Reactive Sintering of Cemented Carbides
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartzkopf, P.; Richard, K. Cemented Carbides; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Wolfe, P.K.; Johnson, T.A.; Mehrota, J.L. Production of Carbide Powders. In ASM Handbook, Volume 7, Powder Metallurgy; ASM International: Almere, the Netherlands, 2015; pp. 711–714. Available online: https://matdata.asminternational.org/hbk/ (accessed on 2 March 2025).
- Mühlbauer, G.; Kremser, G.; Bock, A.; Weidow, J.; Schubert, W.-D. Transition of W2C to WC during carburization of tungsten metal powder. Int. J. Refract. Met. Hard Mater. 2018, 72, 141–148. [Google Scholar] [CrossRef]
- Seegopaul, P.; McCandlish, L.; Shinneman, F. Production capability and powder processing methods for nanostructured WC-Co powder. Int. J. Refract. Met. Hard Mater. 1997, 15, 133–138. [Google Scholar] [CrossRef]
- Luković, J.; Babić, B.; Bučevac, D.; Prekajski, M.; Pantić, J.; Baščarević, Z.; Matović, B. Synthesis and characterization of tungsten carbide fine powders. Ceram. Int. 2015, 41, 1271–1277. [Google Scholar] [CrossRef]
- Zhan, W.; Wang, H.; Liang, S.; Liu, X.; Song, X. Acceleration effect of cobalt on carburization of tungsten at low temperature. J. Alloy. Compd. 2018, 732, 429–435. [Google Scholar] [CrossRef]
- Popov, O.; Vishnyakov, V. High Densification of Tungsten via Hot Pressing at 1300 °C in Carbon Presence. Materials 2022, 15, 3641. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, M.; Portarapillo, M.; Di Nardo, A.; Venezia, V.; Turco, M.; Luciani, G.; Di Benedetto, A. Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment. Energies 2024, 17, 1350. [Google Scholar] [CrossRef]
- Sun, S.-K.; Zhang, G.-J.; Wu, W.-W.; Liu, J.-X.; Zou, J.; Suzuki, T.; Sakka, Y. Reactive spark plasma sintering of binderless WC ceramics at 1500 °C. Int. J. Refract. Met. Hard Mater. 2014, 43, 42–45. [Google Scholar] [CrossRef]
- Sun, S.; Kan, Y.; Zhang, G.; Dariel, M.P. Fabrication of Nanosized Tungsten Carbide Ceramics by Reactive Spark Plasma Sintering. J. Am. Ceram. Soc. 2011, 94, 3230–3233. [Google Scholar] [CrossRef]
- Aouchiche, L.; Alhussein, A.; Nechiche, M.; Retraint, D.; Amirouche, S.; Azem, S. Microstructural, mechanical and tribological characterization of Co–20 wt% WC composite elaborated by solid-phase sintering of Co–W–C powders mixture. Tribol. Mater. Surfaces Interfaces 2021, 16, 202–210. [Google Scholar] [CrossRef]
- Stanciu, V.I.; Vitry, V.; Delaunois, F. Cobalt-inhibitor mixtures for cemented carbides. In Proceedings of the 19th Plansee Semin, Reutte, Austria, 29 May–2 June 2017; Volume 2017, pp. 1–13. [Google Scholar]
- Sadangi, R.; Bose, A. Some aspects of solid solution grain growth inhibitors in cemented tungsten carbides. Int. J. Refract. Met. Hard Mater. 2024, 119, 106474. [Google Scholar] [CrossRef]
- Chychko, A.; García, J.; Ciprés, V.C.; Holmström, E.; Blomqvist, A. HV-KIC property charts of cemented carbides: A comprehensive data collection. Int. J. Refract. Met. Hard Mater. 2022, 103, 105763. [Google Scholar] [CrossRef]
- ASTM E112-24; Standard Test Methods for Determining Average Grain Size. ASTM International: Almere, The Netherlands, 2024. Available online: https://store.astm.org/e0112-24.html (accessed on 12 July 2025).
