Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,943)

Search Parameters:
Keywords = step-down/up converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1958 KiB  
Article
In Situ Response Time Measurement of RTD Based on LCSR Method
by Yanyong Song, Yi Liang, Zhenwen Zhang, Geyi Su and Mingxu Su
Sensors 2025, 25(15), 4826; https://doi.org/10.3390/s25154826 - 6 Aug 2025
Abstract
This study aims to overcome the limitations of conventional plunge tests for evaluating resistance temperature detector (RTD) response times under actual operating conditions, particularly in confined nuclear power plant piping. An in situ measurement device based on the loop current step response (LCSR) [...] Read more.
This study aims to overcome the limitations of conventional plunge tests for evaluating resistance temperature detector (RTD) response times under actual operating conditions, particularly in confined nuclear power plant piping. An in situ measurement device based on the loop current step response (LCSR) method was developed, with a conversion relationship to plunge test results established through numerical simulation and experimental validation. Investigations in a rotating water channel (over the flow velocity range of 0.2 to 0.6) confirmed excellent agreement in RTD response time, showing only 3.78% deviation between second-order-converted LCSR and plunge test measurements at 0.6 m/s. Both methods consistently revealed reduced RTD response times at higher flow velocities, with deviations consistently within ±10%, complying with nuclear instrumentation standards (NB/T 20069-2012). The LCSR method enables reliable in situ assessment while maintaining strong correlation with laboratory plunge tests. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

16 pages, 2734 KiB  
Article
A 13-Bit 100 kS/s Two-Step Single-Slope ADC for a 64 × 64 Infrared Image Sensor
by Qiaoying Gan, Wenli Liao, Weiyi Zheng, Enxu Yu, Zhifeng Chen and Chengying Chen
Eng 2025, 6(8), 180; https://doi.org/10.3390/eng6080180 - 1 Aug 2025
Viewed by 122
Abstract
An Analog-to-Digital Converter (ADC) is an indispensable part of image sensor systems. This paper presents a silicon-based 13-bit 100 kS/s two-step single-slope analog-to-digital converter (TS-SS ADC) for infrared image sensors with a frame rate of 100 Hz. For the charge leakage and offset [...] Read more.
An Analog-to-Digital Converter (ADC) is an indispensable part of image sensor systems. This paper presents a silicon-based 13-bit 100 kS/s two-step single-slope analog-to-digital converter (TS-SS ADC) for infrared image sensors with a frame rate of 100 Hz. For the charge leakage and offset voltage issues inherent in conventional TS-SS ADC, a four-terminal comparator was employed to resolve the fine ramp voltage offset caused by charge redistribution in storage and parasitic capacitors. In addition, a current-steering digital-to-analog converter (DAC) was adopted to calibrate the voltage reference of the dynamic comparator and mitigate differential nonlinearity (DNL)/integral nonlinearity (INL). To eliminate quantization dead zones, a 1-bit redundancy was incorporated into the fine quantization circuit. Finally, the quantization scheme consisted of 7-bit coarse quantization followed by 7-bit fine quantization. The ADC was implemented using an SMIC 55 nm processSemiconductor Manufacturing International Corporation, Shanghai, China. The post-simulation results show that when the power supply is 3.3 V, the ADC achieves a quantization range of 1.3 V–3 V. Operating at a 100 kS/s sampling rate, the proposed ADC exhibits an effective number of bits (ENOBs) of 11.86, a spurious-free dynamic range (SFDR) of 97.45 dB, and a signal-to-noise-and-distortion ratio (SNDR) of 73.13 dB. The power consumption of the ADC was 22.18 mW. Full article
Show Figures

Figure 1

22 pages, 6436 KiB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 - 31 Jul 2025
Viewed by 206
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

16 pages, 2260 KiB  
Article
From Shale to Value: Dual Oxidative Route for Kukersite Conversion
by Kristiina Kaldas, Kati Muldma, Aia Simm, Birgit Mets, Tiina Kontson, Estelle Silm, Mariliis Kimm, Villem Ödner Koern, Jaan Mihkel Uustalu and Margus Lopp
Processes 2025, 13(8), 2421; https://doi.org/10.3390/pr13082421 - 30 Jul 2025
Viewed by 277
Abstract
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a [...] Read more.
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a locally based source of aliphatic dicarboxylic acids (DCAs). The method combines air oxidation with subsequent nitric acid treatment to enable selective breakdown of the organic structure under milder conditions. Air oxidation was conducted at 165–175 °C using 1% KOH as an alkaline promoter and 40 bar oxygen pressure (or alternatively 185 °C at 30 bar), targeting 30–40% carbon conversion. The resulting material was then subjected to nitric acid oxidation using an 8% HNO3 solution. This approach yielded up to 23% DCAs, with pre-oxidation allowing a twofold reduction in acid dosage while maintaining efficiency. However, two-step oxidation was still accompanied by substantial degradation of the structure, resulting in elevated CO2 formation, highlighting the need to balance conversion and carbon retention. The process offers a possible route for transforming solid fossil residues into useful chemical precursors and supports the advancement of regionally sourced, sustainable DCA production from unconventional raw materials. Full article
Show Figures

