Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (401)

Search Parameters:
Keywords = steering response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4393 KiB  
Article
Lightweight and Sustainable Steering Knuckle via Topology Optimization and Rapid Investment Casting
by Daniele Almonti, Daniel Salvi, Emanuele Mingione and Silvia Vesco
J. Manuf. Mater. Process. 2025, 9(8), 252; https://doi.org/10.3390/jmmp9080252 - 24 Jul 2025
Abstract
Considering the importance of the automotive industry, reducing the environmental impact of automotive component manufacturing is crucial. Additionally, lightening of the latter promotes a reduction in fuel consumption throughout the vehicle’s life cycle, limiting emissions. This study presents a comprehensive approach to optimizing [...] Read more.
Considering the importance of the automotive industry, reducing the environmental impact of automotive component manufacturing is crucial. Additionally, lightening of the latter promotes a reduction in fuel consumption throughout the vehicle’s life cycle, limiting emissions. This study presents a comprehensive approach to optimizing and manufacturing a MacPherson steering knuckle using topology optimization (TO), additive manufacturing, and rapid investment casting (RIC). Static structural simulations confirmed the mechanical integrity of the optimized design, with stress and strain values remaining within the elastic limits of the SG A536 iron alloy. The TO process achieved a 30% reduction in mass, resulting in lower material use and production costs. Additive manufacturing of optimized geometry reduced resin consumption by 27% and printing time by 9%. RIC simulations validated efficient mold filling and solidification, with porosity confined to removable riser regions. Life cycle assessment (LCA) demonstrated a 27% reduction in manufacturing environmental impact and a 31% decrease throughout the component life cycle, largely due to vehicle lightweighting. The findings highlight the potential of integrated TO and advanced manufacturing techniques to produce structurally efficient and environmentally sustainable automotive components. This workflow offers promising implications for broader industrial applications that aim to balance mechanical performance with ecological responsibility. Full article
Show Figures

Figure 1

15 pages, 1597 KiB  
Article
Customer Directrix Load Method for High Penetration of Winds Considering Contribution Factors of Generators to Load Bus
by Tianxiang Zhang, Yifei Wang, Qing Zhu, Bin Han, Xiaoming Wang and Ming Fang
Electronics 2025, 14(15), 2931; https://doi.org/10.3390/electronics14152931 - 23 Jul 2025
Viewed by 79
Abstract
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This [...] Read more.
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This paper presents a demand response mechanism to enhance renewable energy uptake by defining an optimal load curve for each node, considering the generator’s dynamic impact, system operations, and renewable energy projections. Once the ideal load curve is published, consumers, influenced by incentives, voluntarily align their consumption, steering the actual load to resemble the proposed curve. This strategy not only guides flexible generation resources to better utilize renewables but also minimizes the communication and control expenses associated with large-scale customer demand response. Additionally, a new evaluation metric for user response is proposed to ensure equitable incentive distribution. The model has been shown to lower both consumer power costs and system generation expenses, achieving a 22% reduction in renewable energy wastage. Full article
Show Figures

Figure 1

19 pages, 1545 KiB  
Review
Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change
by Mingming Shi, Rui Liu, D. U. Nilunda Madhusanka, Yonggang Liu, Ning Luo, Wei Guo, Jianlong Zhao, Huixia Li and Zhenchuan Mao
Microbiol. Res. 2025, 16(8), 165; https://doi.org/10.3390/microbiolres16080165 - 22 Jul 2025
Viewed by 87
Abstract
Meloidogyne enterolobii, a highly virulent and broad-host-range plant-parasitic nematode, poses an increasing threat to global agricultural production. By inducing the formation of nutrient-rich giant cells in host roots and deploying a diverse array of effector proteins to modulate plant immune responses, this [...] Read more.
Meloidogyne enterolobii, a highly virulent and broad-host-range plant-parasitic nematode, poses an increasing threat to global agricultural production. By inducing the formation of nutrient-rich giant cells in host roots and deploying a diverse array of effector proteins to modulate plant immune responses, this nematode achieves efficient colonization and invasion, resulting in impaired crop growth and significant economic losses. In recent years, global climate warming combined with the rapid development of protected agriculture has broken the traditional geographical limits of tropical and subtropical regions, thereby increasing the risk of M. enterolobii occurrence in temperate and high-latitude areas. Concurrently, conventional chemical control methods are increasingly limited by environmental pollution and the development of resistance, steering research toward green control strategies. This review systematically summarizes the latest research progress of M. enterolobii in terms of ecological diffusion trends, pathogenic mechanisms, and green control, and explored the feasibility of integrating multidisciplinary technologies to construct an efficient and precise control system. The ultimate aim is to provide theoretical support and technical supports for green and sustainable development of global agriculture. Full article
Show Figures

