Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = stem-cell-triggered immunity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 719 KiB  
Review
Mesenchymal Stem-Cell-Derived Exosomes and MicroRNAs: Advancing Cell-Free Therapy in Systemic Sclerosis
by Cristiano Barbetta, Francesco Bonomi, Gemma Lepri, Daniel E. Furst, Silvia Bellando Randone and Serena Guiducci
Cells 2025, 14(13), 1018; https://doi.org/10.3390/cells14131018 - 3 Jul 2025
Viewed by 488
Abstract
Mesenchymal stem cell (MSC) transplantation has emerged as a potential therapeutic strategy for systemic sclerosis (SSc), a rare autoimmune disease characterized by inflammation, fibrosis, and vasculopathy. Recent evidence suggests that the therapeutic benefits of MSCs do not depend directly on their ability to [...] Read more.
Mesenchymal stem cell (MSC) transplantation has emerged as a potential therapeutic strategy for systemic sclerosis (SSc), a rare autoimmune disease characterized by inflammation, fibrosis, and vasculopathy. Recent evidence suggests that the therapeutic benefits of MSCs do not depend directly on their ability to proliferate but rather on their capacity to release extracellular nanovesicles known as exosomes (MSC-Exos). MSC-Exos are rich in bioactive molecules such as microRNAs, which can modulate gene expression and trigger significant biological responses, playing a central role in modulating immune responses, inhibiting fibrotic pathways and promoting tissue repair and angiogenesis. Preclinical studies have demonstrated that MSC-Exos can attenuate fibrosis, modulate macrophage polarization, suppress autoreactive lymphocyte activity, and even reverse pulmonary arterial hypertension in animal models of SSc. Compared to cell-based therapies, MSC-Exos offer several advantages, including lower immunogenicity and better safety profile. This review provides an overview of the immunomodulatory, antifibrotic, and angiogenic properties of MSC-Exos and explores their potential as novel cell-free therapy for SSc. Full article
Show Figures

Figure 1

31 pages, 2104 KiB  
Review
Balancing Regeneration and Resistance: Targeting DCLK1 to Mitigate Gastrointestinal Radiation Injury and Oncogenesis
by Landon L. Moore, Jerry Jaboin, Milton L. Brown and Courtney W. Houchen
Cancers 2025, 17(12), 2050; https://doi.org/10.3390/cancers17122050 - 19 Jun 2025
Viewed by 660
Abstract
Ionizing radiation (IR) poses a dual challenge in medicine; while essential for cancer therapy, it inflicts collateral damage to normal tissues, particularly the gastrointestinal (GI) tract. High-dose IR triggers acute radiation syndrome (ARS), characterized by crypt stem cell depletion, mucosal barrier disruption, inflammation, [...] Read more.
Ionizing radiation (IR) poses a dual challenge in medicine; while essential for cancer therapy, it inflicts collateral damage to normal tissues, particularly the gastrointestinal (GI) tract. High-dose IR triggers acute radiation syndrome (ARS), characterized by crypt stem cell depletion, mucosal barrier disruption, inflammation, and potential progression to fibrosis and secondary malignancy. Emerging evidence identifies the epithelial kinase doublecortin-like kinase 1 (DCLK1)—highly expressed in GI tuft cells and cancer stem-like cells—as a master regulator of post-IR responses. DCLK1 integrates DNA repair (via p53/ATM), and survival signaling (via NF-κB, TGF-β, and MAPK) to promote epithelial regeneration, yet these same mechanisms contribute to therapy resistance and oncogenesis. DCLK1 further modulates the immune microenvironment by skewing macrophages toward an immunosuppressive M2 phenotype, enhancing tissue remodeling, angiogenesis, and immune evasion. Preclinical studies demonstrate that DCLK1 inhibition sensitizes tumors to radiotherapy while preserving mucosal repair. Therapeutic strategies targeting DCLK1, alongside radioprotective agents, immunomodulators, and senolytics, may enhance regeneration, limit fibrosis, and eradicate therapy-resistant cancer stem cells. This review highlights DCLK1’s dual role in regeneration and tumorigenesis and evaluates its potential as a therapeutic target and biomarker in IR-induced GI damage. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

