Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = subsidence of land surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10014 KB  
Article
Dynamic Monitoring and Analysis of Mountain Excavation and Land Creation Projects in Lanzhou Using Multi-Source Remote Sensing and Machine Learning
by Quanfu Niu, Jiaojiao Lei, Qiong Fang and Lifeng Zhang
Remote Sens. 2026, 18(2), 273; https://doi.org/10.3390/rs18020273 - 14 Jan 2026
Viewed by 191
Abstract
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an [...] Read more.
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an integrated monitoring framework for MELCPs by combining ascending and descending Sentinel-1 SAR data, Sentinel-2 optical imagery, SRTM digital elevation models (DEM), and field survey data. The framework incorporates multi-temporal change detection, random forest classification, and time-series InSAR analysis to systematically capture the spatiotemporal evolution and subsidence mechanisms associated with MELCPs. Key findings include: (1) The use of dual-orbit SAR data significantly improves the detection accuracy of excavation areas, achieving an overall accuracy of 87.1% (Kappa = 0.85) and effectively overcoming observation limitations imposed by complex terrain. (2) By optimizing the combination of spectral, texture, topographic, and polarimetric features using a random forest algorithm, the classification accuracy of MELCPs is enhanced to 91.2% (Kappa = 0.889). This enables precise annual identification of MELCP progression from 2017 to 2022, revealing a three-stage evolution pattern: concentrated expansion, peak activity, and restricted slowdown. Specifically, the reclaimed area increased from 2.66 km2 (pre-2018) to a peak of 12.61 km2 in 2021, accounting for 34.56% of the total area of the study region, before decreasing to 2.69 km2 in 2022. (3) InSAR monitoring from 2017 to 2023 indicates that areas with only filling experience minor shallow subsidence (<50 mm), whereas subsequent building loads and underground engineering activities lead to continuous deep soil consolidation, with maximum cumulative subsidence reaching 333.8 mm. This study demonstrates that subsidence in MELCPs follows distinct spatiotemporal patterns and is predictable, offering important theoretical insights and practical tools for engineering safety management and territorial spatial optimization in mountainous cities. Full article
Show Figures

Figure 1

30 pages, 9320 KB  
Article
Flood Hazard Assessment Under Subsidence-Influenced Terrain Using Deformation-Adjusted DEM in an Oil and Gas Field
by Mohammed Al Sulaimani, Rifaat Abdalla, Mohammed El-Diasty, Amani Al Abri, Mohamed A. K. El-Ghali and Ahmed Tabook
Hydrology 2026, 13(1), 18; https://doi.org/10.3390/hydrology13010018 - 4 Jan 2026
Viewed by 290
Abstract
Flood hazards in arid oil-producing regions result from both natural hydrological processes and terrain changes due to land subsidence. In the Yibal field in northern Oman, long-term hydrocarbon extraction has caused measurable ground deformation, altering surface gradients and drainage patterns. This study presents [...] Read more.
Flood hazards in arid oil-producing regions result from both natural hydrological processes and terrain changes due to land subsidence. In the Yibal field in northern Oman, long-term hydrocarbon extraction has caused measurable ground deformation, altering surface gradients and drainage patterns. This study presents a deformation-adjusted flood hazard assessment by integrating a 2013 photogrammetric DEM with a 2023 subsidence-corrected DEM derived from multi-temporal PS-InSAR observations (RADARSAT-2 and TerraSAR-X). Key hydrological indicators—including slope, drainage networks, Height Above Nearest Drainage (HAND), floodplain depth, Curve Number, and extreme precipitation from the wettest monthly rainfall in a 10-year archive—were recalculated for both years. Flood hazard maps for 2013 and 2023 were generated using an AHP-based multi-criteria framework across five hydrologically motivated scenarios. Results indicate that while the total area of high- and very-high-hazard zones changed only slightly in most scenarios (within ±6%), these zones shifted into subsidence-affected depressions, reflecting deformation-driven redistribution of flood-prone areas. Low-hazard zones grew most significantly, especially in Scenarios S2–S4, with increases of 160–320% compared to 2013, while moderate-hazard areas showed smaller but consistent growth. Floodplain-dominated conditions (S5) produced the most pronounced nonlinear response, with a substantial increase in very low hazard and localized concentration of very high hazard in areas of deepest subsidence. Geomorphic analysis using the Geomorphic Flood Index (GFI) shows deepening of flow pathways and expansion of geomorphic depressions between 2013 and 2023, supporting the modeled redistribution of hazards. These findings demonstrate that even moderate subsidence can significantly alter hydrological susceptibility and underscore the importance of incorporating deformation-adjusted terrain modeling into flood hazard assessments in petroleum fields and other subsidence-prone areas. Full article
Show Figures

