Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China
Abstract
1. Introduction
2. Design of Hilly and Mountainous Rail Transportation System
2.1. Overall Structure and Working Principle
2.2. Main Component Design
2.2.1. Track Structural Design
2.2.2. Drive Components Design
2.2.3. Track-Switching Mechanism Design
3. Experimental Equipment and Methodology
3.1. Experimental Equipment
3.2. Double-Track Rail Modal Analysis Experiment
3.2.1. Modal Analysis Methods and Mathematical Model
3.2.2. Principles of Finite Element Modal Analysis
3.2.3. Experimental Modal Analysis
3.3. Dual-Track Stress–Strain Experiment
4. Results and Analysis
4.1. Modal Analysis Results
4.2. Stress–Strain Experiment Results
5. Analysis of the Influence of Structural Parameters on the Natural Frequency of the Rail
5.1. Wall Thickness
5.2. Support Spacing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Tuo, H.; Yi, W.; Wang, P. Development Status and Prospect of Agricultural Transport Equipment in Hilly and Mountainous Areas. China South. Agric. Mach. 2020, 51, 9–11+17. [Google Scholar]
- Zou, S.; Liu, S.; Li, M.; Chen, Z.; Zhang, X. Research progress on the application of rail transporters in hilly orchards. Mod. Agric. Equip. 2021, 42, 9–13. [Google Scholar]
- Xing, J. Design and Simulation of Self-propelled Steep SlopeDual-track Orchards Transport. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2012. [Google Scholar]
- Ouyang, Y.; Hong, T.; Jiao, F.; Su, J.; Xu, N.; Li, Z.; Chen, J. Design of mountain orchard detachable unidirectional traction double track cargo vehicle. J. Huazhong Agric. Univ. 2015, 34, 128–135. [Google Scholar]
- Ouyang, Y.; Hong, T.; Su, J.; Jiao, F.; Ma, Y.; Cai, Z. Design of Mountainous Orchard Double-track Transport Automatic Parking System—Based on PLC. J. Agric. Mech. Res. 2015, 37, 237–241. [Google Scholar]
- Chen, Q.; Zhou, S.; Xiao, Y.; Chen, L.; Zhou, Y.; Zhang, L. Modal test and finite element updating of sprayer boom truss. Sci. Rep. 2024, 14, 22860. [Google Scholar] [CrossRef]
- Gharaghani, B.N.; Maghsoudi, H.; Mohammadi, M. Ripeness detection of orange fruit using experimental and finite element modal analysis. Sci. Hortic. 2020, 261, 108958. [Google Scholar] [CrossRef]
- Saidin, S.S.; Kudus, S.A.; Jamadin, A.; Anuar, M.A.; Amin, N.M.; Ibrahim, Z.; Zakaria, A.B.; Sugiura, K. Operational modal analysis and finite element model updating of ultra-high-performance concrete bridge based on ambient vibration test. Case Stud. Constr. Mater. 2022, 16, e01117. [Google Scholar] [CrossRef]
- Ji, J.; Chen, K.; Jin, X.; Wang, Z.; Dai, B.; Fan, J.; Lin, X. High-efficiency modal analysis and deformation prediction of rice transplanter based on effective independent method. Comput. Electron. Agric. 2020, 168, 105126. [Google Scholar] [CrossRef]
- Qin, F.; Fan, G.; Zhang, H.; Li, Z. Development status and trend of orchard transport equipment. J. Chin. Agric. Mech. 2019, 40, 113–118. [Google Scholar]
- Li, J. Research on Single-Track Mountain Orchard Transport. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2011. [Google Scholar]