32 pages, 2656 KiB  
Review
Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine
by Marie Karam, Alba Ortega-Gascó and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(7), 3275; https://doi.org/10.3390/ijms26073275 - 1 Apr 2025
Cited by 1 | Viewed by 1561
Abstract
Neuroinflammation is a complex immune response triggered by brain injury or pathological stimuli, and is highly exacerbated in neurodegenerative diseases. It plays a dual role in the central nervous system, promoting repair in acute stages while aggravating disease progression by contributing to neuronal [...] Read more.
Neuroinflammation is a complex immune response triggered by brain injury or pathological stimuli, and is highly exacerbated in neurodegenerative diseases. It plays a dual role in the central nervous system, promoting repair in acute stages while aggravating disease progression by contributing to neuronal loss, synaptic dysfunction, and glial dysregulation in chronic phases. Inflammatory responses are mainly orchestrated by microglia and infiltrated monocytes, which, when dysregulated, not only harm existing neurons, but also impair the survival and differentiation of neural stem and progenitor cells in the affected brain regions. Modulating neuroinflammation is crucial for harnessing its protective functions while minimizing its detrimental effects. Current therapeutic strategies focus on fine-tuning inflammatory responses through pharmacological agents, bioactive molecules, and stem cell-based therapies. These approaches aim to restore immune homeostasis, support neuroprotection, and promote regeneration in various neurological disorders. However, animal models sometimes fail to reproduce human-specific inflammatory responses in the brain. In this context, stem-cell-derived models provide a powerful tool to study neuroinflammatory mechanisms in a patient-specific and physiologically relevant context. These models facilitate high-throughput screening, personalized medicine, and the development of targeted therapies while addressing the limitations of traditional animal models, paving the way for more targeted and effective treatments. Full article
Show Figures

Figure 1

20 pages, 1238 KiB  
Review
New Perspectives in Studying Type 1 Diabetes Susceptibility Biomarkers
by Yongsoo Park, Kyung Soo Ko and Byoung Doo Rhee
Int. J. Mol. Sci. 2025, 26(7), 3249; https://doi.org/10.3390/ijms26073249 - 31 Mar 2025
Cited by 1 | Viewed by 869
Abstract
Type 1 diabetes (T1D) is generally viewed as an etiologic subtype of diabetes caused by the autoimmune destruction of the insulin-secreting β-cells. It has been known that autoreactive T cells unfortunately destroy healthy β-cells. However, there has been a notion of etiologic heterogeneity [...] Read more.
Type 1 diabetes (T1D) is generally viewed as an etiologic subtype of diabetes caused by the autoimmune destruction of the insulin-secreting β-cells. It has been known that autoreactive T cells unfortunately destroy healthy β-cells. However, there has been a notion of etiologic heterogeneity around the world implicating a varying incidence of a non-autoimmune subgroup of T1D related to insulin deficiency associated with decreased β cell mass, in which the β-cell is the key contributor to the disease. Beta cell dysfunction, reduced mass, and apoptosis may lead to insufficient insulin secretion and ultimately to the development of T1D. Interestingly, Korean as well as other ethnic genetic results have also suggested that genes related with insulin deficiency, let alone those of immune regulation, were associated with the risk of T1D in the young. Genes related with insulin secretion may influence the phenotype of diabetes differentially and different genes may be working on different steps of T1D development. Although we admit the consensus that islet autoimmunity is an essential component in the pathogenesis of T1D, however, dysfunction might occur not only in the immune system but also in the β-cells, the defect of which may induce further dysfunction of the immune system. These arguments stem from the fact that the β-cell might be the trigger of an autoimmune response. This emergent view has many parallels with the fact that by their nature and function, β-cells are prone to biosynthetic stress with limited measures for self-defense. Beta cell stress may induce an immune attack that has considerable negative effects on the production of a vital hormone, insulin. If then, both β-cell stress and islet autoimmunity can be harnessed as targets for intervention strategies. This also may explain why immunotherapy at best delays the progression of T1D and suggests the use of alternative therapies to expand β-cells, in combination with immune intervention strategies, to reverse the disease. Future research should extend to further investigate β-cell biology, in addition to studies of immunologic areas, to find appropriate biomarkers of T1D susceptibility. This will help to decipher β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Mechanism of Diabetic Kidney Disease (2nd Edition))
Show Figures