Graphical abstract

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 305
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

14 pages, 2049 KiB  
Article
Sugars to Acids via Thioesters: A Computational Study
by Jeremy Kua and Jonathan D. Karin
Life 2025, 15(8), 1189; https://doi.org/10.3390/life15081189 - 26 Jul 2025
Viewed by 220
Abstract
Extant core metabolic cycles such as the TCA cycle and its related analog pathways utilize carboxylic acids as metabolites, with thioesters playing a key role. We examine if sugars from the potentially autocatalytic formose reaction can be converted to carboxylic acids in the [...] Read more.
Extant core metabolic cycles such as the TCA cycle and its related analog pathways utilize carboxylic acids as metabolites, with thioesters playing a key role. We examine if sugars from the potentially autocatalytic formose reaction can be converted to carboxylic acids in the absence of enzymes by calculating the thermodynamics and kinetics of such pathways. We zero in on a mechanism involving the addition of a thiol to an aldehyde, followed by intramolecular disproportionation to form a thioester that can be hydrolyzed into its carboxylic acid. This route is thermodynamically favorable but can have kinetic bottlenecks. We find that elimination of H2O or H2S is often the rate-determining step, and that alpha di-carbonyl reactants that do not require such a step are more feasible in the absence of catalysts. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

20 pages, 3528 KiB  
Article
High-Precision Optimization of BIM-3D GIS Models for Digital Twins: A Case Study of Santun River Basin
by Zhengbing Yang, Mahemujiang Aihemaiti, Beilikezi Abudureheman and Hongfei Tao
Sensors 2025, 25(15), 4630; https://doi.org/10.3390/s25154630 - 26 Jul 2025
Viewed by 481
Abstract
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework [...] Read more.
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework that uses Industry Foundation Classes (IFCs) as the base model and Open Scene Graph Binary (OSGB) as the target model: (1) geometric optimization through an angular weighting (AW)-controlled Quadric Error Metrics (QEM) algorithm; (2) Level of Detail (LOD) hierarchical mapping to establish associations between the IFC and OSGB models, and redesign scene paging logic; (3) coordinate registration by converting the IFC model’s local coordinate system to the global coordinate system and achieving spatial alignment via the seven-parameter method. Applied to the Santun River Basin digital twin project, experiments with 10 water gate models show that the AW-QEM algorithm reduces average loading time by 15% compared to traditional QEM, while maintaining 97% geometric accuracy, demonstrating the method’s efficiency in balancing precision and rendering performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 7595 KiB  
Article
Reactive Sintering of Cemented Carbides
by Victor I. Stanciu, Alexandre Mégret, Anne Mouftiez, Véronique Vitry and Fabienne Delaunois
Alloys 2025, 4(3), 15; https://doi.org/10.3390/alloys4030015 - 25 Jul 2025
Viewed by 132
Abstract
Cemented carbides are among the primary materials for tools and wear parts. Today, energy prices and carbon emissions have become key concerns worldwide. Cemented carbides consist of tungsten carbide combined with a binder, typically cobalt, nickel, or more recently, various high-entropy alloys. Producing [...] Read more.
Cemented carbides are among the primary materials for tools and wear parts. Today, energy prices and carbon emissions have become key concerns worldwide. Cemented carbides consist of tungsten carbide combined with a binder, typically cobalt, nickel, or more recently, various high-entropy alloys. Producing tungsten carbide involves reducing tungsten oxide, followed by carburization of tungsten at 1400 °C under a hydrogen atmosphere. The tungsten carbide produced is then mixed with the binder, milled to achieve the desired particle size, and granulated to ensure proper flow for pressing and shaping. This study aims to bypass the tungsten carburizing step by mixing tungsten, carbon, and cobalt; shaping the mixture; and then applying reactive sintering, which will convert tungsten into carbide and consolidate the parts. The mixtures were prepared by planetary ball milling for 10 h under different conditions. Tests demonstrated that tungsten carburization successfully occurs during sintering at 1450 °C for 1 h. The samples exhibit a typical cemented carbide microstructure, characterized by prismatic grains with an average size of 0.32 μm. Densification reached 92%, hardness is approximately 1800 HV30, and toughness is 10.9 ± 1.15 MPa·m1/2. Full article
(This article belongs to the Special Issue New Alloys for Surface Engineered Coatings, Interfaces and Films)
Show Figures