- Li, S.; Xing, J.; Zhang, Y.; Meng, L.; Fan, Q. 7YGS -45 Type Self-propelled Dual-track Mountain Orchard Transport. Trans. Chin. Soc. Agric. Mach. 2011, 42, 85–88. [Google Scholar]
- Li, S.; Liu, H.; Zhang, Y.; Chen, H.; Meng, L.; Ma, P.; Zhang, C.; Zhang, C. Optimization of rack toothforms of monorail mountain orchard transporter. Trans. Chin. Soc. Agric. Eng. 2018, 34, 52–57. [Google Scholar]
- Prasad, K.V.S.R.; Singh, V. Numerical investigation and experimental modal analysis validation to mitigate vibration of induction machine caused due to electrical and mechanical faults. J. Electr. Eng. Technol. 2022, 17, 2259–2273. [Google Scholar] [CrossRef]
- Qaumi, T.; Hashemi, S.M. Experimental and Numerical Modal Analysis of a Composite Rocket Structure. Aerospace 2023, 10, 867. [Google Scholar] [CrossRef]
- Ondra, V.; Titurus, B. Theoretical and experimental modal analysis of a beam-tendon system. Mech. Syst. Signal Process. 2019, 132, 55–71. [Google Scholar] [CrossRef]
- Cheng, X.; Song, Z. Modal experiment and model updating for Yingzhou Bridge. Structures 2021, 32, 746–759. [Google Scholar] [CrossRef]
- Li, Z.; Song, Q.; Liu, Z.; Ma, H.; Wang, B.; Cai, Y. Response prediction of cantilever plates via mode superposition method and combination method of beam functions. Mech. Syst. Signal Process. 2023, 200, 110613. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Li, C. Design of roller seeder based on solidworks. J. Phys. Conf. Ser. 2021, 1952, 032033. [Google Scholar] [CrossRef]
- Dong, Y. Optimization Design of Tension Machine Frame Based on Solidworks and ANSYS Workbench. J. Eng. Res. Rep. 2022, 8, 11–17. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, H.; Ma, H.; Chang, C.; Song, H.; Huang, W.; Zhu, J.; Yan, P.; Hu, C.; Zhao, T.; et al. Simulation and experimental analysis of traveling wave resonance of flexible spiral bevel gear system. Mech. Syst. Signal Process. 2025, 224, 112071. [Google Scholar] [CrossRef]
- Shahgholian-Ghahfarokhi, D.; Rahimi, G. Buckling load prediction of grid-stiffened composite cylindrical shells using the vibration correlation technique. Compos. Sci. Technol. 2018, 167, 470–481. [Google Scholar] [CrossRef]
- Guo, Z.; Shi, H.; Gong, H.; Ma, T.; Huang, X. Statistical characteristics of modal damping of long-span suspension bridge at different wind speeds. J. Vib. Control 2024, 30, 487–501. [Google Scholar] [CrossRef]
- Maji, A.; Moreu, F.; Woodall, J.; Hossain, M. Error analyses of a Multi-Input-Multi-Output cantilever beam test. J. Vib. Control 2022, 28, 3426–3437. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, J.; Chen, Z.; Wang, R. Automated eigensystem realisation algorithm for operational modal analysis. J. Sound Vib. 2014, 333, 3550–3563. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Zhang, W.; Sun, L. Theoretical and experimental investigation on the nonlinear vibration behavior of Z-shaped folded plates with inner resonance. Eng. Struct. 2019, 182, 123–140. [Google Scholar] [CrossRef]
