You are currently on the new version of our website. Access the old version .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

15 January 2026

Analysis of Noise Propagation Mechanisms in Wireless Optical Coherent Communication Systems

and
1
School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
2
Xianyang Key Laboratory of Intelligent Manufacturing Equipment Technology, Xianyang 712000, China
*
Author to whom correspondence should be addressed.
This article belongs to the Section Electrical, Electronics and Communications Engineering

Abstract

This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It establishes the stepwise propagation process of signals and noise from the transmitter through the atmospheric turbulence channel to the coherent receiver, clarifying the coupling mechanisms and accumulation patterns of various noise sources within the propagation chain. From a signal propagation viewpoint, the study focuses on analyzing the impact mechanisms of factors, such as Mach–Zehnder modulator nonlinear distortion, atmospheric turbulence effects, 90° mixer optical splitting ratio imbalance, and dual-balanced detector responsivity mismatch, on system bit error rate performance and constellation diagrams under conditions of coexisting multiple noises. Simultaneously, by introducing differential and common-mode processes, the propagation and suppression characteristics of additive noise at the receiver end within the balanced detection structure were analyzed, revealing the dominant properties of different noise components under varying optical power conditions. Simulation results indicate that within the range of weak turbulence and engineering parameters, the impact of modulator nonlinearity on system bit error rate is relatively minor compared to channel noise. Atmospheric turbulence dominates system performance degradation through the combined effects of amplitude fading and phase perturbation, causing significant constellation spreading. Imbalanced optical splitting ratios and mismatched responsivity at the receiver weaken common-mode noise suppression, leading to variations in effective signal gain and constellation stretching/distortion. Under different signal light power and local oscillator light power conditions, the system noise exhibits distinct dominant characteristics.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.