Figure 1

13 pages, 436 KiB  
Opinion
It Is Time to Consider the Lost Battle of Microdamaged Piezo2 in the Context of E. coli and Early-Onset Colorectal Cancer
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7160; https://doi.org/10.3390/ijms26157160 - 24 Jul 2025
Viewed by 340
Abstract
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, [...] Read more.
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, including lifestyle and diet, are highly suspected. The identification of colibactin from Escherichia coli as a potential pathogenic source is a major step forward in addressing this public health challenge. Therefore, the following opinion manuscript aims to outline the likely onset of the pathomechanism and the critical role of acquired Piezo2 channelopathy in early-onset colorectal cancer, which skews proton availability and proton motive force regulation toward E. coli within the microbiota–host symbiotic relationship. In addition, the colibactin produced by the pks island of E. coli induces host DNA damage, which likely interacts at the level of Wnt signaling with Piezo2 channelopathy-induced pathological remodeling. This transcriptional dysregulation eventually leads to tumorigenesis of colorectal cancer. Mechanotransduction converts external physical cues to inner chemical and biological ones. Correspondingly, the proposed quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling, initiated by Piezo2, seems to be the principal and essential underlying novel oscillatory signaling that could be lost in colorectal cancer onset. Hence, Piezo2 channelopathy not only contributes to cancer initiation and impaired circadian regulation, including the proposed hippocampal ultradian clock, but also to proliferation and metastasis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

16 pages, 3173 KiB  
Article
Floating Step-Down Converter with a Novel Lossless Snubber
by Kuo-Ing Hwu, Yen-Ting Lu and Jenn-Jong Shieh
Appl. Sci. 2025, 15(15), 8146; https://doi.org/10.3390/app15158146 - 22 Jul 2025
Viewed by 231
Abstract
In this research, a step-down converter with a lossless snubber is proposed, and its output is floating; therefore, it can be applied to LED driving applications. Such a structure is a modification of the conventional buck converter by adding a resonant capacitor, a [...] Read more.
In this research, a step-down converter with a lossless snubber is proposed, and its output is floating; therefore, it can be applied to LED driving applications. Such a structure is a modification of the conventional buck converter by adding a resonant capacitor, a resonant inductor, and two diodes to form this lossless snubber to reduce the switching loss during the switching period. Although the efficiency improvement in this circuit is not as good as the existing soft switching circuits, this circuit has the advantages of simple structure, easy control, and zero voltage switching (ZVS) cutoff. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 16432 KiB  
Article
Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction
by Xiaopeng Chang, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren and Xiang Zhang
Minerals 2025, 15(7), 760; https://doi.org/10.3390/min15070760 - 20 Jul 2025
Viewed by 236
Abstract
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages [...] Read more.
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages by handling both categorical and continuous variables and automatically determining the optimal number of clusters. In this study, we applied the TSC method to mineral prediction in the northeastern margin of the Jiaolai Basin by: (i) converting residual gravity and magnetic anomalies into categorical variables using Ward clustering; and (ii) transforming 13 stream sediment elements into independent continuous variables through factor analysis. The results showed that clustering is sensitive to categorical variables and performs better with fewer categories. When variables share similar distribution characteristics, consistency between geophysical discretization and geochemical boundaries also influences clustering results. In this study, the (3 × 4) and (4 × 4) combinations yielded optimal clustering results. Cluster 3 was identified as a favorable zone for gold deposits due to its moderate gravity, low magnetism, and the enrichment in F1 (Ni–Cu–Zn), F2 (W–Mo–Bi), and F3 (As–Sb), indicating a multi-stage, shallow, hydrothermal mineralization process. This study demonstrates the effectiveness of combining Ward clustering for variable transformation with TSC for the integrated analysis of categorical and numerical data, confirming its value in multi-source data research and its potential for further application. Full article
Show Figures