- Greś, S.; Döhler, M.; Mevel, L. Uncertainty quantification of the modal assurance criterion in operational modal analysis. Mech. Syst. Signal Process. 2021, 152, 107457. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.; Pan, B.; Wang, R.; Wang, L. Analysis of excitation source characteristics and their contribution in a 2-cylinder diesel engine. Measurement 2021, 176, 109195. [Google Scholar] [CrossRef]
- Xu, T.; Gao, D.; Chen, Y.; Zhang, W.; Xu, F.; Zhou, P. Vibration response of the crawler combine chassis frame excited by the engine. Int. J. Rotating Mach. 2021, 2021, 6675003. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Weight | 230 kg |
Overall dimensions | 3050 × 600 × 1020 mm3 |
Power | 8.5 kW |
Load capacity | ≥750 kg |
Travel speed | ≥0.6 m/s |
Maximum operating slope | ≥40° |
Minimum braking distance | ≤10 cm |
Remote control range | 60 m |
Equipment | Model | Key Specifications |
---|---|---|
Signal analysis system | INV3060V2 | Channels: 16; ADC resolution: 24-bit; Maximum sampling rate: 102.4 KHz/channel. |
Impulse hammer | INV9313 | Measurement range: 0~25,000 N; Sensitivity: 0.20 mV/N. |
Triaxial acceleration sensors | INV9832-50 | Sensitivity: 100 mV/g; Range: ±50 g; Nonlinearity: ≤1%; Frequency response: 1–10 kHz (±1 dB). |
Strain gauge | BE120-3AA-P500 | Resistance: 119.9 ± 0.1 Ω; Gauge factor: 2.17 ± 1%. |
Order | Frequency/Hz | Order | Frequency/Hz |
---|---|---|---|
1 | 34.755 | 11 | 82.127 |
2 | 35.748 | 12 | 96.124 |
3 | 36.844 | 13 | 106.07 |
4 | 40.708 | 14 | 115.08 |
5 | 49.929 | 15 | 116.08 |
6 | 50.402 | 16 | 128.82 |
7 | 63.739 | 17 | 157.38 |
8 | 64.063 | 18 | 158.60 |
9 | 69.008 | 19 | 173.2 |
10 | 73.618 | 20 | 180.72 |
Order | Frequency/ Hz | Damping Ratio/% | Mode Shape |
---|---|---|---|
1 | 34.694 | 2.625 | 1st-order bending deflection in Y-direction |
2 | 38.125 | 0.409 | 1st-order bending deflection in Y-direction |
3 | 40.727 | 0.607 | 1st-order bending deflection in X-direction (unilateral) |
4 | 44.222 | 0.513 | 1st-order bending deflection in X-direction (unilateral) |
5 | 50.184 | 1.077 | 1st-order bending deflection in X-direction (unilateral) |
6 | 54.466 | 1.758 | 1st-order torsional deflection in XOY plane |
7 | 57.732 | 1.083 | 1st-order bending deflection in X-direction (unilateral) |
8 | 62.613 | 1.572 | 1st-order torsional deflection in XOY plane |
9 | 67.181 | 0.774 | 1st-order bending deflection in X-direction (unilateral) |
10 | 72.090 | 1.456 | 2nd-order torsional deflection in XOY plane |
11 | 77.408 | 1.182 | 2nd-order torsional deflection in XOY plane |
12 | 84.609 | 1.070 | 2nd-order torsional deflection in XOY plane |
13 | 106.499 | 0.831 | 2nd-order bending deflection in Y-direction |
14 | 132.219 | 1.110 | 2nd-order torsional deflection in XOY plane (X-dominant) |
15 | 142.458 | 0.769 | 2nd-order torsional deflection in XOY plane |
16 | 151.199 | 0.808 | 2nd-order torsional deflection in XOY plane |
17 | 165.168 | 1.291 | 2nd-order torsional deflection in XOY plane (X-mode) |
18 | 174.193 | 2.299 | 2nd-order torsional deflection in XOY plane |
19 | 181.744 | 1.613 | 2nd-order torsional deflection in XOY plane (unilateral) |
20 | 197.991 | 2.555 | 2nd-order torsional deflection in XOY plane |