Figure 1

17 pages, 4504 KiB  
Article
A 1000 fps High-Dynamic-Range Global Shutter CMOS Image Sensor with Full Thermometer Code Current-Steering Ramp
by Liqiang Han, Ganlin Cheng, Xu Zhang, Gengyun Wang, Weijun Pan, Yao Yao, Guihai Yu, Ruimeng Zhang, Shuaichen Mu, Songbo Wu, Hongbo Bu, Liqun Dai, Ben Fan, Dan Wang, Wei Fan and Ruiming Chen
Sensors 2025, 25(14), 4483; https://doi.org/10.3390/s25144483 - 18 Jul 2025
Viewed by 147
Abstract
We present a 1024 × 512, 1000 fps, high-dynamic-range global shutter CMOS image sensor. The pixel is based on a voltage domain global shutter architecture, featuring a pitch of 24 μm × 24 μm. Both high-gain and low-gain signals can be captured within [...] Read more.
We present a 1024 × 512, 1000 fps, high-dynamic-range global shutter CMOS image sensor. The pixel is based on a voltage domain global shutter architecture, featuring a pitch of 24 μm × 24 μm. Both high-gain and low-gain signals can be captured within a single frame. The combined dynamic range is 95 dB, and the full well capacity is 620 ke-. In this paper, we analyze the pixel noise performance as well as the non-linearity and image lag that arise from parasitic capacitance in the pixel. The ramp generator is based on a 12-bit full thermometer code current-steering DAC with high driving capability. We discuss the design considerations for the ramp generator, particularly addressing the phenomenon of non-linear response. Finally, the comparator design and the column readout noise are analyzed. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 5451 KiB  
Article
Research on the Stability and Trajectory Tracking Control of a Compound Steering Platform Based on Hierarchical Theory
by Huanqin Feng, Hui Jing, Xiaoyuan Zhang, Bing Kuang, Yifan Song, Chao Wei and Tianwei Qian
Electronics 2025, 14(14), 2836; https://doi.org/10.3390/electronics14142836 - 15 Jul 2025
Viewed by 185
Abstract
Compound steering technology has been extensively adopted in military logistics and related applications, owing to its superior maneuverability and enhanced stability compared to conventional systems. To enhance the steering efficiency and dynamic response of distributed-drive unmanned platforms under low driving torque conditions, this [...] Read more.
Compound steering technology has been extensively adopted in military logistics and related applications, owing to its superior maneuverability and enhanced stability compared to conventional systems. To enhance the steering efficiency and dynamic response of distributed-drive unmanned platforms under low driving torque conditions, this study investigates their unique compound steering system. Specifically, a compound steering dynamics model is established, and a hierarchical stability control strategy, along with a model predictive control-based trajectory tracking algorithm, are innovatively proposed. First, a compound steering platform dynamics model is established by combining the Ackermann steering and skid yaw moment methods. Then, a trajectory tracking controller is designed using model predictive control algorithm. Finally, the additional yaw moment is calculated based on the lateral velocity error and yaw rate error, with stability control allocation performed using a fuzzy control algorithm. Comparative hardware-in-the-loop experiments are conducted for compound steering, Ackermann steering, and skid steering. The experimental results show that the compound steering technology enables unmanned platforms to achieve trajectory tracking tasks with a lower torque, faster speed, and higher efficiency. Full article
Show Figures