Figure 1

18 pages, 12268 KB  
Article
Peat Hydrological Properties and Vulnerability to Fire Risk
by Budi Kartiwa, Setyono Hari Adi, Hendri Sosiawan, Setiari Marwanto, Maswar, Suratman, Bastoni, Andree Ekadinata, Wahyu Widiyono and Fahmuddin Agus
Fire 2026, 9(1), 24; https://doi.org/10.3390/fire9010024 - 31 Dec 2025
Viewed by 589
Abstract
Peatlands provide essential ecological services but are highly vulnerable to degradation from drainage, leading to greenhouse gas emissions, land subsidence, and increased fire susceptibility. This study investigates peat hydrology and its relationship to fire risk in a fire-prone area in South Sumatra, Indonesia. [...] Read more.
Peatlands provide essential ecological services but are highly vulnerable to degradation from drainage, leading to greenhouse gas emissions, land subsidence, and increased fire susceptibility. This study investigates peat hydrology and its relationship to fire risk in a fire-prone area in South Sumatra, Indonesia. Groundwater levels and soil moisture were continuously monitored using automated loggers, and recession analysis quantified their rates of decline. Multispectral drone imagery (NDVI, NDWI) over a 44.1-ha area assessed vegetation and surface wetness, while fire occurrences (2019–2024) were analyzed using the Fire Information for Resource Management System (FIRMS). During a 58-day dry period, groundwater depth reached 78.5 cm with a recession rate of 9.68 mm day−1, while soil moisture decreased by 0.00291 m3 m−3 per day over 27 consecutive dry days. Drone imagery revealed that unhealthy and dead grass covered nearly 90% of the site, although wetness remained moderate (NDWI = 0.02–0.58). FIRMS data indicated that rainfall below 2000 mm year−1 and prolonged dry spells (>30 days) strongly trigger peat fires. These findings correspond with early-warning model outputs based on soil moisture recession and ignition thresholds. Maintaining a high groundwater level is, therefore, crucial for reducing peat fire vulnerability under extended dry conditions. Full article
Show Figures

Figure 1

23 pages, 8582 KB  
Article
Study on Surface Movement Law of Coal Seam Mining Based on the Measured Data and Numerical Simulation
by Weihong Yang, Yifan Zeng, Zihan Sun, Di Zhao, Kai Pang and Fei Chen
Appl. Sci. 2026, 16(1), 329; https://doi.org/10.3390/app16010329 - 29 Dec 2025
Viewed by 177
Abstract
Surface subsidence caused by high-intensity coal mining in the western mining area will have a negative impact on the environment. Mining subsidence has the characteristics of large scope, long duration, and strong destructiveness. In order to deeply understand the law of surface movement [...] Read more.
Surface subsidence caused by high-intensity coal mining in the western mining area will have a negative impact on the environment. Mining subsidence has the characteristics of large scope, long duration, and strong destructiveness. In order to deeply understand the law of surface movement and deformation under the high-intensity mining of coal mines in western China, taking the Caojiatan 122,106 working face as an example, this study was conducted to obtain the surface movement characteristics and law by the method of surface rock movement measurement. The results showed that the surface subsidence in this study is mainly divided into three stages: start-up stage, active stage, and recession stage, with the active stage characterized by abrupt and intensive settlement. The maximum measured subsidence reached 4.173 m along the strike and 3.350 m along the dip. Numerical simulations further demonstrated strong vertical connectivity within the overburden, with surface subsidence area covering approximately 2/3 of the direct roof area. The predicted maximum subsidence values from simulation were 4.21 m (strike) and 3.36 m (dip), closely aligning with field data. A probability integral model was calibrated using observed data, yielding key parameters: subsidence coefficient = 0.537, main influence angle tangent = 4.435, horizontal movement coefficient = 0.20, inflection point offset = 76.90 m, and propagation angle = 86.2°. This study provides a validated methodology for predicting surface deformation in western mining areas and offers practical insights for subsidence mitigation and land restoration. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

