Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,233)

Search Parameters:
Keywords = structural phase transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1080 KB  
Article
Developing an NSD Process for Sustainable Community-Based Tourism Under Uncertainty: A Case Study from Thailand
by Sarinla Rukpollmuang, Praima Israsena, Songphan Choemprayong and Ake Pattaratanakun
Sustainability 2026, 18(2), 1107; https://doi.org/10.3390/su18021107 - 21 Jan 2026
Abstract
Thailand is globally recognized for its tourism potential and rich diversity of cultural and natural heritage. Community-based tourism (CBT), in particular, holds significant promise for inclusive and sustainable development. However, CBT initiatives across the country remain fragile in the face of uncertainty, whether [...] Read more.
Thailand is globally recognized for its tourism potential and rich diversity of cultural and natural heritage. Community-based tourism (CBT), in particular, holds significant promise for inclusive and sustainable development. However, CBT initiatives across the country remain fragile in the face of uncertainty, whether from pandemics, climate events, or market shifts, and are often constrained by fragmented practices and the absence of a shared service development framework that addresses sustainability tensions. This study addresses that gap by developing and validating a sustainability-oriented new service development (NSD) process comprising five phases and sixteen steps, tailored specifically for CBT under uncertainty. Through expert interviews and iterative action research in two contrasting Thai communities, the process was refined to include tools for place identity, customer analysis, service testing, and adaptive planning. The framework enables CBT communities to move from ad hoc efforts to structured, resilient, and market-aligned service practices. Expert validation confirmed its effectiveness and adaptability, while also recommending digital transformation and financial integration as future directions. This process offers a pathway for improving CBT outcomes in Thailand, and a potentially adaptable framework for CBT development across diverse contexts in uncertain tourism environments. Full article
17 pages, 1927 KB  
Perspective
The Interplay Between Neuromodulation and Stem Cell Therapy for Sensory-Motor Neuroplasticity After Spinal Cord Injury: A Perspective View
by Anthony Yousak, Kaci Ann Jose and Ashraf S. Gorgey
J. Clin. Med. 2026, 15(2), 879; https://doi.org/10.3390/jcm15020879 - 21 Jan 2026
Abstract
Spinal Cord Injury (SCI) rehabilitation is undergoing a transformative shift with the emergence of new treatment strategies. Historically, treatment options were limited, and few offered meaningful recovery. Recent work in human models has shown that neuromodulation specifically with spinal cord epidural stimulation (SCES) [...] Read more.
Spinal Cord Injury (SCI) rehabilitation is undergoing a transformative shift with the emergence of new treatment strategies. Historically, treatment options were limited, and few offered meaningful recovery. Recent work in human models has shown that neuromodulation specifically with spinal cord epidural stimulation (SCES) paired with task-specific training (TsT) can partially restore motor function such as the ability to stand, step, and perform volitional movements. Despite these advances, the recovery has been shown to plateau even with the combination of therapies. The recovery process typically leads to partial rather than complete restoration of function. This limitation arises because current approaches primarily reactivate existing circuits rather than repair the disrupted pathways. Scar tissue and loss of descending and ascending connections remain major barriers to full recovery, restricting the transmission of neural signals. We argue that the next phase of research should be a synergistic strategy building upon the successes of neuromodulation and TsT while incorporating a regenerative therapy such as stem-cell-based interventions. Whereas neuromodulation and task-specific training increases excitability and reorganizes existing networks, stem cells have the potential to repair structural damage and re-establish communication across injured regions or facilitating the establishment of dormant pathways. The future of SCI recovery relies on multi-modal synergistic interventions that are likely to maximize long-term functional outcomes. In the current perspective, we summarized the basic findings on applications of SCES on restoration of sensory-motor functions. We then projected on current interventions on utilizing stem cell therapy intervention. We highlighted the outcomes of randomized clinical trials, and the major barriers for considering the synergistic approach between SCES and stem cell intervention. We are hopeful that this perspective may lead to roundtable scientific discussion to bridge the gap on how to conduct numerous clinical trials in the field. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

