Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Samples Characterization
2.3. Performance Test
3. Results and Discussion
3.1. XRD
3.2. SEM-EDS
3.3. Catalytic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hegazy, R.; Olabi, A.G.; Mohammad, A.A.; Ali, A.; Enas, T.S. Maximizing green hydrogen production from water electrocatalysis: Modeling and Optimization. J. Mar. Sci. Eng. 2023, 11, 617. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Q.; Zhao, T.; Li, S. Hydrogen production by methanol reforming catalyzed by copper gallium-based spinel using B-site doping strategy. Int. J. Appl. Ceram. Technol. 2025, 22, e15178. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Shen, Q.W.; Yang, G.G. A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide. J. Mar. Sci. Eng. 2023, 11, 1066. [Google Scholar] [CrossRef]
- Kuc, J.; Neumann, M.; Armbrüster, M.; Yoon, S.; Zhang, Y.; Erni, R.; Weidenkaffe, A.; Matam, S.K. Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo1−x−yPdxZnyO3±δ. Catal. Sci. Technol. 2016, 6, 1455–1468. [Google Scholar] [CrossRef]
- Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J.G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120, 7984–8034. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Mei, D.; Wang, Y. A methanol fuel processing system with methanol steam reforming and CO selective methanation modules for PEMFC application. Int. J. Energy Res. 2021, 45, 6163–6173. [Google Scholar] [CrossRef]
- Xu, J.B.; Zhao, T.S.; Yang, W.W.; Shen, S.Y. Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells. Int. J. Hydrogen Energy 2010, 35, 8699–8706. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Yuan, D.; Zhang, F.; Li, B.; San, X.; Liang, B.; Wang, S.; Luo, J.; Fu, G. General Heterostructure Strategy of Photothermal Materials for Scalable Solar-Heating Hydrogen Production without the Consumption of Artificial Energy. Nat. Commun. 2022, 13, 776. [Google Scholar] [CrossRef]
- Huang, R.-J.; Sakthinathan, S.; Chiu, T.-W.; Dong, C. Hydrothermal Synthesis of High Surface Area CuCrO2 for H2 Production by Methanol Steam Reforming. RSC Adv. 2021, 11, 12607–12613. [Google Scholar] [CrossRef]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol Steam Reforming for Hydrogen Production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef] [PubMed]
- Lindström, B.; Pettersson, L.J.; Menon, P.G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles. Appl. Catal. A Gen. 2002, 234, 111–125. [Google Scholar] [CrossRef]
- Peppley, B.A.; Amphlett, J.C.; Kearns, L.M.; Mann, R.F. Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl. Catal. A Gen. 1999, 179, 31–49. [Google Scholar] [CrossRef]
- Shen, Q.; Shao, Z.; Cai, Z.; Yan, M.; Yang, G.; Li, S. Enhancement of hydrogen production performance of novel perovskite LaNi0.4Al0.6O3-δ supported on MOF A520-derived λ-Al2O3. Int. J. Energy Res. 2022, 46, 15709–15721. [Google Scholar] [CrossRef]
- Takezawa, N.; Iwasa, N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catal. Today 1997, 36, 45–56. [Google Scholar] [CrossRef]
- Xu, X.; Shuai, K.; Xu, B. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen. Catalysts 2017, 7, 183. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Transition Metal Oxides with Perovskite and Spinel Structures for Electrochemical Energy Production Applications. Environ. Res. 2022, 214, 113731. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Wang, S. Unravelling the synergistic promotion effect of simultaneous doping Fe and Cr into Cu-based spinel oxide on methanol steam reforming. Int. J. Hydrogen Energy 2023, 48, 18731–18743. [Google Scholar] [CrossRef]
- Baseri, J.; Naghizadeh, R.; Rezaie, H.R.; Golestanifard, F.; Golmohammad, M. A comparative study on citrate sol-gel and combustion synthesis methods of CoAl2 O4 spinel. Int. J. Appl. Ceram. Technol. 2020, 17, 2709–2715. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, G.; Ren, J.; Yan, M.; Andersson, M.; Li, S. Highly stable CuFe1.2Al.8O4 catalyst with low CO selectivity for hydrogen production in HT-PEMFCs application. Int. J. Appl. Ceram. Technol. 2024, 21, 2896–2905. [Google Scholar] [CrossRef]