Figure 1

19 pages, 4528 KiB  
Article
Therapeutic and Pharmaceutical Potential of Scutellaria baicalensis-Derived Exosomes for Oily Skin Disorders
by Guybin Gong, Mihae Yun, Ohhyuk Kwon and Boyong Kim
Antioxidants 2025, 14(3), 364; https://doi.org/10.3390/antiox14030364 - 19 Mar 2025
Cited by 1 | Viewed by 1107
Abstract
Background: Fine dust exposure worsens oily skin by disrupting lipid metabolism and triggering oxidative inflammation. Scutellaria baicalensis extract-induced exosomes (SBEIEs) have shown anti-inflammatory effects by suppressing reactive oxygen species (ROS) and lipid-regulating properties, making them potential therapeutic agents. Methods: Exosomes from fibroblasts treated [...] Read more.
Background: Fine dust exposure worsens oily skin by disrupting lipid metabolism and triggering oxidative inflammation. Scutellaria baicalensis extract-induced exosomes (SBEIEs) have shown anti-inflammatory effects by suppressing reactive oxygen species (ROS) and lipid-regulating properties, making them potential therapeutic agents. Methods: Exosomes from fibroblasts treated with SBEIEs and PM10 were tested on macrophages, adipose-derived stem cells (ASCs), and T lymphocytes. ELISA, flow cytometry, and PCR measured cytokines and gene expression. A 10-day clinical trial evaluated skin hydration, oiliness, and inflammation. Results: SBEIEs increased IRF3 (1.6 times) and suppressed PPARγ in ASCs while enhancing lipolysis markers. Sebaceous gland activity (squalene synthase) decreased by 10%. Macrophages showed increased IRF3, IFN-β, and IL-10 (2.1 times). T cells secreted IL-4 and IL-22 (2–2.33 times). Clinically, SBEIEs improved hydration (21%), reduced oiliness (1.6 times), and decreased inflammation (2.2 times). Conclusions: SBEIEs effectively regulate lipid metabolism, cytokines, and immune responses, showing promise to treat oily and inflamed skin caused by fine dust exposure. Further studies are needed for clinical applications. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Cosmetics—2nd Edition)
Show Figures

Graphical abstract

40 pages, 10508 KiB  
Review
Neuroimmune Interactions and Their Role in Immune Cell Trafficking in Cardiovascular Diseases and Cancer
by Yutang Wang, Jack C. Anesi, Indu S. Panicker, Darcy Cook, Prapti Bista, Yan Fang and Ernesto Oqueli
Int. J. Mol. Sci. 2025, 26(6), 2553; https://doi.org/10.3390/ijms26062553 - 12 Mar 2025
Viewed by 1585
Abstract
Sympathetic nerves innervate bone marrow and various immune organs, where norepinephrine—the primary sympathetic neurotransmitter—directly interacts with immune cells that express adrenergic receptors. This article reviewed the key molecular pathways triggered by sympathetic activation and explored how sympathetic activity influences immune cell migration. Norepinephrine [...] Read more.
Sympathetic nerves innervate bone marrow and various immune organs, where norepinephrine—the primary sympathetic neurotransmitter—directly interacts with immune cells that express adrenergic receptors. This article reviewed the key molecular pathways triggered by sympathetic activation and explored how sympathetic activity influences immune cell migration. Norepinephrine serves as a chemoattractant for monocytes, macrophages, and stem cells, promoting the migration of myeloid cells while inhibiting the migration of lymphocytes at physiological concentrations. We also examined the role of immune cell infiltration in cardiovascular diseases and cancer. Evidence suggests that sympathetic activation increases myeloid cell infiltration into target tissues across various cardiovascular diseases, including atherosclerosis, hypertension, cardiac fibrosis, cardiac hypertrophy, arrhythmia, myocardial infarction, heart failure, and stroke. Conversely, inhibiting sympathetic activity may serve as a potential therapeutic strategy to treat these conditions by reducing macrophage infiltration. Furthermore, sympathetic activation promotes macrophage accumulation in cancer tissues, mirroring its effects in cardiovascular diseases, while suppressing T lymphocyte infiltration into cancerous sites. These changes contribute to increased cancer growth and metastasis. Thus, inhibiting sympathetic activation could help to protect against cancer by enhancing T cell infiltration and reducing macrophage presence in tumors. Full article
Show Figures