27 pages, 10128 KB  
Article
Late Pleistocene to Holocene Depositional Environments in Foredeep Basins: Coastal Plain Responses to Sea-Level and Tectonic Forcing—The Metaponto Area (Southern Italy)
by Agostino Meo and Maria Rosaria Senatore
Geosciences 2026, 16(1), 5; https://doi.org/10.3390/geosciences16010005 - 20 Dec 2025
Viewed by 431
Abstract
The Metaponto coastal plain (Ionian margin, Southern Italy) records the Late Pleistocene–Holocene evolution of a foredeep coastal system shaped by relative sea-level change, vertical land motion, and compaction. We analyze a 22 m continuous core (Meta 1) using lithofacies logging, grain size statistics [...] Read more.
The Metaponto coastal plain (Ionian margin, Southern Italy) records the Late Pleistocene–Holocene evolution of a foredeep coastal system shaped by relative sea-level change, vertical land motion, and compaction. We analyze a 22 m continuous core (Meta 1) using lithofacies logging, grain size statistics and cumulative curves, multivariate analysis of grain size distributions (PCA and k-means clustering), and three AMS 14C ages, and we compare the record with a nearby borehole (MSB) and a global eustatic curve. Four depositional units document a shift from lower-shoreface–offshore deposition to lagoon–barrier/aeolian systems, culminating in late Holocene near-surface progradation. Textural end members (mud-rich offshore/lagoonal, traction-dominated, and sand-rich) are coherent across classical parameters, Visher-type curves, PCA, and k-means clusters. Depth–age comparisons suggest net uplift during the Late Glacial, followed by near-present relative sea level and a Late Holocene onset of modest net subsidence; a compaction contribution is plausible but unquantified. Subsidence/uplift rates therefore remain upper-bound estimates owing to sparse chronological control and the lack of glacio-isostatic and compaction modeling. Together with the MSB emerged-beach tie-point, the record constrains shoreline position and progradation. The inferred Mid- to Late-Holocene stabilization and progradational trends are consistent with other Italian and wider Mediterranean coastal plains. Additional dating and quantitative paleoecological proxies (e.g., foraminifera/ostracods/molluscs) are key to independently constrain salinity and water-depth changes and to refine the partitioning between subsidence and compaction. Full article
Show Figures

Figure 1

20 pages, 10791 KB  
Article
Developing Integrated Supersites to Advance the Understanding of Saltwater Intrusion in the Coastal Plain Between the Brenta and Adige Rivers, Italy
by Luigi Tosi, Marta Cosma, Pablo Agustín Yaciuk, Iva Aljinović, Andrea Artuso, Jadran Čarija, Cristina Da Lio, Lorenzo Frison, Veljko Srzić, Fabio Tateo and Sandra Donnici
J. Mar. Sci. Eng. 2025, 13(12), 2328; https://doi.org/10.3390/jmse13122328 - 8 Dec 2025
Viewed by 301
Abstract
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we [...] Read more.
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we propose “integrated coastal supersites”: wells equipped with multiparametric sensors and multilevel piezometers that couple high-resolution vertical conductivity–temperature–depth (CTD) profiling with continuous hydro-meteorological time series to monitor the hydrodynamic behavior of coastal aquifers and saltwater intrusion. This study describes the installation of two supersites and presents early insights from the first monitoring period, which, despite a short observation window limited to the summer season (July–September 2025), demonstrate the effectiveness of this approach. Two contrasting supersites were deployed in the coastal plain between the Brenta and Adige Rivers (Italy): Gorzone, characterized by a thick, laterally persistent aquitard, and Buoro, where the aquitard is thinner and discontinuous. Profiles and fixed sensors at both sites reveal a consistent fresh-to-saline transition in the phreatic aquifers and a secondary freshwater lens capping the confined systems. At Gorzone, the confining layer hydraulically isolates the deeper aquifer, preserving low salinity beneath a saline, tidally constrained phreatic zone. Groundwater heads oscillate by about 0.2 m, and rainfall events do not dilute salinity; instead, pressure transients—amplified by drainage regulation and inland-propagating tides—induce short-lived EC increases via upconing. Buoro shows smaller water-level variations, not always linked to rainfall, and, in contrast, exhibits partial vertical connectivity and faster dynamics: phreatic heads respond chiefly to internal drainage and local recharge, with rises rapidly damped by pumping, while salinity remains steady without episodic peaks. The confined aquifer shows buffered, delayed responses to surface forcings. Although the monitoring window is currently limited to 2025 through the summer season, these results offer compelling evidence that coastal supersites are reliable, scalable, and management-critical relevance platforms for groundwater calibration, forecasting, and long-term assessment. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Graphical abstract