26 pages, 1513 KB  
Article
Mechanistic Insights into Asphalt Natural Aging: Microstructural and Micromechanical Transformations Under Diverse Climates
by Shanglin Song, Xiaoyan Ma, Xiaoming Kou, Lanting Feng, Yatong Cao, Fukui Zhang, Haihong Zhang and Huiying Zhang
Coatings 2026, 16(1), 140; https://doi.org/10.3390/coatings16010140 - 21 Jan 2026
Abstract
Understanding mechanisms of asphalt in the process of natural aging is crucial for predicting its long-term durability and optimizing performance under diverse environmental conditions. Despite its importance, the microstructural and micromechanical changes induced by natural aging remain poorly understood, particularly under varying climatic [...] Read more.
Understanding mechanisms of asphalt in the process of natural aging is crucial for predicting its long-term durability and optimizing performance under diverse environmental conditions. Despite its importance, the microstructural and micromechanical changes induced by natural aging remain poorly understood, particularly under varying climatic influences. This study addresses this gap by analyzing the effects of natural aging on asphalt’s microscopic properties and identifying key indicators that govern its degradation. Asphalt samples were subjected to natural aging across five climatically distinct regions over 6, 12, and 18 months. Atomic force microscopy (AFM) was employed to characterize surface roughness, adhesion forces, and DMT modulus, while correlation analysis and principal component analysis (PCA) were used to identify relationships among micromechanical indicators and streamline the dataset. The results reveal that natural aging induces irreversible transformations in asphalt’s microstructure, driven by the combined effects of temperature, UV radiation, humidity, and oxygen. These processes promote the evolution of “Bee structures,” increase surface roughness, and accelerate phase separation, alongside chemical modifications such as oxidation and polymerization, leading to progressive material hardening and stiffness. Significant regional and temporal variations in adhesion forces and DMT modulus were observed, reflecting the cumulative impact of environmental factors on asphalt’s aging dynamics. Correlation analysis demonstrated strong associations between surface roughness and “Bee structure” area, while mechanical properties such as stiffness and adhesion were largely decoupled from morphological features. Environmental factors interact in complex ways to drive asphalt aging. Humidity enhances adhesion and stiffness via water-induced capillary forces, while temperature reduces surface roughness and adhesion through molecular reorganization. UV radiation accelerates oxidative degradation, promoting surface erosion and stiffness loss, while altitude modulates these dynamics by influencing temperature and UV exposure. Full article
(This article belongs to the Special Issue Advances in Asphalt and Concrete Coatings)
18 pages, 2312 KB  
Systematic Review
Constitutional Rights in Educational Administration: A Bibliometric Analysis of Global Scholarship
by Sabah M. A. Al Momani
Laws 2026, 15(1), 6; https://doi.org/10.3390/laws15010006 - 21 Jan 2026
Abstract
This study represents a bibliometric analysis of the global scholarship on institutional rights in education, based on 192 reviewed publications from the Web of Science database, which includes the 2000–2025 period. Research has developed in three different phases: the initial phase (2000–2006) focused [...] Read more.
This study represents a bibliometric analysis of the global scholarship on institutional rights in education, based on 192 reviewed publications from the Web of Science database, which includes the 2000–2025 period. Research has developed in three different phases: the initial phase (2000–2006) focused on basic topics such as legal regulation, provision of public services, and administrative discretion; the developmental phase (2007–2013) addressed increasing emphasis on representative bureaucracy, availability, and judicial intervention; and the rapid development phase (2014–2025) emphasized digital transformation, transparency, and international cooperation. The keyword analysis reveals a thematic shift from traditional topics such as the “legal system” and “public service” to current issues such as “digital administration,” “social justice,” and “representative bureaucracy.” Research production remains geographically concentrated in North America and Europe, and contributions from Asia, Latin America, and Africa appear. The main institutions include Harvard University, Oxford University, and Leiden University, while influential authors such as Cooper K.W., Schiff D., and Busuioc E.M. have shaped theoretical and empirical advances. Network visualization and historical clustering illustrate the developing thematic structure and interconnection in the field. This analysis provides valuable knowledge for politicians, educators, and researchers who, in the dynamic global context, navigate the penetration of constitutional principles and education management. Full article
Show Figures