Figure 1

24 pages, 4222 KiB  
Article
Transcriptome and Cellular Evidence of Depot-Specific Function in Beef Cattle Intramuscular, Subcutaneous, and Visceral Adipose Tissues
by Alexandra P. Tegeler, Hunter R. Ford, Jean Franco Fiallo-Diez, Tainara C. Michelotti, Bradley J. Johnson, Oscar J. Benitez, Dale R. Woerner and Clarissa Strieder-Barboza
Biology 2025, 14(7), 848; https://doi.org/10.3390/biology14070848 - 11 Jul 2025
Viewed by 328
Abstract
Deposition of intramuscular adipose tissue (IMAT) is the primary determinant for beef quality grade in the U.S. Accumulation of subcutaneous (SCAT) and visceral (VIAT) adipose tissue precedes that of IMAT and often leads to excessive adiposity in beef cattle. Approaches to increase marbling [...] Read more.
Deposition of intramuscular adipose tissue (IMAT) is the primary determinant for beef quality grade in the U.S. Accumulation of subcutaneous (SCAT) and visceral (VIAT) adipose tissue precedes that of IMAT and often leads to excessive adiposity in beef cattle. Approaches to increase marbling while limiting subcutaneous and visceral adiposity are limited. Our objective is to define the depot-specific transcriptome profile and adipocyte function in IMAT, SCAT, and VIAT in beef steers. Transcriptomics revealed the upregulation of adipogenic and lipogenic genes in SCAT and VIAT vs. IMAT. Functional transcriptome analysis demonstrated the activation of pathways for lipid metabolic processes and biosynthesis in SCAT, accompanied by increased preadipocyte proliferation, adipocyte size, and insulin responses of SCAT in vitro. While IMAT had a greater abundance of preadipocytes, they proliferated at a lower rate and differentiated into adipocytes that were smaller and less responsive to insulin compared to SCAT. The upregulation of extracellular matrix genes in IMAT suggests that fat accumulation may be limited by the muscle microenvironment. The activation of inflammatory and immune response pathways, combined with a higher abundance of immune cells, highlighted VIAT as an immune-responsive depot. Our findings reveal transcriptional and cellular profiles underlying fat deposition in SCAT, VIAT, and IMAT in beef cattle. Full article
Show Figures

Figure 1

31 pages, 2077 KiB  
Article
FD-IDS: Federated Learning with Knowledge Distillation for Intrusion Detection in Non-IID IoT Environments
by Haonan Peng, Chunming Wu and Yanfeng Xiao
Sensors 2025, 25(14), 4309; https://doi.org/10.3390/s25144309 - 10 Jul 2025
Viewed by 330
Abstract
With the rapid advancement of Internet of Things (IoT) technology, intrusion detection systems (IDSs) have become pivotal in ensuring network security. However, the data produced by IoT devices is typically sensitive and tends to display non-independent and identically distributed (Non-IID) properties. These factors [...] Read more.
With the rapid advancement of Internet of Things (IoT) technology, intrusion detection systems (IDSs) have become pivotal in ensuring network security. However, the data produced by IoT devices is typically sensitive and tends to display non-independent and identically distributed (Non-IID) properties. These factors impose significant limitations on the application of traditional centralized learning. In response to these issues, this study introduces a novel IDS framework grounded in federated learning and knowledge distillation (KD), termed FD-IDS. The proposed FD-IDS aims to tackle issues related to safeguarding data privacy and distributed heterogeneity. FD-IDS employs mutual information for feature selection to enhance training efficiency. For Non-IID data scenarios, the system combines a proximal term with KD. The proximal term restricts the deviation between local and global models, while KD utilizes the global model to steer the training process of local models. Together, these mechanisms effectively alleviate the problem of model drift. Experiments conducted on both the Edge-IIoT and N-BaIoT datasets demonstrate that FD-IDS achieves promising detection performance across multiple evaluation metrics. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 2243 KiB  
Article
An Adaptive Weight Collaborative Driving Strategy Based on Stackelberg Game Theory
by Zhongjin Zhou, Jingbo Zhao, Jianfeng Zheng and Haimei Liu
World Electr. Veh. J. 2025, 16(7), 386; https://doi.org/10.3390/wevj16070386 - 9 Jul 2025
Viewed by 164
Abstract
In response to the problem of cooperative steering control between drivers and intelligent driving systems, a master–slave Game-Based human–machine cooperative steering control framework with adaptive weight fuzzy decision-making is constructed. Firstly, within this framework, a dynamic weight approach is established. This approach takes [...] Read more.
In response to the problem of cooperative steering control between drivers and intelligent driving systems, a master–slave Game-Based human–machine cooperative steering control framework with adaptive weight fuzzy decision-making is constructed. Firstly, within this framework, a dynamic weight approach is established. This approach takes into account the driver’s state, traffic environment risks, and the vehicle’s global control deviation to adjust the driving weights between humans and machines. Secondly, the human–machine cooperative relationship with unconscious competition is characterized as a master–slave game interaction. The cooperative steering control under the master–slave game scenario is then transformed into an optimization problem of model predictive control. Through theoretical derivation, the optimal control strategies for both parties at equilibrium in the human–machine master–slave game are obtained. Coordination of the manipulation actions of the driver and the intelligent driving system is achieved by balancing the master–slave game. Finally, different types of drivers are simulated by varying the parameters of the driver models. The effectiveness of the proposed driving weight allocation scheme was validated on the constructed simulation test platform. The results indicate that the human–machine collaborative control strategy can effectively mitigate conflicts between humans and machines. By giving due consideration to the driver’s operational intentions, this strategy reduces the driver’s workload. Under high-risk scenarios, while ensuring driving safety and providing the driver with a satisfactory experience, this strategy significantly enhances the stability of vehicle motion. Full article
Show Figures