Order | Experimental Value/Hz | Calculated Value/Hz | Error/% | Order | Experimental Value/Hz | Calculated Value/Hz | Error/% |
---|---|---|---|---|---|---|---|
1 | 34.694 | 34.755 | 0.176 | 11 | 77.408 | 82.127 | 6.095 |
2 | 38.125 | 35.748 | 6.235 | 12 | 84.609 | 96.124 | 13.610 |
3 | 40.727 | 36.844 | 9.534 | 13 | 106.499 | 106.070 | 0.393 |
4 | 44.222 | 40.708 | 7.946 | 14 | 132.219 | 115.080 | 12.963 |
5 | 50.184 | 49.929 | 0.510 | 15 | 142.458 | 116.080 | 18.516 |
6 | 54.466 | 50.402 | 7.463 | 16 | 151.199 | 128.820 | 14.801 |
7 | 57.732 | 63.739 | 10.405 | 17 | 165.168 | 157.380 | 4.715 |
8 | 62.613 | 64.063 | 2.314 | 18 | 174.193 | 158.600 | 8.957 |
9 | 67.181 | 69.008 | 2.720 | 19 | 181.744 | 173.200 | 4.701 |
10 | 72.090 | 73.618 | 2.118 | 20 | 197.991 | 180.72 | 8.723 |
Load/kg | Strain/µε | Stress/MPa | ||
---|---|---|---|---|
Drive Rail | Auxiliary Rail | Drive Rail | Auxiliary Rail | |
0 | 331.52 | 68.56 | 66.30 | 13.71 |
150 | 333.22 | 193.85 | 66.64 | 38.77 |
300 | 338.61 | 282.40 | 67.72 | 56.48 |
450 | 348.82 | 310.80 | 69.76 | 62.16 |
600 | 387.66 | 323.26 | 77.53 | 64.65 |
750 | 468.89 | 391.46 | 93.78 | 78.29 |
Wall Thickness/mm | Order and Frequency/Hz | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 37.321 | 37.953 | 38.304 | 43.769 | 50.554 | 50.950 | 65.180 |
5 | 32.327 | 34.482 | 35.675 | 38.245 | 48.568 | 49.067 | 62.051 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | |
3 | 65.458 | 72.794 | 77.638 | 87.015 | 101.530 | 111.490 | 120.790 |
5 | 62.387 | 65.553 | 69.974 | 78.176 | 91.943 | 101.740 | 110.540 |
15 | 16 | 17 | 18 | 19 | 20 | ||
3 | 120.840 | 135.240 | 160.300 | 161.410 | 176.660 | 184.530 | |
5 | 112.180 | 123.270 | 153.560 | 154.770 | 169.830 | 176.510 |
Support Spacing/mm | Order and Frequency/Hz | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1000 | 56.497 | 71.821 | 90.529 | 98.093 | 105.630 | 114.210 | 129.300 |
1500 | 44.465 | 54.919 | 58.661 | 63.680 | 80.624 | 84.840 | 88.397 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | |
1000 | 176.280 | 177.710 | 180.090 | 206.270 | 221.990 | 223.810 | 240.390 |
1500 | 90.842 | 101.680 | 112.970 | 113.690 | 127.890 | 140.630 | 160.640 |
15 | 16 | 17 | 18 | 19 | 20 | ||
1000 | 280.550 | 371.700 | 372.100 | 408.210 | 422.280 | 474.750 | |
1500 | 183.840 | 192.720 | 254.620 | 270.690 | 271.990 | 289.410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Chen, H.; Chen, J.; Gou, S.; Liu, Y.; Hu, J. Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China. Sensors 2025, 25, 4498. https://doi.org/10.3390/s25144498
Lin C, Chen H, Chen J, Gou S, Liu Y, Hu J. Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China. Sensors. 2025; 25(14):4498. https://doi.org/10.3390/s25144498
Chicago/Turabian StyleLin, Cheng, Hao Chen, Jiawen Chen, Shaolong Gou, Yande Liu, and Jun Hu. 2025. "Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China" Sensors 25, no. 14: 4498. https://doi.org/10.3390/s25144498
APA StyleLin, C., Chen, H., Chen, J., Gou, S., Liu, Y., & Hu, J. (2025). Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China. Sensors, 25(14), 4498. https://doi.org/10.3390/s25144498