Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,143)

Search Parameters:
Keywords = strain-gauge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5388 KiB  
Article
Numerical and Experimental Evaluation of Axial Load Transfer in Deep Foundations Within Stratified Cohesive Soils
by Şahin Çaglar Tuna
Buildings 2025, 15(15), 2723; https://doi.org/10.3390/buildings15152723 (registering DOI) - 1 Aug 2025
Abstract
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent [...] Read more.
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent mobilization of shaft resistance. A finite element model was developed and calibrated using field-observed load–settlement and strain data to replicate the pile–soil interaction and deformation behavior. The analysis revealed a shaft-dominated load transfer behavior, with progressive mobilization concentrated in intermediate-depth cohesive layers. Sensitivity analysis identified the undrained stiffness (Eu) as the most influential parameter governing pile settlement. A strong polynomial correlation was established between calibrated Eu values and SPT N60, offering a practical tool for preliminary design. Additionally, strain energy distribution was evaluated as a supplementary metric, enhancing the interpretation of mobilization zones beyond conventional stress-based methods. The integrated approach provides valuable insights for performance-based foundation design in layered cohesive ground, supporting the development of site-calibrated numerical models informed by full-scale testing data. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
12 pages, 1939 KiB  
Article
Fe3+-Modulated In Situ Formation of Hydrogels with Tunable Mechanical Properties
by Lihan Rong, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li and Yuyan Liu
Gels 2025, 11(8), 586; https://doi.org/10.3390/gels11080586 - 30 Jul 2025
Viewed by 116
Abstract
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report [...] Read more.
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report a novel one-pot strategy where controlled amounts of Fe3+ are directly added to polyacrylamide-sodium acrylate (PAM-SA) precursor solutions, ensuring homogeneous ion distribution. Combining this with Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) polymerization enables efficient hydrogel fabrication under open-vessel conditions, improving its scalability. Fe3+ concentration achieves unprecedented modulation of mechanical properties: Young’s modulus (10 to 150 kPa), toughness (0.26 to 2.3 MJ/m3), and strain at break (800% to 2500%). The hydrogels also exhibit excellent compressibility (90% strain recovery), energy dissipation (>90% dissipation efficiency at optimal Fe3+ levels), and universal adhesion to diverse surfaces (plastic, metal, PTFE, and cardboard). Finally, these Fe3+-incorporated hydrogels demonstrated high effectiveness as strain sensors for monitoring finger/elbow movements, with gauge factors dependent on composition. This work provides a scalable, oxygen-tolerant route to tunable hydrogels for advanced wearable devices. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

15 pages, 1812 KiB  
Article
Influence of Digital Manufacturing and Abutment Design on Full-Arch Implant Prostheses—An In Vitro Study
by Shahad Altwaijri, Hanan Alotaibi, Talal M. Alnassar and Alhanoof Aldegheishem
Materials 2025, 18(15), 3543; https://doi.org/10.3390/ma18153543 - 29 Jul 2025
Viewed by 189
Abstract
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment [...] Read more.
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment connection types (engaging [E], non-engaging [NE]) on the misfit and preload of implant-supported cantilevered fixed dental prostheses (ICFDPs). Misfit was measured at six points using scanning electron microscopy, and preload was assessed via eight strain gauges placed buccally and lingually on four implants. Frameworks were torqued to 35 Ncm, retorqued after 10 min, and subjected to 200,000 cycles of loading. Mean preload values ranged from 173.4 ± 79.5 Ncm (PF) to 330 ± 253.2 Ncm (3DP). Preload trends varied depending on the abutment type and manufacturing technique, with the 3DP group showing higher preload in engaging (E) abutments, whereas the CAD-cast group showed the opposite pattern. Although preload values varied numerically, these differences were not statistically significant (p = 0.5). In terms of misfit, significant differences were observed between groups (p < 0.05), except between CAD-cast E (86.4 ± 17.8 μm) and 3DP E (84.1 ± 19.2 μm). Additionally, E and NE abutments showed significant differences in misfit within both CAD-cast and 3DP groups. Overall, 3DP frameworks showed superior fit over CAD-cast. These findings suggest that 3DP may offer improved clinical outcomes in terms of implant–abutment fit. Full article
Show Figures