23 pages, 11491 KB  
Article
An Intelligent Identification Method for Coal Mining Subsidence Basins Based on Deformable DETR and InSAR
by Shenshen Chi, Dexian An, Lei Wang, Sen Du, Jiajia Yuan, Meinan Zheng and Qingbiao Guo
Remote Sens. 2025, 17(24), 3953; https://doi.org/10.3390/rs17243953 - 6 Dec 2025
Viewed by 549
Abstract
Underground coal mines are widely distributed across China, and underground mining is highly concealed. The rapid and accurate identification of the spatial distribution of coal mining subsidence over large areas is of significant importance for the reuse of land resources in mining areas [...] Read more.
Underground coal mines are widely distributed across China, and underground mining is highly concealed. The rapid and accurate identification of the spatial distribution of coal mining subsidence over large areas is of significant importance for the reuse of land resources in mining areas and the detection of illegal mining activities. The traditional method of monitoring subsidence basins has limitations in terms of monitoring range and timeliness. The development of synthetic aperture radar (InSAR) technology has provided a valuable tool for monitoring mining subsidence areas. However, this method faces challenges in quickly and effectively monitoring subsidence basins using wide-swath SAR images. With the rapid development of deep learning and computer vision technologies, leveraging advanced deep learning models in combination with InSAR technology has become a crucial research direction to enhance the monitoring efficiency of surface subsidence in mining areas. Therefore, this paper proposes a new method for the rapid identification of mining subsidence basins in mining areas, which integrates Deformable Detection Transformer (Deformable DETR) and InSAR technology. First, the real deformation sample set of the mining area, obtained through interference processing, is combined with simulated deformation samples generated using the dynamic probability integral method, elastic transformation, and various noise synthesis techniques to construct a mixed InSAR sample set. This mixed sample set is then used to train the Deformable DETR model and compared with common deep learning methods. The experimental results show that the monitoring accuracy is significantly improved, with the model achieving a Precision of 0.926, Recall of 0.886, F1-score of 0.905, and mean Intersection over Union (mIoU) of 0.828. The detection model was applied to monitor the dynamically updated mining subsidence in the Huainan mining area from 2023 to 2024, detecting 402 subsidence basins. Further training demonstrates that the model exhibits strong robustness. Therefore, this method reduces the construction cost of the target detection training set and holds significant application potential for monitoring geological disasters in large-scale mining areas. Full article
Show Figures

Figure 1

23 pages, 50732 KB  
Article
Rapid Evaluation of Coastal Sinking and Management Issues in Sayung, Central Java, Indonesia
by Dewayany Sutrisno, Ratih Dewanti Dimyati, Rizatus Shofiyati, Yosef Prihanto, Janthy Trilusianthy Hidayat, Mulyanto Darmawan, Syamsul Bahri Agus, Muhammad Helmi, Heri Sadmono and Nanin Anggraini
Geosciences 2025, 15(12), 455; https://doi.org/10.3390/geosciences15120455 - 1 Dec 2025
Viewed by 859
Abstract
Coastal flooding driven by sea-level rise and land subsidence poses severe risks to low-lying communities. This study evaluates the causes and impacts of coastal sinking in Sayung, Demak, Central Java, using multi-temporal Landsat imagery (1977, 2024), tidal gauge data, and GPS measurements. A [...] Read more.
Coastal flooding driven by sea-level rise and land subsidence poses severe risks to low-lying communities. This study evaluates the causes and impacts of coastal sinking in Sayung, Demak, Central Java, using multi-temporal Landsat imagery (1977, 2024), tidal gauge data, and GPS measurements. A set of spectral indices—Normalized Difference Vegetation Index (NDVI), Weighted Modified Normalized Difference Water Index (WMNDWI), Land Surface Water Index (LSWI), and Normalized Difference Built-up Index (NDBI)—were calculated and integrated as input features for a Random Forest machine learning model to detect and classify environmental changes. Results indicated an average land subsidence rate of approximately 6 cm/year ± 0.8 cm/year, validated against InSAR-based measurements, and a classification accuracy of 91% (RMSE of 0.8 cm/year). A substantial decline in vegetation indices was observed, reflecting the conversion of agricultural land into built-up areas and water bodies. Extensive flooding and shoreline retreat were documented, with high-risk zones concentrated along densely developed coastlines. These findings highlight the urgent need for integrated management strategies, including stricter groundwater regulation, continuous remote-sensing-based monitoring, and large-scale mangrove restoration, to safeguard ecological functions and enhance the socio-economic resilience of coastal communities in the face of accelerating climate change impacts. Full article
Show Figures