Figure 1

30 pages, 1874 KB  
Article
Identifying and Prioritizing Barriers to Modular Construction Adoption in China: A Multi-Method Stakeholder Analysis
by Chenxi Yu and Guoqiang Zhang
Buildings 2026, 16(2), 432; https://doi.org/10.3390/buildings16020432 - 20 Jan 2026
Abstract
Modular construction (MC) offers significant environmental and efficiency advantages yet maintains low market penetration in China despite substantial government support. This study addresses the critical knowledge gap by systematically analyzing complex barrier interrelationships across project phases and stakeholder groups (university, construction authority, supplier/manufacturer [...] Read more.
Modular construction (MC) offers significant environmental and efficiency advantages yet maintains low market penetration in China despite substantial government support. This study addresses the critical knowledge gap by systematically analyzing complex barrier interrelationships across project phases and stakeholder groups (university, construction authority, supplier/manufacturer company) to develop a comprehensive MC promotion framework. A four-phase mixed method approach was employed. (1) Grounded theory analysis of MC policy frameworks was performed in Singapore, the United States, and Hong Kong to extract best practice insights. (2) A systematic literature review and multi-round Delphi expert consultations were used to identify 21 core barriers across six project stages (decision-making, procurement, design, production, transportation, and construction acceptance). (3) The DEMATEL analysis reveals causal relationships among barriers based on experts’ perceived influence between factors. (4) Integrated ISM-MICMAC methodology was used to establish hierarchical structures and barrier classifications. Institutional barriers emerged as the primary impediment to MC diffusion, with unclear authority distribution between government administrations and design organizations identified as the most critical factor. The MICMAC analysis categorized the 21 barriers into four distinct groups based on their driving power and dependence characteristics, revealing complex causal relationships among barriers across the six project stages while highlighting the emergent role of higher education institutions in industrial transformation. Successful MC implementation requires market-oriented, context-specific strategies prioritizing institutional framework development, with the findings providing actionable insights for policymakers to address regulatory ambiguities and practical guidance for industry practitioners developing targeted MC promotion strategies in emerging markets. Full article
(This article belongs to the Special Issue Intelligence and Automation in Construction—2nd Edition)
Show Figures

Figure 1

18 pages, 8446 KB  
Article
Influence of Post-Processing Temperatures on Microstructure and Hardness of PBF-LB Ti-6Al-4V
by Trung Van Trinh, Trang Huyen Dang, Anh Hoang Pham, Gia Khanh Pham and Ulrich E. Klotz
Metals 2026, 16(1), 121; https://doi.org/10.3390/met16010121 - 20 Jan 2026
Abstract
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by [...] Read more.
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by aging (350–550 °C). Microstructural evolution was analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness testing. Results showed that the as-built sample exhibited high hardness (365.2 HV0.1) due to fine α′ martensite. Sub-β-transus annealing at 950 °C decomposed α′ into equilibrium α + 1.25% β (329 HV0.1), while super-β-transus annealing at 1010 °C formed coarse lamellar structures of α + 1.5% β, yielding the lowest hardness (319 HV0.1). Quenching from 1010 °C produced dominant α′ martensite with high hardness (371.6 HV0.1). Notably, aging samples quenched from 950 °C increased hardness, peaking at 382.6 HV0.1 at 450 °C due to precipitation, before decreasing to 364.4 HV0.1 at 550 °C due to coarsening. These findings demonstrate that optimizing heat treatment temperatures is critical for controlling phase transformations and tailoring mechanical properties in additively manufactured Ti-6Al-4V components. Full article
Show Figures

Graphical abstract

22 pages, 5492 KB  
Article
High-Performance Multilevel Inverter Integrated DVR for Comprehensive Power Quality Improvement in Power Systems
by Samuel Nii Tackie, Ebrahim Babaei, Şenol Bektaş, Özgür Cemal Özerdem and Murat Fahrioglu
Energies 2026, 19(2), 519; https://doi.org/10.3390/en19020519 - 20 Jan 2026
Abstract
This paper proposes a dynamic voltage restorer (DVR) based on a new three-phase multilevel inverter (MLI). An integral component of DVRs is the power electronic converter. At medium-to-high voltage levels, MLIs are the ideal converters for DVR applications because lower voltage-rated switches are [...] Read more.
This paper proposes a dynamic voltage restorer (DVR) based on a new three-phase multilevel inverter (MLI). An integral component of DVRs is the power electronic converter. At medium-to-high voltage levels, MLIs are the ideal converters for DVR applications because lower voltage-rated switches are used to generate high voltages, thus minimizing power losses. The proposed three-phase MLI generates 15 levels of load voltage per phase, using a reduced component count: eight lower-rated semiconductor power switches, four primary DC voltage sources, two auxiliary DC sources, and eight driver circuits per phase. Additionally, each phase features a low-frequency transformer with voltage-boosting and galvanic isolation capabilities. The switching sequence of the proposed MLI is simpler to execute using fundamental frequency control; this methodology provides reduced switching stress and reduced switching losses as merits. Structurally, the proposed MLI is less complex and thus scalable. The proposed DVR, based on three-phase MLI, efficiently offsets power quality problems such as voltage swell, voltage sags, and harmonics for balanced and unbalanced loads. The operational performance of the proposed DVR-MLI is verified by a simulation, using PSCAD software and an experimental prototype. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