- Stanciu, V.I.; Vitry, V.; Delaunois, F. Study of the milling parameters optimization in the direct carburization of WO3 by mechanical alloying. Int. J. Refract. Met. Hard Mater. 2020, 87, 105160. [Google Scholar] [CrossRef]
- Bose, A.; Sadangi, R.; Mehrotra, P.K. Sintering of Hardmetals. In ASM Metallurgy Handbook Vol. 7—Powder Metallurgy; ASM Handbook; ASM International: Almere, The Netherlands, 2018; pp. 720–725. [Google Scholar] [CrossRef]
- Parker, S.; Whiting, M.; Yeomans, J. Control of carbon content in WC-Co hardmetal by heat treatment in reducing atmospheres containing methane. Int. J. Refract. Met. Hard Mater. 2017, 66, 204–210. [Google Scholar] [CrossRef]
- Pederson, B.M.; Gonzalez, R.M.; Winburn, R.S. Minimization of microabsorption effects in complex mixtures. Adv. X-Ray Anal. 2003, 46, 68–73. [Google Scholar]
- Shi, X.; Shao, G.; Duan, X.; Xiong, Z.; Yang, H. Characterizations of WC–10Co nanocomposite powders and subsequently sinterhip sintered cemented carbide. Mater. Charact. 2006, 57, 358–370. [Google Scholar] [CrossRef]
- Long, W.M. Radial Pressures in Powder Compaction. Powder Metall. 1960, 3, 73–86. [Google Scholar] [CrossRef]
- Rödiger, K.; Berg, H.v.D.; Dreyer, K.; Kassel, D.; Orths, S. Near-net-shaping in the hardmetal industry. Int. J. Refract. Met. Hard Mater. 2000, 18, 111–120. [Google Scholar] [CrossRef]
- James, W.B.; Retired, H.C. Nondestructive Evaluation of Pressed and Sintered Powder Metallurgy Parts. Nondestruct. Eval. Mater. 2018, 17, 533–543. [Google Scholar] [CrossRef]
- Galen, S.; Zavaliangos, A. Strength anisotropy in cold compacted ductile and brittle powders. Acta Mater. 2005, 53, 4801–4815. [Google Scholar] [CrossRef]
- Uematsu, K. Processing defects in ceramic powders and powder compacts. Adv. Powder Technol. 2014, 25, 154–162. [Google Scholar] [CrossRef]
- Tatarinov, A.; Kurtenoks, V.; Mironovs, V. Detection of cracks in green products of powder metallurgy by means of laser vibrometry. In Proceedings of the Modern Materials and Manufacturing (MMM 2021), Tallinn, Estonia, 27–29 April 2021; IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1140, p. 012045. [Google Scholar] [CrossRef]
- Schade, C. Blending and Premixing of Metal Powders and Binders. Powder Metall. 2018, 7, 88–92. [Google Scholar] [CrossRef]
- Konyashin, I.; Zaitsev, A.; Sidorenko, D.; Levashov, E.; Ries, B.; Konischev, S.; Sorokin, M.; Mazilkin, A.; Herrmann, M.; Kaiser, A. Wettability of tungsten carbide by liquid binders in WC–Co cemented carbides: Is it complete for all carbon contents? Int. J. Refract. Met. Hard Mater. 2017, 62, 134–148. [Google Scholar] [CrossRef]
- Fabijanić, T.A.; Alar, Ž.; Ćorić, D. Influence of consolidation process and sintering temperature on microstructure and mechanical properties of near nano- and nano-structured WC-Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2016, 54, 82–89. [Google Scholar] [CrossRef]
- Schwarz, V.; Shi, K.; Lengauer, W. Metallurgy and Properties of Mo-doped WC-Co and (W,Mo)C-Co Hardmetals. In Proceedings of the WorldPM 2016, Hamburg, Germany, 9–13 October 2016. [Google Scholar]
- Kumar, V.; Fang, Z.Z.; Wright, S.I.; Nowell, M.M. An analysis of grain boundaries and grain growth in cemented tungsten carbide using orientation imaging microscopy. Met. Mater. Trans. A 2006, 37, 599–607. [Google Scholar] [CrossRef]
- Stanciu, V.I.; Erauw, J.-P.; Boilet, L.; Vitry, V.; Delaunois, F. WC-Co composite made with doped binder: The effect of binder proportion on microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 2023, 112, 106161. [Google Scholar] [CrossRef]
- Toller, L.R.M.; Norgren, S.M. Mechanisms of plastic deformation in WC-Co and WC-Ni-Fe turning inserts. In Proceedings of the 19th Plansee Seminar, Reutte, Austria, 29 May–2 June 2017. [Google Scholar]
- Prakash, L.J. Development of Tungsten Carbide Hardmetals Using Iron-Based Binder Alloys. Ph.D. Thesis, Inst. fuer Material-und Festkoerperforschung, Fakultaet fuer Maschinenbau, Karlsruhe University, Karlsruhe, Germany, 1980. Available online: https://inis.iaea.org/records/k0pd9-fjt74 (accessed on 12 July 2025).