Figure 1

17 pages, 5413 KB  
Article
Physical Modeling of Land Subsidence Induced by Triple Pumping on the Confined Aquifer
by Li Yuan, Jian-Jie Jiang, Wen-Hao Guo and Zhen-Dong Cui
Appl. Sci. 2025, 15(23), 12676; https://doi.org/10.3390/app152312676 - 29 Nov 2025
Viewed by 378
Abstract
Land subsidence is the geological hazard caused by natural or human factors, resulting in a regional decrease in ground elevation due to the compression of the surface soil of the earth’s crust, which has brought huge losses to the national economy. The physical [...] Read more.
Land subsidence is the geological hazard caused by natural or human factors, resulting in a regional decrease in ground elevation due to the compression of the surface soil of the earth’s crust, which has brought huge losses to the national economy. The physical model tests were conducted to study the land subsidence induced by triple pumping including Pumping I, Pumping II and Pumping III. A total of 41 LVDTs were installed to monitor the settlement of the ground, and pictures of the front of the model were taken to obtain the section settlement via the particle image velocimetry (PIV) software. On Path 1, the subsidence is −1.40 mm, −1.50 mm, −1.86 mm, and −2.36 mm after Pumping I; it is −3.15 mm, −3.56 mm, −3.45 mm, and −4.57 mm after Pumping II; and it is −1.29 mm, −0.68 mm, −0.86 mm and −1.65 mm after Pumping III. The closer the soil is to the pumping well, the more severe the settlement after pumping. In the confined aquifer, the pore pressure in the soil experiences a process of initial decrease followed by an increase, which is the manifestation of the drawdown cone on pore pressure. In the layered settlement of the soil, compression in the upper and lower clay layers is significant, accounting for the majority of surface subsidence, while the confined aquifer experiences almost no compression. The results can offer a reference for the prevention and control of land subsidence in soft soil areas. Full article
Show Figures

Figure 1

42 pages, 24279 KB  
Article
Environmental Impacts of Post-Closure Mine Flooding: An Integrated Remote Sensing and Geospatial Analysis of the Olkusz-Pomorzany Mine, Poland
by Artur Guzy
Water 2025, 17(23), 3337; https://doi.org/10.3390/w17233337 - 21 Nov 2025
Viewed by 980
Abstract
Mine closure by flooding initiates hydrogeological changes that affect land stability, soil moisture, and surface ecosystems, further shaped by regional climatic trends that increase pressure on water resources. This study examines the Olkusz–Pomorzany mine (Poland), flooded between 2021 and 2022, focusing on the [...] Read more.
Mine closure by flooding initiates hydrogeological changes that affect land stability, soil moisture, and surface ecosystems, further shaped by regional climatic trends that increase pressure on water resources. This study examines the Olkusz–Pomorzany mine (Poland), flooded between 2021 and 2022, focusing on the links between groundwater rebound, land movement, and environmental transformation after closure. This analysis combines EGMS-based land movement (2018–2023), groundwater levels (2022–2024), meteorological records (1981–2024), and Sentinel-2-derived Normalized Difference Vegetation Index, Normalized Difference Water Index, and Moisture Index time series (2016–2024). Land cover changes were assessed using Sentinel-2 data for 2019–2024. Results show climate-driven subsidence of less than 1 mm/year across the area and a shift to uplift within the mining zone, with maximum groundwater rebound of 103 m in the central depression cone and uplift of up to 3.6 mm/year. Climatic water balance remained negative, with Vertical Water Exchange averaging −11.6 mm/month in 2022–2024. Hydrospectral indices indicate seasonal variability and modest increases in vegetation activity and moisture after flooding. Land cover analysis shows an expansion of surface water and wetlands where historical drainage and rebound overlap. These findings confirm that groundwater recovery is already reshaping surface conditions and highlight the need for integrated monitoring in post-mining areas. Full article
Show Figures