Figure 1

29 pages, 3084 KiB  
Article
The Cascade Transformation of Furfural to Cyclopentanone: A Critical Evaluation Concerning Feasible Process Development
by Christian A. M. R. van Slagmaat
ChemEngineering 2025, 9(4), 74; https://doi.org/10.3390/chemengineering9040074 - 19 Jul 2025
Viewed by 271
Abstract
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess [...] Read more.
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess its feasibility as an industrial process. However, acquiring an acceptable cyclopentanone yield proved very difficult, and the reaction was constrained by unforeseen parameters, such as the relative liquid volume in the reactor and the substrate concentration. Most strikingly, the sacrificial formation of furanoic oligomers that precipitated onto the catalyst’s surface was a troublesome key factor that mediated the product’s selectivity versus the carbon mass balance. By applying a biphasic water–toluene solvent system, the yield of cyclopentanone was somewhat improved to a middling 59%, while tentatively positive distributions of reaction components over these solvent phases were observed, which could be advantageous for anticipated down-stream processing. Overall, the sheer difficulty of controlling this one-pot cascade transformation towards a satisfactory product output under rather unfavorable reaction parameters renders it unsuitable for industrial process development, and a multi-step procedure for this chemical transformation might be considered instead. Full article
Show Figures

Figure 1

15 pages, 3596 KiB  
Article
Fuzzy-Aided P–PI Control for Start-Up Current Overshoot Mitigation in Solid-State Lithium Battery Chargers
by Chih-Tsung Chang and Kai-Jun Pai
Appl. Sci. 2025, 15(14), 7979; https://doi.org/10.3390/app15147979 - 17 Jul 2025
Viewed by 186
Abstract
A battery charger for solid-state lithium battery packs was developed and implemented. The power stage used a phase-shifted full-bridge converter integrated with a current-doubler rectifier and synchronous rectification. Dual voltage and current control loops were employed to enable constant-voltage and constant-current charging modes. [...] Read more.
A battery charger for solid-state lithium battery packs was developed and implemented. The power stage used a phase-shifted full-bridge converter integrated with a current-doubler rectifier and synchronous rectification. Dual voltage and current control loops were employed to enable constant-voltage and constant-current charging modes. To improve the lifespan of the output filter capacitor, the current-doubler rectifier was adopted to effectively reduce output current ripple. During the initial start-up phase, as the charger transitions from constant-voltage to constant-current output mode, the use of proportional–integral control in the voltage and current loop error amplifiers may cause current overshoot during the step-rising phase, primarily due to the integral action. Therefore, this study incorporated fuzzy control, proportional control, and proportional–integral control strategies into the current-loop error amplifier. This approach effectively reduced the current overshoot during the step-rising phase, preventing the charger from mistakenly triggering the overcurrent protection mode. The analysis and design considerations of the proposed circuit topology and control loop are presented. Experimental results agree with theoretical predictions, thereby confirming the validity of the proposed approach. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 1402 KiB  
Article
Right Colectomy with Complete Mesocolic Excision and Intracorporeal Anastomosis: A Monocentric, Single-Surgeon Comparison of Dexter, DaVinci and Laparoscopic Approaches
by Julius Pochhammer, Frederike Franke, Matthias Martin, Jan Henrik Beckmann, Daniar Osmonov, Ibrahim Alkatout and Thomas Becker
Life 2025, 15(7), 1122; https://doi.org/10.3390/life15071122 - 17 Jul 2025
Viewed by 321
Abstract
(1) Minimally invasive techniques are standard in colorectal surgery, though complete mesocolic excision (CME) with central lymphadenectomy remains technically demanding. Robotic systems may address these challenges. While the DaVinci system is well established, the modular Dexter system allows rapid switching between laparoscopy and [...] Read more.
(1) Minimally invasive techniques are standard in colorectal surgery, though complete mesocolic excision (CME) with central lymphadenectomy remains technically demanding. Robotic systems may address these challenges. While the DaVinci system is well established, the modular Dexter system allows rapid switching between laparoscopy and robotics. (2) This prospective single-surgeon study compared right hemicolectomy with CME and intracorporeal anastomosis using Dexter, DaVinci, and conventional laparoscopy in 75 patients (25 per group) at a German high-volume center. Outcomes assessed included operative time, complications, lymph node yield, and CME quality. (3) Mean operative time was longest with DaVinci (190.5 min) versus Dexter (164.8 min) and laparoscopy (152.6 min). Intracorporeal anastomosis was more frequent in robotic groups. No significant differences were found in lymph node yield, CME quality, postoperative complications, length of stay, or survival. (4) The ability to convert briefly to laparoscopy during Dexter procedures helped manage challenging steps, especially during the learning curve. The results suggest that Dexter is a safe, feasible alternative to established robotic and laparoscopic techniques, with the added benefits of flexibility and integration into existing workflows. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

Back to TopTop