Figure 1

18 pages, 5492 KiB  
Article
A Novel Variable Stiffness Torque Sensor with Adjustable Resolution
by Zhongyuan Mao, Yuanchang Zhong, Xuehui Zhao, Tengfei He and Sike Duan
Micromachines 2025, 16(8), 868; https://doi.org/10.3390/mi16080868 - 27 Jul 2025
Viewed by 200
Abstract
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement [...] Read more.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range. Specifically, the stiffness of the elastic element is adjusted by altering the shear stress of the MRF via an applied magnetic field while simultaneously harnessing the high sensitivity of the torsion spring. The stiffness model is established and validated for accuracy through finite element analysis. A screw modulation-based angle measurement method is proposed for the first time, offering high non-contact angle measurement accuracy and resolving eccentricity issues. The performance of the sensor prototype is evaluated using a self-developed power-closed torque test bench. The experimental results demonstrate that the sensor exhibits excellent linearity, hysteresis, and repeatability while effectively achieving dynamic continuous adjustment of resolution and range. Full article
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 313
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

17 pages, 1316 KiB  
Article
A Low-Cost IoT-Based Bidirectional Torque Measurement System with Strain Gauge Technology
by Cosmin Constantin Suciu, Virgil Stoica, Mariana Ilie, Ioana Ionel and Raul Ionel
Appl. Sci. 2025, 15(15), 8158; https://doi.org/10.3390/app15158158 - 22 Jul 2025
Viewed by 312
Abstract
The scope of this paper is the development of a cost-effective wireless torque measurement system for vehicle drivetrain shafts. The prototype integrates strain gauges, an HX711 conditioner, a Wemos D1 Mini ESP8266, and a rechargeable battery directly on the rotating shaft, forming a [...] Read more.
The scope of this paper is the development of a cost-effective wireless torque measurement system for vehicle drivetrain shafts. The prototype integrates strain gauges, an HX711 conditioner, a Wemos D1 Mini ESP8266, and a rechargeable battery directly on the rotating shaft, forming a self-contained sensor node. Calibration against a certified dynamometric wrench confirmed an operating span of ±5–50 N·m. Within this range, the device achieved a mean absolute error of 0.559 N·m. It also maintained precision better than ±2.5 N·m at 95% confidence, while real-time data were transmitted via Wi-Fi. The total component cost is below EUR 30 based on current prices. The novelty of this proof-of-concept implementation demonstrates that reliable, IoT-enabled torque sensing can be realized with low-cost, readily available parts. The paper details assembly, calibration, and deployment procedures, providing a transparent pathway for replication. By aligning with Industry 4.0 requirements for smart, connected equipment, the proposed torque measurement system offers an affordable solution for process monitoring and predictive maintenance in automotive and industrial settings. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

23 pages, 5467 KiB  
Article
Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China
by Cheng Lin, Hao Chen, Jiawen Chen, Shaolong Gou, Yande Liu and Jun Hu
Sensors 2025, 25(14), 4498; https://doi.org/10.3390/s25144498 - 19 Jul 2025
Viewed by 275
Abstract
To address the limitations of conventional single-track rail systems in challenging hilly and mountainous terrains, which are ill-suited for transporting heavy agricultural machinery, there is a critical need to develop a specialized the double-track rail transportation system optimized for orchard equipment. Recognizing this [...] Read more.
To address the limitations of conventional single-track rail systems in challenging hilly and mountainous terrains, which are ill-suited for transporting heavy agricultural machinery, there is a critical need to develop a specialized the double-track rail transportation system optimized for orchard equipment. Recognizing this requirement, our research team designed and implemented a double-track rail transportation system. In this innovative system, the rail functions as the pivotal component, with its structural properties significantly impacting the machine’s overall stability and operational performance. In this study, resistance strain gauges were employed to analyze the stress–strain distribution of the track under a full load of 750 kg, a critical factor in the system’s design. To further investigate the structural performance of the double-track rail, the impact hammer method was utilized in conjunction with triaxial acceleration sensors to conduct experimental modal analysis (EMA) under actual support conditions. By integrating the Eigensystem Realization Algorithm (ERA), the first 20 natural modes and their corresponding parameters were successfully identified with high precision. A comparative analysis between finite element simulation results and experimental measurements was performed, revealing the double-track rail’s inherent vibration characteristics under constrained modal conditions versus actual boundary constraints. These valuable findings serve as a theoretical foundation for the dynamic optimization of rail structures and the mitigation of resonance issues. The advancement of hilly and mountainous rail transportation systems holds significant promise for enhancing productivity and transportation efficiency in agricultural operations. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