Figure 1

14 pages, 1644 KB  
Article
Assessment of Biodegradable Films as Protective Barriers Toward Sustainable Protection of Coastal Archaeological Sites
by Am Pris John, Sergio Santoro, Efrem Curcio, Pietro Argurio, Francesco Chidichimo, Salvatore Straface and Mauro Francesco La Russa
Sustainability 2025, 17(22), 10237; https://doi.org/10.3390/su172210237 - 15 Nov 2025
Cited by 1 | Viewed by 622
Abstract
Saltwater Intrusion (SWI) is threatening coastal archaeological sites, particularly in Crotone, southern Italy. The study area has been experiencing notable SWI due to over-pumping of groundwater, rising land subsidence, and climate change. Consequently, this study examines the applicability of polycaprolactone (PCL), a common [...] Read more.
Saltwater Intrusion (SWI) is threatening coastal archaeological sites, particularly in Crotone, southern Italy. The study area has been experiencing notable SWI due to over-pumping of groundwater, rising land subsidence, and climate change. Consequently, this study examines the applicability of polycaprolactone (PCL), a common biodegradable polymer, as a protective barrier for archaeological conservation. PCL films were synthesized via solvent casting and dried under controlled conditions. Physicochemical properties of the films were evaluated using six analytical techniques: (1) contact angle measurements for surface hydrophobicity, (2) Fourier-Transform Infrared Spectroscopy (FTIR) for chemical stability, (3) Scanning Electron Microscopy (SEM) for morphological characterization, (4) permeability testing for evaluating saltwater diffusion, (5) mechanical testing for tensile properties, and (6) biodegradability assays for degradation rates. All samples were evaluated at 0, 30, 60, and 90 days in natural seawater. Results from these tests indicate that unmodified PCL films exhibited moderate hydrophobicity, partial hydrolytic degradation, resistance to permeability, declining mechanical strength, and limited biodegradability over the testing period. Full article
Show Figures

Figure 1

18 pages, 16502 KB  
Article
Settlement and Deformation Characteristics of Grouting-Filled Goaf Areas Using Integrated InSAR Technologies
by Xingli Li, Huayang Dai, Fengming Li, Haolei Zhang and Jun Fang
Sustainability 2025, 17(22), 10015; https://doi.org/10.3390/su172210015 - 10 Nov 2025
Viewed by 515
Abstract
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through [...] Read more.
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through grouting. However, owing to the deficiencies of traditional deformation monitoring methods (e.g., leveling and GPS), including their slow speed, high cost, and limited data accuracy influenced by the number of monitoring points, the surface deformation features of goaf zones treated with grouting cannot be obtained in a timely fashion. Therefore, this study proposes a method to analyze the spatio-temporal patterns of surface deformation in grout-filled goaves based on the fusion of Multi-temporal InSAR technologies, leveraging the complementary advantages of D-InSAR, PS-InSAR, and SBAS-InSAR techniques. An investigation was conducted in a coal mine located in Shandong Province, China, utilizing an integrated suite of C-band satellite data. This dataset included 39 scenes from the RadarSAT-2 and 40 scenes from the Sentinel missions, acquired between September 2019 and September 2022. Key results reveal a significant reduction in surface deformation rates following grouting operations: pre-grouting deformation reached up to −98 mm/a (subsidence) and +134 mm/a (uplift), which decreased to −11.2 mm/a and +18.7 mm/a during grouting, and further stabilized to −10.0 mm/a and +16.0 mm/a post-grouting. Time-series analysis of cumulative deformation and typical coherent points confirmed that grouting effectively mitigated residual subsidence and induced localized uplift due to soil compaction and fracture expansion. The comparison with the leveling measurement data shows that the accuracy of this method meets the requirements, confirming the method’s efficacy in capturing the actual ground dynamics during grouting. It provides a scientific basis for the safe expansion of mining cities and the safe reuse of land resources. Full article
Show Figures