- Liao, M.; Xiang, R.; Zhou, X.; Dai, Z.; Wang, L.; Qin, H.; Xiao, H. Enhancing effect of Mn2+ substitution in CuAl2O4 spinel for methanol steam reforming in a microreactor. Renew. Energy 2024, 230, 120815. [Google Scholar] [CrossRef]
- Shen, Q.; Cai, Z.; Zhang, X.; Chen, G.; Yang, G.; Li, S. Novel spinel oxide catalysts CuFexAl2−xO4 with high H2 selectivity with low CO generation in methanol steam reforming. J. Alloys Compd. 2023, 951, 169878. [Google Scholar] [CrossRef]
- Chen, G.; Shen, Q.; Zhang, X.; Zhao, T.; Zhu, K.; Li, S. High purity H2 resource from methanol steam reforming at low-temperature by spinel CuGa2O4 catalyst for fuel cell. Ceram. Int. 2024, 50, 49759–49769. [Google Scholar] [CrossRef]
- Fukunaga, T.; Ryumon, N.; Ichikuni, N.; Shimazu, S. Characterization of CuMn-spinel catalyst for methanol steam reforming. Catal. Commun. 2009, 10, 1800–1803. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of “sol–gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiu, S.; Zheng, Y.; Huang, Y. Effect of Mn/Cu Ratio on the Structure–Performance Relationship of Spinel-Type Mn–Cu/Al2Ox Catalysts for Methanol Steam Reforming. Catalysts 2025, 15, 1091. [Google Scholar] [CrossRef]
- Maiti, S.; Das, D.; Pal, K.; Llorca, J.; Soler, L.; Colussi, S.; Trovarelli, A.; Priolkar, K.; Sarode, P.; Asakura, K.; et al. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1−xAl2O4 hercynites. Appl. Catal. A Gen. 2019, 570, 73–83. [Google Scholar] [CrossRef]
- Kamyar, N.; Khani, Y.; Amini, M.M.; Bahadoran, F.; Safari, N. Copper-based catalysts over A520-MOF derived aluminum spinels for hydrogen production by methanol steam reforming: The role of spinal support on the performance. Int. J. Hydrogen Energy 2020, 45, 21341–21353. [Google Scholar] [CrossRef]
- Liao, M.; Huang, W.; Wang, L.; Zhou, X.; Dai, Z.; Qin, H.; Xiao, H. Insight into the methanol steam reforming behavior of Cu-containing spinels CuB2O4 (BCo, Al, Mn, La, Cr). Int. J. Hydrogen Energy 2024, 49, 1361–1374. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Zhang, B.; Lin, Z.; Liu, L.; Zhang, X.; Wang, S.; Lin, J.; Xiong, H.; Wu, C.; et al. ZnFexAl2−xO4 spinel supported PdZnβ bifunctional catalyst for methanol steam reforming. Chem. Eng. J. 2023, 475, 146334. [Google Scholar] [CrossRef]












| Sample | Crystallite Size (nm) | Lattice Distortion (%) |
|---|---|---|
| CuAl2O4 | 69 | 2.254 |
| Cu0.7Mn0.3Al2O4 | 119 | 1.433 |
| Cu0.5Mn0.5Al2O4 | 132 | 1.693 |
| Cu0.3Mn0.7Al2O4 | 157 | 0.277 |
| Cu0.1Mn0.9Al2O4 | 241 | 0.441 |
| Sample | Elements | Atomic Percentages (%) |
|---|---|---|
| CuAl2O4 | Cu | 15.04 |
| Al | 27.62 | |
| O | 57.34 | |
| Cu0.7Mn0.3Al2O4 | Cu | 9.67 |
| Mn | 4.23 | |
| Al | 27.54 | |
| O | 58.56 | |
| Cu0.5Mn0.5Al2O4 | Cu | 8.02 |
| Mn | 7.74 | |
| Al | 26.73 | |
| O | 57.51 | |
| Cu0.3Mn0.7Al2O4 | Cu | 4.52 |
| Mn | 9.89 | |
| Al | 27.67 | |
| O | 57.92 | |
| Cu0.1Mn0.9Al2O4 | Cu | 1.79 |
| Mn | 12.83 | |
| Al | 26.91 | |
| O | 58.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, Y.; Shen, Q.; Li, S.; Miao, H. Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel. J. Mar. Sci. Eng. 2026, 14, 188. https://doi.org/10.3390/jmse14020188
Sun Y, Shen Q, Li S, Miao H. Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel. Journal of Marine Science and Engineering. 2026; 14(2):188. https://doi.org/10.3390/jmse14020188
Chicago/Turabian StyleSun, Yufei, Qiuwan Shen, Shian Li, and He Miao. 2026. "Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel" Journal of Marine Science and Engineering 14, no. 2: 188. https://doi.org/10.3390/jmse14020188
APA StyleSun, Y., Shen, Q., Li, S., & Miao, H. (2026). Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel. Journal of Marine Science and Engineering, 14(2), 188. https://doi.org/10.3390/jmse14020188