Figure 1

22 pages, 5135 KiB  
Article
Fast and Accurate Plane Wave and Color Doppler Imaging with the FOCUS Software Package
by Jacob S. Honer and Robert J. McGough
Sensors 2025, 25(14), 4276; https://doi.org/10.3390/s25144276 - 9 Jul 2025
Viewed by 250
Abstract
A comprehensive framework for ultrasound imaging simulations is presented. Solutions to an inhomogeneous wave equation are provided, yielding a linear model for characterizing ultrasound propagation and scattering in soft tissue. This simulation approach, which is based upon the fast nearfield method, is implemented [...] Read more.
A comprehensive framework for ultrasound imaging simulations is presented. Solutions to an inhomogeneous wave equation are provided, yielding a linear model for characterizing ultrasound propagation and scattering in soft tissue. This simulation approach, which is based upon the fast nearfield method, is implemented in the Fast Object-oriented C++ Ultrasound Simulator (FOCUS) and is extended to a range of imaging modalities, including synthetic aperture, B-mode, plane wave, and color Doppler imaging. The generation of radiofrequency (RF) data and the receive beamforming techniques employed for each imaging modality, along with background on color Doppler imaging, are described. Simulation results demonstrate rapid convergence and lower error rates compared to conventional spatial impulse response methods and Field II, resulting in substantial reductions in computation time. Notably, the framework effectively simulates hundreds of thousands of scatterers without the need for a full three-dimensional (3D) grid, and the inherent randomness in the scatterer distributions produces realistic speckle patterns. A plane wave imaging example, for instance, achieves high fidelity using 100,000 scatterers with five steering angles, and the simulation is completed on a personal computer in a few minutes. Furthermore, by modeling scatterers as moving particles, the simulation framework captures dynamic flow conditions in vascular phantoms for color Doppler imaging. These advances establish FOCUS as a robust, versatile tool for the rapid prototyping, validation, and optimization of both established and novel ultrasound imaging techniques. Full article
(This article belongs to the Special Issue Ultrasonic Imaging and Sensors II)
Show Figures

Figure 1

22 pages, 4828 KiB  
Article
High-Fidelity Interactive Motorcycle Driving Simulator with Motion Platform Equipped with Tension Sensors
by Josef Svoboda, Přemysl Toman, Petr Bouchner, Stanislav Novotný and Vojtěch Thums
Sensors 2025, 25(13), 4237; https://doi.org/10.3390/s25134237 - 7 Jul 2025
Viewed by 349
Abstract
The paper presents the innovative approach to a high-fidelity motorcycle riding simulator based on VR (Virtual Reality)-visualization, equipped with a Gough-Stewart 6-DOF (Degrees of Freedom) motion platform. Such a solution integrates a real-time tension sensor system as a source for highly realistic motion [...] Read more.
The paper presents the innovative approach to a high-fidelity motorcycle riding simulator based on VR (Virtual Reality)-visualization, equipped with a Gough-Stewart 6-DOF (Degrees of Freedom) motion platform. Such a solution integrates a real-time tension sensor system as a source for highly realistic motion cueing control as well as the servomotor integrated into the steering system. Tension forces are measured at four points on the mock-up chassis, allowing a comprehensive analysis of rider interaction during various maneuvers. The simulator is developed to simulate realistic riding scenarios with immersive motion and visual feedback, enhanced with the simulation of external influences—headwind. This paper presents results of a validation study—pilot experiments conducted to evaluate selected riding scenarios and validate the innovative simulator setup, focusing on force distribution and system responsiveness to support further research in motorcycle HMI (Human–Machine Interaction), rider behavior, and training. Full article
Show Figures