Figure 1

28 pages, 7142 KB  
Article
Deciphering Relative Sea-Level Change in Chesapeake Bay: Impact of Global Mean, Regional Variation, and Local Land Subsidence, Part 1: Methodology
by Yi Liu and Xin Zhou
Water 2025, 17(21), 3167; https://doi.org/10.3390/w17213167 - 5 Nov 2025
Cited by 1 | Viewed by 795
Abstract
The Chesapeake Bay (CB) region faces significant risks from relative sea-level change (RSLC), driven by global mean sea-level rise (GMSLR), regional sea-level rise (RSLR), and local land subsidence (LS). This study introduces a methodology to decipher RSLC trends in the CB area by [...] Read more.
The Chesapeake Bay (CB) region faces significant risks from relative sea-level change (RSLC), driven by global mean sea-level rise (GMSLR), regional sea-level rise (RSLR), and local land subsidence (LS). This study introduces a methodology to decipher RSLC trends in the CB area by integrating these components. We develop trend equations spanning 1900–2100, incorporating acceleration for GMSLR and RSLR since 1992, with linear LS estimation using tide gauge, satellite altimetry, and InSAR data. Our approach employs dynamic RSLC equations, Maclaurin series expansions, and inverse simulations to project RSLC trends through 2100. Stable RSLC rates require over 122 years of data for reliable linear trend estimation, with the Baltimore tide gauge providing the necessary long-term dataset. Similarity in monthly mean sea-level variations within a coastal region enables a new method to identify LS from short-term tide gauge data by correlating it with corresponding long-term data at Baltimore. LS is categorized into bedrock-surface subsidence (BSS) and compaction subsidence (CS), with methods proposed to map BSS contours and estimate CS. CS is further classified into primary consolidation, secondary consolidation, construction-induced, and negative subsidence to determine specific compaction types. The projection model highlights the dominant influence of GMSLR acceleration since 1992, with local LS and RSLR influenced by ocean circulation, density changes, and gravitational, rotational, and deformational (GRD) effects. This integrated approach enhances understanding and predictive reliability for RSLC trends, supporting resilience planning and infrastructure adaptation in coastal CB communities. Full article
(This article belongs to the Special Issue Climate Risk Management, Sea Level Rise and Coastal Impacts)
Show Figures

Figure 1

36 pages, 27661 KB  
Article
Analysis of Land Subsidence During Rapid Urbanization in Chongqing, China: Impacts of Metro Construction, Groundwater Dynamics, and Natural–Anthropogenic Environment Interactions
by Yuanfeng Li, Yuan Yao, Yice Deng, Jiazheng Ren and Keren Dai
Remote Sens. 2025, 17(21), 3539; https://doi.org/10.3390/rs17213539 - 26 Oct 2025
Viewed by 1455
Abstract
Urban land subsidence, a globally prevalent environmental problem and geohazard triggered by rapid urbanization, threatens ecological security and socioeconomic stability. Chongqing City in southwestern China, recognized as the world’s largest mountainous city, has encountered land subsidence challenges exacerbated by accelerated urban construction. This [...] Read more.
Urban land subsidence, a globally prevalent environmental problem and geohazard triggered by rapid urbanization, threatens ecological security and socioeconomic stability. Chongqing City in southwestern China, recognized as the world’s largest mountainous city, has encountered land subsidence challenges exacerbated by accelerated urban construction. This study proposes an effective method for extracting urbanization intensity by integrating Sentinel-1, Sentinel-2, and its derived synthetic aperture radar and spectral indices features, combined with texture features. The small baseline subset interferometric synthetic aperture radar technique was employed to monitor land subsidence in Chongqing between 2018 and 2024. Furthermore, the relationships among urbanization intensity, metro construction, groundwater dynamics, and land subsidence were systematically analyzed. Finally, geographical detector and multiscale geographically weighted regression models were employed to explore the interactive effects of anthropogenic, topographic, geological-tectonic, climatic, and land surface characteristic factors contributing to land subsidence. The findings reveal that (1) the method proposed in this paper can effectively extract urbanization intensity and provide an important approach to analyze the influence of urbanization on land subsidence. (2) Land subsidence along newly opened metro lines was more pronounced than along existing lines. The shorter the interval between metro construction completion and the start of operation, the greater the subsidence observed within the first 3 months of operation, which indicates that this interval influences land subsidence. (3) Overall, groundwater dynamics and land subsidence showed a clear correlation from June 2022 to June 2023, a phenomenon largely caused by the extreme summer high temperatures of 2022, triggering reduced precipitation and a notable groundwater decline. Beyond this period, however, only a weak correlation was observed between groundwater fluctuations and land subsidence trends, indicating that other factors likely dominated subsidence dynamics. (4) The anthropogenic factors have a higher relative influence on land subsidence than other drivers. In terms of q-value, the top six factors are road network density > precipitation > elevation > enhanced normalized difference impervious surface index > population density > nighttime light, while distance to fault exhibits the least explanatory power. Given Chongqing’s exemplary status as a mountainous city, this study offers a foundational reference for subsequent quantitative analyses of land subsidence and its drivers in other mountainous cities worldwide. Full article
Show Figures