Figure 1

17 pages, 612 KiB  
Review
Role of Perinatal Stem Cell Secretome as Potential Therapy for Muscular Dystrophies
by Serafina Pacilio, Sara Lombardi, Roberta Costa, Francesca Paris, Giovannamaria Petrocelli, Pasquale Marrazzo, Giovanna Cenacchi and Francesco Alviano
Biomedicines 2025, 13(2), 458; https://doi.org/10.3390/biomedicines13020458 - 13 Feb 2025
Viewed by 1437
Abstract
Inflammation mechanisms play a critical role in muscle homeostasis, and in Muscular Dystrophies (MDs), the myofiber damage triggers chronic inflammation which significantly controls the disease progression. Immunomodulatory strategies able to target inflammatory pathways and mitigate the immune-mediated damage in MDs may provide new [...] Read more.
Inflammation mechanisms play a critical role in muscle homeostasis, and in Muscular Dystrophies (MDs), the myofiber damage triggers chronic inflammation which significantly controls the disease progression. Immunomodulatory strategies able to target inflammatory pathways and mitigate the immune-mediated damage in MDs may provide new therapeutic options. Owing to its capacity of influencing the immune response and enhancing tissue repair, stem cells’ secretome has been proposed as an adjunct or standalone treatment for MDs. In this review study, we discuss the challenging points related to the inflammation condition characterizing MD pathology and provide a concise summary of the literature supporting the potential of perinatal stem cells in targeting and modulating the MD inflammation. Full article
(This article belongs to the Special Issue Stem Cells and Immunomodulation)
Show Figures

Figure 1

14 pages, 1414 KiB  
Review
Cytomegalovirus Infections in Hematopoietic Stem Cell Transplant: Moving Beyond Molecular Diagnostics to Immunodiagnostics
by Chhavi Gupta, Netto George Mundan, Shukla Das, Arshad Jawed, Sajad Ahmad Dar and Hamad Ghaleb Dailah
Diagnostics 2024, 14(22), 2523; https://doi.org/10.3390/diagnostics14222523 - 12 Nov 2024
Cited by 2 | Viewed by 2316
Abstract
Human CMV, regularly reactivated by simple triggers, results in asymptomatic viral shedding, powerful cellular immune responses, and memory inflation. Immunocompetent individuals benefit from a robust immune response, which aids in viral management without causing clinically significant illness; however, immunodeficient individuals are always at [...] Read more.
Human CMV, regularly reactivated by simple triggers, results in asymptomatic viral shedding, powerful cellular immune responses, and memory inflation. Immunocompetent individuals benefit from a robust immune response, which aids in viral management without causing clinically significant illness; however, immunodeficient individuals are always at a higher risk of CMV reactivation and disease. Hematopoietic stem cell transplant (HSCT) recipients are consistently at higher risk of CMV reactivation and clinically significant CMV illness due to primary disease, immunosuppression, and graft vs. host disease. Early recovery of CMV-CMI responses may mitigate effects of viral reactivation in HSCT recipients. Immune reconstitution following transplantation occurs spontaneously and is mediated initially by donor-derived T cells, followed by clonal growth of T cells produced from graft progenitors. CMV-specific immune reconstitution post-transplant is related to spontaneous clearance of CMV reactivation and may eliminate the need for prophylactic or pre-emptive medication, making it a potential predictive marker for monitoring CMV reactivation. This review highlights current thoughts and therapeutic options for CMV reactivation in HSCT, with focus on CMV immune reconstitution and post-HSCT monitoring. Immune monitoring aids in risk stratification of transplant recipients who may progress from CMV reactivation to clinically significant CMV infection. Implementing this approach in clinical practice reduces the need for periodic viral surveillance and antiviral therapy in recipients who have a high CMV-CMI and thus may experience self-limited reactivation. Therefore, in the age of precision medicine, it is critical to incorporate CMV-specific cellular immune surveillance into conventional procedures and algorithms for the management of transplant recipients. Full article
Show Figures

Figure 1

15 pages, 952 KiB  
Review
Infections in Inborn Errors of STATs
by Chen Wang and Alexandra F. Freeman
Pathogens 2024, 13(11), 955; https://doi.org/10.3390/pathogens13110955 - 1 Nov 2024
Viewed by 1386
Abstract
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is highly conserved and essential for numerous biological functions triggered by extracellular signals, including cell proliferation, metabolism, immune response, and inflammation. Defects in STATs, either loss-of-function or gain-of-function defects, lead to a [...] Read more.
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is highly conserved and essential for numerous biological functions triggered by extracellular signals, including cell proliferation, metabolism, immune response, and inflammation. Defects in STATs, either loss-of-function or gain-of-function defects, lead to a broad spectrum of clinical phenotypes in humans, including a wide range of infectious complications. The susceptibility to pathogens can stem from defects in immune cells within the hematopoietic compartment, impaired barrier functions of non-hematopoietic compartment, or a combination of both, depending on the specific STAT defect as well as the pathogen exposure history. Effective management involves antimicrobial prophylaxis tailored to the patient’s infection risk and improving disease control with targeted therapies and/or hematopoietic cell transplantation. Full article
(This article belongs to the Special Issue Interactions between Pathogens and the Human Immune System)
Show Figures