10 pages, 2629 KB  
Article
Effect of Clockwise Reciprocation Motion of Optimum Torque Reverse Kinematic on the Cyclic Fatigue Resistance of Nickel–Titanium Rotary Instruments with Different Metallurgical Properties
by Jorge N. R. Martins, Emmanuel J. N. L. Silva, Duarte Marques, João Caramês, Francisco M. Braz Fernandes and Marco A. Versiani
Materials 2026, 19(2), 387; https://doi.org/10.3390/ma19020387 - 18 Jan 2026
Viewed by 113
Abstract
This study evaluated the effect of clockwise reciprocation motion used in the original Optimum Torque Reverse kinematics, compared with clockwise continuous rotation, on the cyclic fatigue strength of nickel–titanium rotary instruments (NiTi) with different metallurgical characteristics. A total of 120 instruments, ProFile and [...] Read more.
This study evaluated the effect of clockwise reciprocation motion used in the original Optimum Torque Reverse kinematics, compared with clockwise continuous rotation, on the cyclic fatigue strength of nickel–titanium rotary instruments (NiTi) with different metallurgical characteristics. A total of 120 instruments, ProFile and EndoSequence in sizes 25/.04, 30/.04, and 35/.04, were tested under continuous rotation or reciprocation motions (n = 10 per subgroup). Instruments were examined by optical and scanning electron microscopy to exclude manufacturing defects. Phase transformation temperatures were determined by differential scanning calorimetry, and cyclic fatigue testing was conducted using a custom device simulating a curved canal with a 6 mm radius and an 86° curvature. The time to fracture was recorded, and the number of cycles to fracture was calculated. Statistical comparisons were performed using the Mann–Whitney U test with a significance level of p < 0.05. Differential scanning calorimetry showed that ProFile instruments were fully austenitic at the test temperature, while EndoSequence instruments exhibited a mixed R-phase and austenitic structure. Clockwise reciprocation motion significantly increased cyclic fatigue resistance in all groups compared with clockwise continuous rotation. Time to fracture increased by 241.3% to 337.5%, and EndoSequence instruments consistently demonstrated higher fatigue resistance. The greatest relative improvement was observed in ProFile 35/.04, with a 422.4% increase in the number of cycles to fracture. Overall, the reciprocation motion markedly enhanced cyclic fatigue strength irrespective of metallurgical phase composition, indicating a practical mechanical benefit that may reduce the risk of instrument separation during endodontic procedures. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

33 pages, 1706 KB  
Article
Codify, Condition, Capacitate: Expert Perspectives on Institution-First Blockchain–BIM Governance for PPP Transparency in Nigeria
by Akila Pramodh Rathnasinghe, Ashen Dilruksha Rahubadda, Kenneth Arinze Ede and Barry Gledson
FinTech 2026, 5(1), 10; https://doi.org/10.3390/fintech5010010 - 16 Jan 2026
Viewed by 138
Abstract
Road infrastructure underpins Nigeria’s economic competitiveness, yet Public–Private Partnership (PPP) performance is constrained not by inadequate legislation but by persistent weaknesses in enforcement and governance. Transparency deficits across procurement, design management, certification, and toll-revenue reporting have produced chronic delays, cost overruns, and declining [...] Read more.
Road infrastructure underpins Nigeria’s economic competitiveness, yet Public–Private Partnership (PPP) performance is constrained not by inadequate legislation but by persistent weaknesses in enforcement and governance. Transparency deficits across procurement, design management, certification, and toll-revenue reporting have produced chronic delays, cost overruns, and declining public trust. This study offers the first empirical investigation of blockchain–Building Information Modelling (BIM) integration as a transparency-enhancing mechanism within Nigeria’s PPP road sector, focusing on Lagos State. Using a qualitative design, ten semi-structured interviews with stakeholders across the PPP lifecycle were thematically analysed to diagnose systemic governance weaknesses and assess the contextual feasibility of digital innovations. Findings reveal entrenched opacity rooted in weak enforcement, discretionary decision-making, and informal communication practices—including biased bidder evaluations, undocumented design alterations, manipulated certifications, and toll-revenue inconsistencies. While respondents recognised BIM’s potential to centralise project information and blockchain’s capacity for immutable records and smart-contract automation, they consistently emphasised that technological benefits cannot be realised absent credible institutional foundations. The study advances an original theoretical contribution: the Codify–Condition–Capacitate framework, which explains the institutional preconditions under which digital governance tools can improve transparency. This framework argues that effectiveness depends on: codifying digital standards and legal recognition; conditioning enforcement mechanisms to reduce discretionary authority; and capacitating institutions through targeted training and phased pilots. The research generates significant practical implications for policymakers in Nigeria and comparable developing contexts seeking institution-aligned digital transformation. Methodological rigour was ensured through purposive sampling, thematic saturation assessment, and documented analytical trails. Full article
Show Figures