25 pages, 5687 KiB  
Article
Using an Equine Cadaver Head to Investigate Associations Between Sub-Noseband Space, Noseband Tension, and Sub-Noseband Pressure at Three Locations
by Orla Doherty, Richard Conway and Paul McGreevy
Animals 2025, 15(14), 2141; https://doi.org/10.3390/ani15142141 - 19 Jul 2025
Viewed by 290
Abstract
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased [...] Read more.
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased as predicated by holes in the strap of the noseband (as supplied) through eight steps from two fingers’ space, assessed using the standard International Society for Equitation Science Taper Gauge through to zero space. Sensors were also placed at the midline frontal plane and intra-orally at the level of the second premolar tooth. A strain gauge integrated into the noseband recorded tensions within the noseband at each tightness level, and a digital taper gauge under the noseband recorded forces on the face. Pressures at the left nasal bone rose to 403 kPa, while those at the frontal nasal plane reached 185 kPa. Pressures rose rapidly once the noseband was tightened at the equivalent of 1.4 fingers’ space under the noseband. These findings may help to explain cases of bone and skin damage at the noseband location and indicate the need to ensure that nosebands can accommodate more than the equivalent of 1.4 fingers beneath them in the nasal midline. Given that pressures are expected to rise from those reported here when horses wear bits, locomote, and when the reins are under tension, we conclude that the traditional provision of two fingers’ space should be retained. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

25 pages, 6248 KiB  
Article
Low-Cost Strain-Gauge Force-Sensing Sidestick for 6-DoF Flight Simulation: Design and Human-in-the-Loop Evaluation
by Patrik Rožić, Milan Vrdoljak, Karolina Krajček Nikolić and Jurica Ivošević
Sensors 2025, 25(14), 4476; https://doi.org/10.3390/s25144476 - 18 Jul 2025
Viewed by 333
Abstract
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture [...] Read more.
Modern fly-by-wire (FBW) aircraft demand high-fidelity simulation systems for research and training, yet existing force-sensing solutions are often prohibitively expensive. This study presents the design, development, and validation of a low-cost, reconfigurable force-sensing sidestick. The system utilizes four strain-gauge load cells to capture pure pilot force inputs, integrated with a 6-DoF non-linear flight model. To evaluate its performance, a pitch-angle tracking task was conducted with 16 participants (pilots and non-pilots). Objective metrics revealed that the control strategy was a primary determinant of performance. Participants employing a proactive feedforward control strategy exhibited roughly an order of magnitude lower tracking-error variance than those relying on reactive corrections. Subjective assessments using the Cooper-Harper scale and NASA-TLX corroborated the objective data, confirming the sidestick’s ability to differentiate control techniques. This work demonstrates an open-source platform that makes high-fidelity FBW simulation accessible for academic research, pilot training, and human factors analysis at a fraction of the cost of commercial systems. Full article
Show Figures