Figure 1

14 pages, 1941 KiB  
Article
Umbilical Cord Blood Platelet Lysate Eyedrops for the Treatment of Severe Ocular Surface Disorders in Graft vs. Host Disease Patients: Clinical Study
by Caterina Gagliano, Roberta Foti, Marco Zeppieri, Antonino Maniaci, Salvatore Lavalle, Giuseppa Tancredi, Giuseppe Gagliano, Alessandro Avitabile, Ludovica Cannizzaro and Rosario Foti
Life 2024, 14(10), 1268; https://doi.org/10.3390/life14101268 - 5 Oct 2024
Viewed by 1938
Abstract
Background: Graft-versus-host disease (GvHD) is an overactive systemic inflammatory response that can arise following allogeneic hematopoietic stem cell transplantation (HSCT). This condition occurs when the transplanted donor immune cells recognize the recipient’s tissues as foreign and trigger an immune response against them. The [...] Read more.
Background: Graft-versus-host disease (GvHD) is an overactive systemic inflammatory response that can arise following allogeneic hematopoietic stem cell transplantation (HSCT). This condition occurs when the transplanted donor immune cells recognize the recipient’s tissues as foreign and trigger an immune response against them. The ocular surface (eyelids, conjunctiva, meibomian glands, lacrimal glands, and cornea) is particularly involved in GvHD, and its response to existing treatments, including potent immunosuppressants and new targeted therapies, is undesirable, with such treatments often being ineffective. Human allogeneic umbilical cord blood platelet lysate stands out as a potent adjunct to conventional therapies for ocular surface disorders related to severe Dry Eye Disease. This study aimed to evaluate the safety and efficacy of umbilical cord blood platelet lysate eyedrops for the treatment of severe ocular surface disorders in graft-versus-host disease patients who have received previous unsuccessful treatments. Methods: This study was a prospective, non-comparative, interventional case series study involving 22 patients (10 females and 12 males) aged 25–46 years with severe ocular surface disorders that were unresponsive to standard treatments. The GvHD patients were categorized based on the severity of their ocular surface disorders into three groups: Group I: five patients with severe Dry Eye Disease and filamentary keratitis; Group II: eight patients suffering from severe blepharo-kerato-epitheliopathy; Group III: nine patients with corneal ulcers. Fresh umbilical cord blood (UCB) was obtained from healthy donors and subjected to centrifugation using a novel PRP preparation kit provided by Sciacca (AG) Cord blood bank, Italy in a one-step process. In all groups, the outcomes before and after treatment were evaluated by means of the OSDI (Ocular Surface Disease Index), SANDE (Symptom Assessment in Dry Eye) questionnaire, VAS (Visual Analogue Scale), slit lamp examination, Esthesiometry, Lissamine Green Staining, the NIBUT (Non-Invasive Break-Up Time) and BUT, fluorescein staining with digital photography and Oxford classification, the Schirmer Test, the Best Corrected Visual Acuity (BCVA), and Meibography. In Group III at each evaluation time, the size of the ulcer and its relative reduction compared to the baseline size were recorded. Clinical variables, such as corneal inflammation, conjunctivalization, corneal neovascularization, or pain, were also considered individually. Results: We observed a significant improvement in the SANDE, VAS, and OSDI scores; Schirmer Test; BUT; BCVA; and Oxford classification after treatment with allogeneic cord blood serum eyedrops. Nevertheless, pain and inflammation reduced markedly over time until complete healing in all cases. The mean reduction in the ulcer surface area (compared to baseline values) was significantly higher at all assessment points (p = 0.001 for day 7 and p < 0.001 for subsequent time points every 30 days for 90 days). At the last check-up (after 90 days of treatment), the number of ulcers (Group III, nine patients) with a reduction in size of greater than 50% was eight (88.8%), of which seven ulcers were completely healed. None of the patients experienced treatment-related local or systemic adverse events. In this study, using a relatively large number of cases, we demonstrated that the use of umbilical cord blood platelet lysate eyedrops is a safe, feasible, and effective curative approach for severe ocular surface disease in patients with GvHD. Conclusions: Our pilot study highlights the remarkable effectiveness of allogeneic cord blood serum eyedrops in patients with severe ocular surface disorders following GvHD who have shown an inadequate response to the usual treatments. It is mandatory to design future studies on the efficacy of this therapeutic approach for acute ocular, mucosal, and cutaneous GvHD. Full article
(This article belongs to the Special Issue Eye Manifestations of Systemic Disease, 2nd Edition)
Show Figures