Figure 1

16 pages, 6793 KB  
Article
Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel
by Yufei Sun, Qiuwan Shen, Shian Li and He Miao
J. Mar. Sci. Eng. 2026, 14(2), 188; https://doi.org/10.3390/jmse14020188 - 16 Jan 2026
Viewed by 164
Abstract
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, [...] Read more.
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, reducing costs and increasing efficiency while helping achieve zero carbon throughout the entire lifecycle, which has important practical significance. The key technology for MSR technology is the performance of the catalyst. A series of Cu1−xMnxAl2O4 catalysts were successfully synthesized and applied for hydrogen production in this study. The catalyst structure was characterized using physicochemical techniques including XRD, SEM, and EDS. Hydrogen production performance was evaluated in a fixed-bed reactor under the following conditions: a liquid hourly space velocity (LHSV) of 20 h−1, a water-to-methanol molar ratio of 3:1, and a reaction temperature range of 275 °C–350 °C. The results demonstrate that A-site Mn substitution significantly enhanced the catalytic performance. In addition, XRD analysis revealed that Mn incorporation effectively suppressed the formation of segregated CuO phases. However, excessive substitution (x is 0.9) led to the generation of an MnAl2O4 impurity phase. Finally, the Cu0.7Mn0.3Al2O4 catalyst achieved a methanol conversion of 68.336% at 325 °C, with a hydrogen production rate of 5.611 mmol/min/gcat, and maintained CO selectivity below 1%. The results demonstrate that the hydrogen production catalyst developed in this study is a promising material for meeting the requirements of online hydrogen sources for ships. Full article
(This article belongs to the Special Issue Alternative Fuels and Emission Control in Maritime Applications)
Show Figures

Figure 1

16 pages, 11136 KB  
Article
Hybrid Fe3O4-Gd2O3 Nanoparticles Prepared by High-Energy Ball Milling for Dual-Contrast Agent Applications
by Vladislav A. Mikheev, Timur R. Nizamov, Alexander I. Novikov, Maxim A. Abakumov, Alexey S. Lileev and Igor V. Shchetinin
Int. J. Mol. Sci. 2026, 27(2), 910; https://doi.org/10.3390/ijms27020910 - 16 Jan 2026
Viewed by 102
Abstract
This work investigates the feasibility of synthesis hybrid x Gd2O3 + (100 − x) Fe3O4 nanoparticles using the scalable method of high-energy ball milling for dual-contrast magnetic resonance imaging applications. Comprehensive studies of the structure, magnetic and [...] Read more.
This work investigates the feasibility of synthesis hybrid x Gd2O3 + (100 − x) Fe3O4 nanoparticles using the scalable method of high-energy ball milling for dual-contrast magnetic resonance imaging applications. Comprehensive studies of the structure, magnetic and functional properties of the hybrid nanoparticles were conducted. It was found that the milling process initiates the transformation of the cubic phase c-Gd2O3 (Ia3¯) into the monoclinic m-Gd2O3 (C2/m). Measurements of the magnetic properties showed that the specific saturation magnetization of the Fe3O4 phase is substantially reduced, which is a characteristic feature of nanoparticles due to phenomena such as surface spin disorder and spin-canting effects. The transmission electron microscopy results confirm the formation of hybrid Fe3O4-Gd2O3 nanostructures and the measured particle sizes show good correlation with the X-ray diffraction results. A comprehensive structure–property relationship study revealed that the obtained hybrid nanoparticles exhibit high r2 values, reaching 160 mM−1s−1 and low r1 values, a characteristic that is determined primarily by the presence of a large fraction of Gd2O3 particles with sizes of ≈30 nm and Fe3O4 crystallites of ≈10 nm. Full article
Show Figures