Figure 1

18 pages, 3307 KiB  
Article
Temperature-Related Containment Analysis and Optimal Design of Aluminum Honeycomb Sandwich Aero-Engine Casings
by Shuyi Yang, Ningke Tong and Jianhua Zuo
Coatings 2025, 15(7), 834; https://doi.org/10.3390/coatings15070834 - 17 Jul 2025
Viewed by 269
Abstract
Aero-engine casings with excellent impact resistance are a practical requirement for ensuring the safe operation of aero-engines. In this paper, we report on numerical simulations of broken rotating blades impacting aluminum honeycomb sandwich casings under different temperatures and optimization of structural parameters. Firstly, [...] Read more.
Aero-engine casings with excellent impact resistance are a practical requirement for ensuring the safe operation of aero-engines. In this paper, we report on numerical simulations of broken rotating blades impacting aluminum honeycomb sandwich casings under different temperatures and optimization of structural parameters. Firstly, an impact test system with adjustable temperature was established. Restricted by the temperature range of the strain gauge, ballistic impact tests were carried out at 25 °C, 100 °C, and 200 °C. Secondly, a finite element (FE) model including a pointed bullet and an aluminum honeycomb sandwich plate was built using LS-DYNA. The corresponding simulations of the strain–time curve and damage conditions showed good agreement with the test results. Then, the containment capability of the aluminum honeycomb sandwich aero-engine casing at different temperatures was analyzed based on the kinetic energy loss of the blade, the internal energy increment of the casing, and the containment state of the blade. Finally, with the design objectives of minimizing the casing mass and maximizing the blade kinetic energy loss, the structural parameters of the casing were optimized using the multi-objective genetic algorithm (MOGA). Full article
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 838
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

30 pages, 4926 KiB  
Article
Impact Testing of Aging Li-Ion Batteries from Light Electric Vehicles (LEVs)
by Miguel Antonio Cardoso-Palomares, Juan Carlos Paredes-Rojas, Juan Alejandro Flores-Campos, Armando Oropeza-Osornio and Christopher René Torres-SanMiguel
Batteries 2025, 11(7), 263; https://doi.org/10.3390/batteries11070263 - 13 Jul 2025
Viewed by 371
Abstract
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. [...] Read more.
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. For this study, a battery module from a used e-scooter was disassembled, and its constituent cells were reconfigured into compact modules for testing. To characterize their initial condition, the cells underwent cycling tests to evaluate their state of health (SOH). Although a slight majority of the cells retained an SOH greater than 80%, a notable increase in their internal resistance (IR) was also observed, indicating degradation due to aging. The mechanical impact tests were conducted in adherence to the UL 2271:2018 standard, employing a semi-sinusoidal acceleration pulse. During these tests, linear kinematics were analyzed using videogrammetry, while key electrical and thermal parameters were monitored. Additionally, strain gauges were installed on the central cells to measure stress and deformation. The results from the mechanical shock tests revealed characteristic acceleration and velocity patterns. These findings clarify the electromechanical behavior of aged LIBs under impact, providing critical data to enhance the safety and reliability of these vehicles. Full article
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 313
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

17 pages, 5876 KiB  
Article
Optimization of Knitted Strain Sensor Structures for a Real-Time Korean Sign Language Translation Glove System
by Youn-Hee Kim and You-Kyung Oh
Sensors 2025, 25(14), 4270; https://doi.org/10.3390/s25144270 - 9 Jul 2025
Viewed by 288
Abstract
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the [...] Read more.
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the presence or absence of elastic yarn are set as experimental variables, and five distinct sensors are manufactured. A comprehensive analysis of the electrical and mechanical performance, including sensitivity, responsiveness, reliability, and repeatability, reveals that the sensor with a plain-plated-knit structure, no elastic yarn included, and the conductive yarn positioned uniformly on the back exhibits the best performance, with a gauge factor (GF) of 88. The sensor exhibited a response time of less than 0.1 s at 50 cycles per minute (cpm), demonstrating that it detects and responds promptly to finger joint bending movements. Moreover, it exhibits stable repeatability and reliability across various angles and speeds, confirming its optimization for sign language recognition applications. Based on this design, an integrated textile-based system is developed by incorporating the sensor, interconnections, snap connectors, and a microcontroller unit (MCU) with built-in Bluetooth Low Energy (BLE) technology into the knitted glove. The complete system successfully recognized 12 Korean Sign Language (KSL) gestures in real time and output them as both text and audio through a dedicated application, achieving a high recognition accuracy of 98.67%. Thus, the present study quantitatively elucidates the structure–performance relationship of a knitted sensor and proposes a wearable system that accounts for real-world usage environments, thereby demonstrating the commercialization potential of the technology. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

Back to TopTop