Figure 1

21 pages, 40609 KB  
Article
High-Resolution Monitoring and Driving Factor Analysis of Long-Term Surface Deformation in the Linfen-Yuncheng Basin
by Yuting Wu, Longyong Chen, Tao Jiang, Yihao Xu, Yan Li and Zhe Jiang
Remote Sens. 2025, 17(21), 3536; https://doi.org/10.3390/rs17213536 - 25 Oct 2025
Viewed by 657
Abstract
The comprehensive, accurate, and rapid acquisition of large-scale surface deformation using Interferometric Synthetic Aperture Radar (InSAR) technology provides crucial information support for regional eco-geological safety assessments and the rational development and utilization of groundwater resources. The Linfen-Yuncheng Basin in Shanxi Province is one [...] Read more.
The comprehensive, accurate, and rapid acquisition of large-scale surface deformation using Interferometric Synthetic Aperture Radar (InSAR) technology provides crucial information support for regional eco-geological safety assessments and the rational development and utilization of groundwater resources. The Linfen-Yuncheng Basin in Shanxi Province is one of China’s historically most frequented regions for geological hazards in plain areas, such as land subsidence and ground fissures. This study employed the coherent point targets based Small Baseline Subset (SBAS) time-series InSAR technique to interpret a dataset of 224 scenes of 5 m resolution RADARSAT-2 satellite SAR images acquired from January 2017 to May 2024. This enabled the acquisition of high-resolution spatiotemporal characteristics of surface deformation in the Linfen-Yuncheng Basin during the monitoring period. The results show that the area with a deformation rate exceeding 5 mm/a in the study area accounts for 12.3% of the total area, among which the subsidence area accounts for 11.1% and the uplift area accounts for 1.2%, indicating that the overall surface is relatively stable. There are four relatively significant local subsidence areas in the study area. The total area with a rate exceeding 30 mm/a is 41.12 km2, and the maximum cumulative subsidence is close to 810 mm. By combining high-resolution satellite images and field survey data, it is found that the causes of the four subsidence areas are all the extraction of groundwater for production, living, and agricultural irrigation. This conclusion is further confirmed by comparing the InSAR monitoring results with the groundwater level data of monitoring wells. In addition, on-site investigations reveal that there is a mutually promoting and spatially symbiotic relationship between land subsidence and ground fissures in the study area. The non-uniform subsidence areas monitored by InSAR show significant ground fissure activity characteristics. The InSAR monitoring results can be used to guide the identification and analysis of ground fissure disasters. This study also finds that due to the implementation of surface water supply projects, the demand for groundwater in the study area has been continuously decreasing. The problem of ground water over-extraction has been gradually alleviated, which in turn promotes the continuous recovery of the groundwater level and reduces the development intensity of land subsidence and ground fissures. Full article
(This article belongs to the Special Issue Applications of Radar Remote Sensing in Earth Observation)
Show Figures

Figure 1

Back to TopTop