Figure 1

38 pages, 5674 KiB  
Review
Endophytic Fungi: A Treasure Trove of Antifungal Metabolites
by Sanjai Saxena, Laurent Dufossé, Sunil K. Deshmukh, Hemraj Chhipa and Manish Kumar Gupta
Microorganisms 2024, 12(9), 1903; https://doi.org/10.3390/microorganisms12091903 - 18 Sep 2024
Cited by 6 | Viewed by 4078
Abstract
Emerging and reemerging fungal infections are very common in nosocomial and non-nosocomial settings in people having poor immunogenic profiles either due to hematopoietic stem cell transplants or are using immunomodulators to treat chronic inflammatory disease or autoimmune disorders, undergoing cancer therapy or suffering [...] Read more.
Emerging and reemerging fungal infections are very common in nosocomial and non-nosocomial settings in people having poor immunogenic profiles either due to hematopoietic stem cell transplants or are using immunomodulators to treat chronic inflammatory disease or autoimmune disorders, undergoing cancer therapy or suffering from an immune weakening disease like HIV. The refractory behavior of opportunistic fungi has necessitated the discovery of unconventional antifungals. The emergence of black fungus infection during COVID-19 also triggered the antifungal discovery program. Natural products are one of the alternative sources of antifungals. Endophytic fungi reside and co-evolve within their host plants and, therefore, offer a unique bioresource of novel chemical scaffolds with an array of bioactivities. Hence, immense possibilities exist that these unique chemical scaffolds expressed by the endophytic fungi may play a crucial role in overcoming the burgeoning antimicrobial resistance. These chemical scaffolds so expressed by these endophytic fungi comprise an array of chemical classes beginning from cyclic peptides, sesquiterpenoids, phenols, anthraquinones, coumarins, etc. In this study, endophytic fungi reported in the last six years (2018–2023) have been explored to document the antifungal entities they produce. Approximately 244 antifungal metabolites have been documented in this period by different groups of fungi existing as endophytes. Various aspects of these antifungal metabolites, such as antifungal potential and their chemical structures, have been presented. Yet another unique aspect of this review is the exploration of volatile antifungal compounds produced by these endophytic fungi. Further strategies like epigenetic modifications by chemical as well as biological methods and OSMAC to induce the silent gene clusters have also been presented to generate unprecedented bioactive compounds from these endophytic fungi. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 506 KiB  
Review
The Current Update of Conventional and Innovative Treatment Strategies for Central Nervous System Injury
by Meng-Hsuan Tsai, Chi-Ying Wu, Chao-Hsin Wu and Chun-Yu Chen
Biomedicines 2024, 12(8), 1894; https://doi.org/10.3390/biomedicines12081894 - 19 Aug 2024
Cited by 5 | Viewed by 2978
Abstract
This review explores the complex challenges and advancements in the treatment of traumatic brain injury (TBI) and spinal cord injury (SCI). Traumatic injuries to the central nervous system (CNS) trigger intricate pathophysiological responses, frequently leading to profound and enduring disabilities. This article delves [...] Read more.
This review explores the complex challenges and advancements in the treatment of traumatic brain injury (TBI) and spinal cord injury (SCI). Traumatic injuries to the central nervous system (CNS) trigger intricate pathophysiological responses, frequently leading to profound and enduring disabilities. This article delves into the dual phases of injury—primary impacts and the subsequent secondary biochemical cascades—that worsen initial damage. Conventional treatments have traditionally prioritized immediate stabilization, surgical interventions, and supportive medical care to manage both the primary and secondary damage associated with central nervous system injuries. We explore current surgical and medical management strategies, emphasizing the crucial role of rehabilitation and the promising potential of stem cell therapies and immune modulation. Advances in stem cell therapy, gene editing, and neuroprosthetics are revolutionizing treatment approaches, providing opportunities not just for recovery but also for the regeneration of impaired neural tissues. This review aims to emphasize emerging therapeutic strategies that hold promise for enhancing outcomes and improving the quality of life for affected individuals worldwide. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Novel Therapies for Brain Injury)
Show Figures