Figure 1

13 pages, 8706 KiB  
Article
Experimental Studies on Low-Latency RIS Beam Tracking: Edge-Integrated and Visually Steered
by Zekai Wang and Yuming Nie
Network 2025, 5(3), 22; https://doi.org/10.3390/network5030022 - 1 Jul 2025
Viewed by 222
Abstract
In this study, to address the problems of high feedback latency and redundant codebook traversal in traditional Reconfigurable Intelligent Surface (RIS) beam tracking systems, two novel experimental schemes are proposed: the Edge-Integrated RIS Control Mechanism (EIR-CM) and the Visually Steered RIS Control Mechanism [...] Read more.
In this study, to address the problems of high feedback latency and redundant codebook traversal in traditional Reconfigurable Intelligent Surface (RIS) beam tracking systems, two novel experimental schemes are proposed: the Edge-Integrated RIS Control Mechanism (EIR-CM) and the Visually Steered RIS Control Mechanism (VSR-CM). The EIR-CM eliminates the feedback latency of the remote server and optimizes the local computation by integrating the RIS control system and the User Equipment (UE) into the same edge server to reduce the beam tuning time by 50%. The VSR-CM realizes beam tracking based on visual perception, and directly maps the UE position to the optimal RIS codebook with a response speed as low as milliseconds. Experimental results show that the EIR-CM reduces the RIS feedback latency to 1–2 s, and the VSR-CM can be further optimized to less than 0.5 s. The two mechanisms are applicable to 6G communications, smart transport, and drone networks, providing feasibility verification for low-latency and efficient RIS deployment. Full article
(This article belongs to the Special Issue Advances in Wireless Communications and Networks)
Show Figures

Figure 1

16 pages, 779 KiB  
Article
A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms
by Yang Shen, Jinkui Zhu, Peng Hou, Shuowang Zhang, Xinglin Wang, Guodong He, Chao Lu, Enyu Wang and Yiwen Wu
Energies 2025, 18(13), 3452; https://doi.org/10.3390/en18133452 - 30 Jun 2025
Viewed by 208
Abstract
Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and [...] Read more.
Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and leading to non-optimal results. More importantly, these energy-focused strategies overlook the mechanical implications of frequent yaw activities in pursuit of the maximum power output, which may lead to premature exhaustion of the yaw system’s design life, thereby accelerating structural degradation. This study proposes a supervisory control framework that balances energy capture with structural reliability through three key innovations: (1) upstream-based inflow sensing for real-time capture of free-stream wind, (2) fatigue-responsive optimization constrained by a dynamic actuation quota system with adaptive yaw activation, and (3) a bidirectional threshold adjustment mechanism that redistributes unused actuation allowances and compensates for transient quota overruns. A case study at an offshore wind farm shows that the framework improves energy yield by 3.94%, which is only 0.29% below conventional optimization, while reducing yaw duration and activation frequency by 48.5% and 74.6%, respectively. These findings demonstrate the framework’s potential as a fatigue-aware control paradigm that balances energy efficiency with system longevity. Full article
(This article belongs to the Special Issue Wind Turbine Wakes and Wind Farms)
Show Figures

Figure 1

31 pages, 1988 KiB  
Article
The Effect of Macroeconomic Announcements on U.S. Treasury Markets: An Autometric General-to-Specific Analysis of the Greenspan Era
by James J. Forest
Econometrics 2025, 13(3), 24; https://doi.org/10.3390/econometrics13030024 - 21 Jun 2025
Viewed by 996
Abstract
This research studies the impact of macroeconomic announcement surprises on daily U.S. Treasury excess returns during the heart of Alan Greenspan’s tenure as Federal Reserve Chair, addressing the possible limitations of standard static regression (SSR) models, which may suffer from omitted variable bias, [...] Read more.
This research studies the impact of macroeconomic announcement surprises on daily U.S. Treasury excess returns during the heart of Alan Greenspan’s tenure as Federal Reserve Chair, addressing the possible limitations of standard static regression (SSR) models, which may suffer from omitted variable bias, parameter instability, and poor mis-specification diagnostics. To complement the SSR framework, an automated general-to-specific (Gets) modeling approach, enhanced with modern indicator saturation methods for robustness, is applied to improve empirical model discovery and mitigate potential biases. By progressively reducing an initially broad set of candidate variables, the Gets methodology steers the model toward congruence, dispenses unstable parameters, and seeks to limit information loss while seeking model congruence and precision. The findings, herein, suggest that U.S. Treasury market responses to macroeconomic news shocks exhibited stability for a core set of announcements that reliably influenced excess returns. In contrast to computationally costless standard static models, the automated Gets-based approach enhances parameter precision and provides a more adaptive structure for identifying relevant predictors. These results demonstrate the potential value of incorporating interpretable automated model selection techniques alongside traditional SSR and Markov switching approaches to improve empirical insights into macroeconomic announcement effects on financial markets. Full article
(This article belongs to the Special Issue Advancements in Macroeconometric Modeling and Time Series Analysis)
Show Figures

