidin | 711-165-152 | 1:12,000 | - | Jackson I.R., West Grove, PA, USA |
FITC-conjugated anti-rat IgG | 712-095-150 | 1:400 | Donkey | Jackson I.R., West Grove, PA, USA |
FITC-conjugated anti-mouse IgG | 715-096-151 | 1:600 | Donkey | Jackson I.R., West Grove, PA, USA |
Antigen | Code | Dilution | Supplier |
---|---|---|---|
CGRP | T-4030 | 1:800 | Peninsula Laboratories, San Carlos, CA, USA |
CRT | Lot No.: 22 | 1:2000 | SWANT, Burgdorf, Switzerland |
GAL | T-4862 | 1:1500 | Peninsula Laboratories, San Carlos, CA, USA |
nNOS | N3033 | 1:200 | Sigma, St. Louis, MO, USA |
PACAP | A9808 | 1:1000 | Sigma, St. Louis, MO, USA |
PNX | 079-01 | 1:7000 | Phoenix Pharmaceuticals Inc., Burlingame, CA, USA |
SOM | S9129 | 1:50 | Sigma-Aldrich, St. Louis, MO, USA |
SP | S6883 | 1:200 | Sigma-Aldrich, St. Louis, MO, USA |
FB+ Neurons | L3 % | L4 % | L5 % | L6 % | S3 % | S4 % | Cq1 % |
---|---|---|---|---|---|---|---|
Ipsilateral ss | 3.5 ± 0.4 | 2.4 ± 0.4 | 3.4 ± 0.5 | 2.9 ± 0.8 | 33.3 ± 2.0 | 30.7 ± 1.6 | 23.8 ± 1.2 |
Contralateral DRGs | 3.8 ± 0.1 | 3.0 ± 0.1 | 3.7 ± 0.2 | 3.2 ± 0.8 | 33.5 ± 2.8 | 31.3 ± 1.2 | 21.5 ± 0.6 |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 12.2 ± 2.1% | 20.2 ± 4.2% | 36.7 ± 3.6% | 8.6 ± 0.8% | 22.3 ± 1.6% |
Contralateral DRGs | 24.8 ± 1.6% | 13.2 ± 1.2% | 26.5 ± 1.5% | 17.4 ± 1.4% | 18.1 ± 4.3% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 15.1 ± 4.9% | 26.7 ± 6.0% | 36.3 ± 6.9% | 7.7 ± 2.9% | 14.2 ± 1.8% |
Contralateral DRGs | 32.8 ± 2.3% | 13.3 ± 4.6% | 31.9 ± 1.9% | 7.9 ± 1.6% | 14.1 ± 3.0% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 7.3 ± 1.6% | 22.9 ± 4.8% | 33.8 ± 3.5% | 11.7 ± 0.8% | 24.3 ± 3.6% |
Contralateral DRGs | 29.1 ± 1.5% | 15.4 ± 3.5% | 30.6 ± 2.1% | 8.8 ± 1.1% | 16.1 ± 8.7% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 0% | 37.9 ± 2.2% | 62.1 ± 2.2% | 0% | 0% |
Contralateral DRGs | 0% | 44.2 ± 5.8% | 55.8 ± 5.8% | 0% | 0% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 13.7 ± 2.8% | 23.7 ± 6.0% | 36.5 ± 9.0% | 9.5 ± 1.9% | 16.6 ± 3.2% |
Contralateral DRGs | 15.5 ± 1.3% | 11.4 ± 3.3% | 42.9 ± 2.3% | 5.6 ± 4.8% | 24.6 ± 3.3% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 10.1 ± 5.7% | 15.9 ± 1.4% | 32.6 ± 2.7% | 11.1 ± 3.7% | 30.3 ± 2.7% |
Contralateral DRGs | 0% | 0% | 79.9 ± 7.6% | 0% | 20.1 ± 7.9% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 10.5 ± 9.1% | 0% | 54.7 ± 10.8% | 5.2 ± 4.5% | 29.6 ± 4.5% |