- Prakash, L.J. Properties and applications of WC hardmetals with iron based binders. In Proceedings of the Ninth International Conference on Tungsten, Refractory & Hardmaterials, Orlando, FL, USA, 18–22 May 2014; pp. 113–125. [Google Scholar]
- Humphry-Baker, S.A.; Marshall, J.M.; Smith, G.D.W.; Lee, W.E. Thermophysical properties of Co-free WC-FeCr hardmetals. In Proceedings of the 19th Plansee Seminar, Reutte, Austria, 29 May–2 June 2017. [Google Scholar]
- Fang, Z.Z.; Wang, X.; Ryu, T.; Hwang, K.S.; Sohn, H. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—A review. Int. J. Refract. Met. Hard Mater. 2009, 27, 288–299. [Google Scholar] [CrossRef]
- Linder, D.; Holmström, E.; Norgren, S. High entropy alloy binders in gradient sintered hardmetal. In Proceedings of the 19th Plansee Seminar, Reutte, Austria, 29 May–2 June 2017; pp. 1–7. [Google Scholar]
- Alvaredo, P.; Cornide, J.; Prieto, E.; Gordo, M.N.E. High Entropy Alloy as Binder in Cermets. In Proceedings of the Euro PM 2018 Congress and Exhibition, Bilbao, Spain, 14–18 October 2018. [Google Scholar]
- de Nicolás-Morillas, M.; Besharatloo, H.; Cabezas, L.; de la Mata, M.; Sales, D.; Pereira, L.; Müller-Grunz, A.; Bertalan, C.; Useldinger, R.; Llanes, L.; et al. Processing of WC with Fe-based alternative binders: Adjustment of C content and effect of Cr addition. Int. J. Refract. Met. Hard Mater. 2024, 118, 106444. [Google Scholar] [CrossRef]
- Rosa, J.M.B.; Lugon, R.D.; Silva, K.d.S.; das Chagas, V.M.; Guimarães, R.d.S.; de Carvalho, C.S.; Barreto, L.P.d.P.; Filgueira, M. Study of characteristics and properties of spark plasma sintered WC with the use of alternative Fe-Ni-Nb binder as Co replacement. Int. J. Refract. Met. Hard Mater. 2020, 92, 105316. [Google Scholar] [CrossRef]
- Schubert, W.; Fugger, M.; Wittmann, B.; Useldinger, R. Aspects of sintering of cemented carbides with Fe-based binders. Int. J. Refract. Met. Hard Mater. 2015, 49, 110–123. [Google Scholar] [CrossRef]
- Soria-Biurrun, T.; Lozada-Cabezas, L.; Ibarreta-Lopez, F.; Martinez-Pampliega, R.; Sanchez-Moreno, J. Effect of chromium and carbon contents on the sintering of WC-Fe-Ni-Co-Cr multicomponent alloys. Int. J. Refract. Met. Hard Mater. 2020, 92, 105317. [Google Scholar] [CrossRef]
- Toller, L.; Norgren, S. Phase Transformations in Iron-Based Alternative Binders for Hardmetals. In Proceedings of the 2016 Powder Metallurgy World Congress, Hamburg, Germany, 9–13 October 2016; EPMA, Ed.; EPMA: Hambourg, Germany, 2016. [Google Scholar]
- Sáez, I.; Torralba, J.M. Novel WC Hardmetal with Cr/Fe Binder Alloy Sintered by SPS. In Proceedings of the 2016 Powder Metallurgy World Congress, Hamburg, Germany, 9–13 October 2016; EPMA, Ed.; EPMA: Hambourg, Germany, 2016; pp. 1–5. [Google Scholar]