Figure 1

19 pages, 294 KiB  
Article
Innovative Experiences of Inter-Organizational Collaboration: The Case of Reception of Ukrainian Refugees in Lombardy
by Amalia De Leo, Martina Mutti and Caterina Gozzoli
Soc. Sci. 2025, 14(7), 395; https://doi.org/10.3390/socsci14070395 - 21 Jun 2025
Viewed by 300
Abstract
This study examines Lombardy’s response to the Ukrainian migration crisis which was triggered by the conflict between Russia and Ukraine. It focuses on the on the innovative experience of refugee reception that emerged as the traditional system became overwhelmed. It analyzes which aspects [...] Read more.
This study examines Lombardy’s response to the Ukrainian migration crisis which was triggered by the conflict between Russia and Ukraine. It focuses on the on the innovative experience of refugee reception that emerged as the traditional system became overwhelmed. It analyzes which aspects proved effective and which did not in the development of this alternative approach and the collaboration among various actors. Qualitative data were collected through semi-structured interviews with 28 participants, including professionals from both traditional reception systems and new collaborative actors and entities. Results highlight four specificities of the Ukrainian migration: geographic and cultural proximity, the demographic composition (predominantly women and children), positive media portrayal, and the activation of new actors. The study delves into six motivations driving this collaborative effort, ranging from historical ties, and pre-existing communities to emotional involvement and a perceived urgency for support. The challenges in coordinating between traditional systems and new collaborative entities are also examined, including communication barriers, the need for flexibility, and the lack of clear guidelines. This study recommends establishing a steering committee for enhanced collaboration and emphasizes the importance of long-term sustainability of these collaborative efforts. The findings offer valuable considerations for managing migration emergencies and fostering collaboration between different organizations and stakeholders. Full article
(This article belongs to the Section International Migration)
19 pages, 997 KiB  
Review
A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control
by Vikram Mittal, Michael Lotwin and Rajesh Shah
Actuators 2025, 14(7), 303; https://doi.org/10.3390/act14070303 - 20 Jun 2025
Viewed by 544
Abstract
Adaptive vehicle control systems are crucial for enhancing safety, performance, and efficiency in modern transportation, particularly as vehicles become increasingly automated and responsive to dynamic environments. This review explores the advancements in bio-inspired actuators and their potential applications in adaptive vehicle control systems. [...] Read more.
Adaptive vehicle control systems are crucial for enhancing safety, performance, and efficiency in modern transportation, particularly as vehicles become increasingly automated and responsive to dynamic environments. This review explores the advancements in bio-inspired actuators and their potential applications in adaptive vehicle control systems. Bio-inspired actuators, which mimic natural mechanisms such as muscle movement and plant tropism, offer unique advantages, including flexibility, adaptability, and energy efficiency. This paper categorizes these actuators based on their mechanisms, focusing on shape memory alloys, dielectric elastomers, ionic polymer–metal composites, polyvinylidene fluoride-based electrostrictive actuators, and soft pneumatic actuators. The review highlights the properties, operating principles, and potential applications for each mechanism in automotive systems. Additionally, it investigates the current uses of these actuators in adaptive suspension, active steering, braking systems, and human–machine interfaces for autonomous vehicles. The review further outlines the advantages of bio-inspired actuators, including their energy efficiency and adaptability to road conditions, while addressing key challenges like material limitations, response times, and integration with existing automotive control systems. Finally, this paper discusses future directions, including the integration of bio-inspired actuators with machine learning and advancements in material science, to enable more efficient and responsive adaptive vehicle control systems. Full article
Show Figures

Figure 1

Back to TopTop