Contralateral DRGs | 0% | 0% | 96.3 ± 3.7% | 0% | 3.7 ± 3.7% |
DRG Subdomain | P | Cr | Cd | Cn | Md |
---|---|---|---|---|---|
Ipsilateral DRGs | 11.5 ± 5.1% | 32.8 ± 4.0% | 55.7 ± 8.0% | 0% | 0% |
Contralateral DRGs | 4.1 ± 5.5% | 0% | 95.9 ± 5.5% | 0% | 0% |
Collocation Patterns of PNX with Different Neurotransmitters in the Bladder DRG Neurons | % |
---|---|
PNX+/SP+ | 14.6 ± 0.9 |
PNX+/GAL+ | 3.7 ± 0.8 |
PNX+/CGRP+ | 4.2 ± 0.8 |
PNX+/SP+/PACAP+ | 3.5 ± 1.1 |
PNX+/SP+/GAL+ | 6.1 ± 1.2 |
PNX+/SP+/CGRP+ | 4.3 ± 0.8 |
PNX+/SP+/CRT+ | 0.7 ± 0.5 |
PNX+/SP+/NOS+ | 0.8 ± 0.9 |
PNX+/GAL+/CGRP+ | 7.2 ± 0.8 |
PNX+/NOS+/PACAP+ | 1.9 ± 1.1 |
PNX+/GAL+/PACAP+ | 3.5 ± 1.9 |
PNX+/CRT+/CGRP+ | 3.7 ± 1.3 |
PNX+/PACAP+/CGRP+ | 2.2 ± 1.4 |
PNX+/SP+/CGRP+/PACAP+ | 6.7 ± 2.1 |
PNX+/SP+/GAL+/PACAP+ | 3.2 ± 1.5 |
PNX+/SP+/GAL+/CGRP+ | 4.4 ± 0.6 |
PNX+/SP+/GAL+/CRT+ | 8.1 ± 1.8 |
PNX+/SP+/CGRP+/CRT+ | 0.7 ± 0.2 |
PNX+/SP+/NOS+/PACAP+ | 2.2 ± 0.8 |
PNX+/SP+/SOM+/CGRP+ | 0.7 ± 0.7 |
PNX+/NOS+/PACAP+/CGRP+ | 3.0 ± 1.3 |
PNX+/SP+/PACAP+/CRT+/CGRP+ | 2.2 ± 0.9 |
PNX+/SP+/GAL+/PACAP+/CGRP+ | 8.5 ± 2.8 |
PNX+/SP+/NOS+/PACAP+/CGRP+ | 1.2 ± 0.7 |
PNX+/SP+/GAL+/NOS+/CGRP+ | 0.6 ± 0.3 |
PNX+/SP+/SOM+/GAL+/PACAP+/CGRP+ | 2.1 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janikiewicz, P.; Mazur, U.; Holak, P.; Karakina, N.; Węglarz, K.; Majewski, M.K.; Bossowska, A. Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder. Cells 2025, 14, 516. https://doi.org/10.3390/cells14070516
Janikiewicz P, Mazur U, Holak P, Karakina N, Węglarz K, Majewski MK, Bossowska A. Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder. Cells. 2025; 14(7):516. https://doi.org/10.3390/cells14070516
Chicago/Turabian StyleJanikiewicz, Paweł, Urszula Mazur, Piotr Holak, Nastassia Karakina, Kamil Węglarz, Mariusz Krzysztof Majewski, and Agnieszka Bossowska. 2025. "Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder" Cells 14, no. 7: 516. https://doi.org/10.3390/cells14070516
APA StyleJanikiewicz, P., Mazur, U., Holak, P., Karakina, N., Węglarz, K., Majewski, M. K., & Bossowska, A. (2025). Distribution and Neurochemical Characterization of Dorsal Root Ganglia (DRG) Neurons Containing Phoenixin (PNX) and Supplying the Porcine Urinary Bladder. Cells, 14(7), 516. https://doi.org/10.3390/cells14070516