- Roulon, Z.; Missiaen, J.-M.; Lay, S. Effect of Binder Phase on Sintering of Cemented Carbides. In Proceedings of the 2018 Powder Metallurgy World Congress, Beijing, China, 16–20 September 2018; pp. 770–774. [Google Scholar]
- Buchegger, C.; Lengauer, W.; Bernardi, J.; Gruber, J.; Ntaflos, T.; Kiraly, F.; Langlade, J. Diffusion parameters of grain-growth inhibitors in WC based hardmetals with Co, Fe/Ni and Fe/Co/Ni binder alloys. Int. J. Refract. Met. Hard Mater. 2015, 49, 67–74. [Google Scholar] [CrossRef]
- Nakonechnyi, S.; Yurkova, A.; Loboda, P. WC-based cemented carbide with NiFeCrWMo high-entropy alloy binder as an alternative to cobalt. Vacuum 2024, 222, 113052. [Google Scholar] [CrossRef]
- Chen, C.; Huang, B.; Liu, Z.; Chen, L.; Li, Y.; Zou, D.; Chang, Y.; Cheng, X.; Zhou, R.; Liu, Y. Material extrusion additive manufacturing of WC-9Co cemented carbide. Addit. Manuf. 2024, 86, 104203. [Google Scholar] [CrossRef]
Milling Series | Milling Speed [rpm] | Milling Time [h] | Milling Environment | Milling Media |
---|---|---|---|---|
S1 | 600 | 10 | 20 mL of ethanol | Ø10 mm, steel |
S2 | 600 | 10 | 20 mL of ethanol | Ø10 mm, WC-6Co |
Phase Proportion | ||
---|---|---|
Phase | Milled with Steel Balls | Milled with WC-6Co Balls |
Qwc | 0.91 ± 0.05 | 0.97 ± 0.02 |
QCobalt | 0.02 ± 0.02 | 0.02 ± 0.02 |
QTongbaite Cr3C2 | 0.02 ± 0.04 | 0 ± 0 |
QW3Co3C | 0.006 ± 0.009 | 0.001 ± 0.004 |
QW6Co6C | 0.014 ± 0.009 | 0 ± 0.004 |
Q alfaFe | 0.017 ± 0.01 | 0.003 ± 0.009 |
QCo3W | 0.004 ± 0.01 | 0.003 ± 0.007 |
QCoFe | 0.007 ± 0.01 | 0 ± 0 |
Chemical Composition [%, by Weight] | |||||
---|---|---|---|---|---|
C | Cr | Fe | Co | W | |
Steel balls | 5.80 | 1.02 | 1.320 | 8.75 | 83.10 |
WC balls | 5.38 | 0.77 | 9.32 | 84.7 |
Hardness [HV30] | Toughness [MPa × m1/2] | |||
---|---|---|---|---|
Steel balls | WC-Co balls | Steel balls | WC-Co balls | |
Value | 1762 | 1809 | 10.81 | 10.98 |
Standard deviation | 22.3 | 61.0 | 1.6 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, V.I.; Mégret, A.; Mouftiez, A.; Vitry, V.; Delaunois, F. Reactive Sintering of Cemented Carbides. Alloys 2025, 4, 15. https://doi.org/10.3390/alloys4030015
Stanciu VI, Mégret A, Mouftiez A, Vitry V, Delaunois F. Reactive Sintering of Cemented Carbides. Alloys. 2025; 4(3):15. https://doi.org/10.3390/alloys4030015
Chicago/Turabian StyleStanciu, Victor I., Alexandre Mégret, Anne Mouftiez, Véronique Vitry, and Fabienne Delaunois. 2025. "Reactive Sintering of Cemented Carbides" Alloys 4, no. 3: 15. https://doi.org/10.3390/alloys4030015
APA StyleStanciu, V. I., Mégret, A., Mouftiez, A., Vitry, V., & Delaunois, F. (2025). Reactive Sintering of Cemented Carbides. Alloys, 4(3), 15. https://doi.org/10.3390/alloys4030015