Figure 1

22 pages, 9450 KiB  
Article
Neonicotinoid Pesticides Affect Developing Neurons in Experimental Mouse Models and in Human Induced Pluripotent Stem Cell (iPSC)-Derived Neural Cultures and Organoids
by Alessandro Mariani, Davide Comolli, Roberto Fanelli, Gianluigi Forloni and Massimiliano De Paola
Cells 2024, 13(15), 1295; https://doi.org/10.3390/cells13151295 - 31 Jul 2024
Cited by 4 | Viewed by 1972
Abstract
Neonicotinoids are synthetic, nicotine-derived insecticides used worldwide to protect crops and domestic animals from pest insects. The reported evidence shows that they are also able to interact with mammalian nicotine receptors (nAChRs), triggering detrimental responses in cultured neurons. Exposure to high neonicotinoid levels [...] Read more.
Neonicotinoids are synthetic, nicotine-derived insecticides used worldwide to protect crops and domestic animals from pest insects. The reported evidence shows that they are also able to interact with mammalian nicotine receptors (nAChRs), triggering detrimental responses in cultured neurons. Exposure to high neonicotinoid levels during the fetal period induces neurotoxicity in animal models. Considering the persistent exposure to these insecticides and the key role of nAChRs in brain development, their potential neurotoxicity on mammal central nervous system (CNS) needs further investigations. We studied here the neurodevelopmental effects of different generations of neonicotinoids on CNS cells in mouse fetal brain and primary cultures and in neuronal cells and organoids obtained from human induced pluripotent stem cells (iPSC). Neonicotinoids significantly affect neuron viability, with imidacloprid (IMI) inducing relevant alterations in synaptic protein expression, neurofilament structures, and microglia activation in vitro, and in the brain of prenatally exposed mouse fetuses. IMI induces neurotoxic effects also on developing human iPSC-derived neurons and cortical organoids. Collectively, the current findings show that neonicotinoids might induce impairment during neuro/immune-development in mouse and human CNS cells and provide new insights in the characterization of risk for the exposure to this class of pesticides. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

13 pages, 12353 KiB  
Article
Osteogenic Protection against Fine Dust with Erucic Acid-Induced Exosomes
by Hyunjung Kim and Boyong Kim
J. Funct. Biomater. 2024, 15(8), 215; https://doi.org/10.3390/jfb15080215 - 31 Jul 2024
Viewed by 1773
Abstract
Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such [...] Read more.
Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such as miRNA profiling, quantitative PCR, flow cytometry, ELISA, and Alizarin O staining. Erucic acid effectively suppresses inflammation and upregulates osteogenic activators in fibroblasts exposed to fine dust. Additionally, erucic acid-induced exosomes (EIEs) strongly counteract the negative effects of fine dust on osteocytic differentiation and inflammation. Despite fine dust exposure, EIEs promoted osteocytic differentiation in adipose-derived stem cells (ASCs) and enhanced osteogenesis and phagocytosis in macrophages. The significant upregulation of RunX2 and BMP7 by EIEs indicates its strong role in osteocytic differentiation and protection against the effects of fine dust. EIEs also boosts immune activity and acts as an osteogenic trigger for macrophages. MicroRNA profiling revealed that EIEs dramatically upregulated miRNAs, including hsa-miRNA-1301-3p, hsa-miRNA-1908-5p, hsa-miRNA-423-5p, and hsa-miRNA-122-5p, which are associated with osteogenic differentiation and immunity. Therefore, EIEs show potential as biomaterials to prevent environment-borne diseases. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

27 pages, 2011 KiB  
Review
The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms
by Amanda K. Garcia and Sharilyn Almodovar
J. Vasc. Dis. 2024, 3(2), 174-200; https://doi.org/10.3390/jvd3020015 - 6 May 2024
Cited by 2 | Viewed by 2919
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated [...] Read more.
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda. Full article
(This article belongs to the Section Cardiovascular Diseases)
Show Figures

Figure 1

Back to TopTop