Figure 1

24 pages, 2449 KB  
Article
Analysis of Noise Propagation Mechanisms in Wireless Optical Coherent Communication Systems
by Fan Ji and Xizheng Ke
Appl. Sci. 2026, 16(2), 916; https://doi.org/10.3390/app16020916 - 15 Jan 2026
Viewed by 98
Abstract
This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It [...] Read more.
This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It establishes the stepwise propagation process of signals and noise from the transmitter through the atmospheric turbulence channel to the coherent receiver, clarifying the coupling mechanisms and accumulation patterns of various noise sources within the propagation chain. From a signal propagation viewpoint, the study focuses on analyzing the impact mechanisms of factors, such as Mach–Zehnder modulator nonlinear distortion, atmospheric turbulence effects, 90° mixer optical splitting ratio imbalance, and dual-balanced detector responsivity mismatch, on system bit error rate performance and constellation diagrams under conditions of coexisting multiple noises. Simultaneously, by introducing differential and common-mode processes, the propagation and suppression characteristics of additive noise at the receiver end within the balanced detection structure were analyzed, revealing the dominant properties of different noise components under varying optical power conditions. Simulation results indicate that within the range of weak turbulence and engineering parameters, the impact of modulator nonlinearity on system bit error rate is relatively minor compared to channel noise. Atmospheric turbulence dominates system performance degradation through the combined effects of amplitude fading and phase perturbation, causing significant constellation spreading. Imbalanced optical splitting ratios and mismatched responsivity at the receiver weaken common-mode noise suppression, leading to variations in effective signal gain and constellation stretching/distortion. Under different signal light power and local oscillator light power conditions, the system noise exhibits distinct dominant characteristics. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 3633 KB  
Article
Temporal Dynamics and Integrative Characterization of Streptococcus uberis Biofilm Development
by Melina Vanesa Moliva, María Florencia Cerioli, Ignacio Velzi, María Alejandra Molina, Carina Maricel Pereyra, Ayelen Nigra, Andrea Lorena Cristofolini, Cecilia Inés Merkis, Pablo Bogino and Elina Beatriz Reinoso
Bacteria 2026, 5(1), 6; https://doi.org/10.3390/bacteria5010006 - 15 Jan 2026
Viewed by 89
Abstract
Streptococcus uberis is a bovine mastitis pathogen with a demonstrated ability to form biofilms. However, the dynamics of this process remain poorly characterized. This study aimed to comprehensively characterize biofilm formation in four S. uberis strains that differed in their biofilm-forming capacity, from [...] Read more.
Streptococcus uberis is a bovine mastitis pathogen with a demonstrated ability to form biofilms. However, the dynamics of this process remain poorly characterized. This study aimed to comprehensively characterize biofilm formation in four S. uberis strains that differed in their biofilm-forming capacity, from weak to strong producers, and in the presence of key virulence-associated genes, such as sua, hasA and hasC. To achieve this, we integrated structural, biochemical, physiological and transcriptional analyses using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), spectral flow cytometry and qRT-PCR. The multi-faceted analysis revealed a coordinated maturation peak at 48 h, characterized by a structured architecture with water channels, a distinct biochemical signature rich in polysaccharides and proteins, and a predominantly viable bacterial population. This peak coincided with a marked upregulation of key virulence-associated genes, with sua expression increasing 2.5-fold and hasA increasing 3-fold at 48 h. This mature biofilm conferred high tolerance to antibiotics, with eradication concentrations (>256 µg/mL) exceeding planktonic MICs, although tetracycline was notably effective. At 72 h, the biofilm entered a dispersion phase characterized by structural collapse and reduced viability. These findings establish S. uberis biofilm maturation as a highly coordinated process, providing new insights into the biofilm lifecycle of this important pathogen and identifying key temporal and molecular targets for future interventions. Full article
Show Figures

Figure 1

27 pages, 7771 KB  
Review
Advances in Folding-Wing Flying Underwater Drone (FUD) Technology
by Jianqiu Tu, Junjie Zhuang, Haixin Chen, Changjian Zhao, Hairui Zhang and Wenbiao Gan
Drones 2026, 10(1), 62; https://doi.org/10.3390/drones10010062 - 15 Jan 2026
Viewed by 231
Abstract
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth [...] Read more.
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth characteristics of underwater navigation. This review thoroughly analyzes the advancements and challenges in folding-wing FUD technology. The discussion is framed around four interconnected pillars: the overall design driven by morphing technology, adaptation of the propulsion system, multi-phase dynamic modeling and control, and experimental verification. The paper systematically compares existing technical pathways, including lateral and longitudinal folding mechanisms, as well as dual-use and hybrid propulsion strategies. The analysis indicates that, although significant progress has been made with prototypes demonstrating the ability to transition between air and water, core challenges persist. These challenges include underwater endurance, structural reliability under impact loads, and effective integration of the power system. Additionally, this paper explores promising application scenarios in both military and civilian domains, discussing future development trends that focus on intelligence, integration, and clustering. This review not only consolidates the current state of technology but also emphasizes the necessity for interdisciplinary approaches. By combining advanced materials, computational intelligence, and robust control systems, we can overcome existing barriers to progress. In conclusion, FUD technology is moving from conceptual validation to practical engineering applications, positioning itself to become a crucial asset in future cross-domain operations. Full article
(This article belongs to the Special Issue Advances in Autonomous Underwater Drones: 2nd Edition)
Show Figures

Figure 1

20 pages, 3271 KB  
Article
Fostering Amenity Criteria for the Implementation of Sustainable Urban Drainage Systems in Public Spaces: A Novel Decision Methodological Framework
by Claudia Rocio Suarez Castillo, Luis A. Sañudo-Fontaneda, Jorge Roces-García and Juan P. Rodríguez
Appl. Sci. 2026, 16(2), 901; https://doi.org/10.3390/app16020901 - 15 Jan 2026
Viewed by 99
Abstract
Sustainable Urban Drainage Systems (SUDSs) are essential for stormwater management in urban areas, with varying hydrological, social, ecological, and economic benefits. Nevertheless, choosing the SUDS most appropriate for public spaces poses a challenge when balancing details/specifications against community decisions, primarily social implications and [...] Read more.
Sustainable Urban Drainage Systems (SUDSs) are essential for stormwater management in urban areas, with varying hydrological, social, ecological, and economic benefits. Nevertheless, choosing the SUDS most appropriate for public spaces poses a challenge when balancing details/specifications against community decisions, primarily social implications and perceptions. Building on the SUDS design pillar of the amenity, this study outlines a three-phase methodological framework for selecting SUDS based on social facilitation. The first phase introduces the application of the Partial Least Squares Structural Equation Modeling (PLS-SEM) and Classificatory Expectation–Maximization (CEM) techniques by modeling complex social interdependencies to find critical components related to urban planning. A Likert scale survey was also conducted with 440 urban dwellers in Tunja (Colombia), which identified three dimensions: Residential Satisfaction (RS), Resilience and Adaptation to Climate Change (RACC), and Community Participation (CP). In the second phase, the factors identified above were transformed into eight operational criteria, which were weighted using the Analytic Hierarchy Process (AHP) with the collaboration of 35 international experts in SUDS planning and implementation. In the third phase, these weighted criteria were used to evaluate and classify 13 types of SUDSs based on the experts’ assessments of their sub-criteria. The results deliver a clear message: cities must concentrate on solutions that will guarantee that water is managed to the best of their ability, not just safely, and that also enhance climate resilience, energy efficiency, and the ways in which public space is used. Among those options considered, infiltration ponds, green roofs, rain gardens, wetlands, and the like were the best-performing options, providing real and concrete uses in promoting a more resilient and sustainable urban water system. The methodology was also used in a real case in Tunja, Colombia. In its results, this approach proved not only pragmatic but also useful for all concerned, showing that the socio-cultural dimensions can be truly integrated into planning SUDSs and ensuring success. Full article
(This article belongs to the Special Issue Resilient Cities in the Context of Climate Change)
Show Figures

Figure 1

Back to TopTop